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We investigate themultiple attribute groupmaterial selection problems inwhich the attribute values take the formof interval 2-tuple
linguistic information. Firstly, some operational laws and possibility degree of interval 2-tuple linguistic variables are introduced.
Then, we develop some interval 2-tuple linguistic aggregation operators called interval 2-tuple hybrid harmonic mean (ITHHM)
operator, induced interval 2-tuple ordered weighted harmonic mean (I-ITOWHM) operator, and induced interval 2-tuple hybrid
harmonic mean (I-ITHHM) operator and study some desirable properties of the I-ITOWHM operator. In particular, all these
operators can be reduced to aggregate 2-tuple linguistic variables. Based on the I-ITHHM and the ITWHM (interval 2-tuple
weighted harmonic mean) operators, an approach to multiple attribute group decision-making with interval 2-tuple linguistic
information is proposed. Finally, a practical application tomaterial selection problem is given to verify the developed approach and
to demonstrate its practicality and effectiveness.

1. Introduction

The 2-tuple linguistic representation model, characterized
by a linguistic term and a numeric value, was developed
by Herrera and Mart́ınez [1] based on the concept of
symbolic translation. It has exact characteristic in linguistic
information processing and can effectively avoid information
distortion and loss which occur formerly in the linguistic
computing process. In many real decision-making cases,
experts tend to give opinions according to their experience
and knowledge, and it is more suitable to provide assessments
bymeans of linguistic terms rather than numerical ones [2, 3],
due to the complexity of the objects and the vagueness of
human thinking. Therefore, many researchers have inves-
tigated linguistic multiple attribute group decision-making
(MAGDM) problems and proposed lots of methods to
deal with linguistic evaluation information. These linguistic
computational models can be mainly classified into three
types [3, 4]: the method based on membership functions, the
method based on linguistic symbols, and the method based
on linguistic 2-tuples. However, one important weakness of

the former two linguistic computational models is that they
performed the retranslation step as an approximation process
to express the results in the original expression domain
(initial term set) thus provoking a lack of accuracy [5]. In
contrast, the 2-tuple linguistic method is a symbolic model
that extends the use of indexes modifying the fuzzy linguistic
approach representation by adding a parameter to the basic
linguistic representation in order to improve the accuracy
of the linguistic computations and the interpretability of
the results. Due to its distinguished power and efficiency
in dealing with linguistic assessments of decision-makers,
the 2-tuple linguistic model has been extensively applied to
decision-making processes since its appearance [6–10].

In recent years, much progress has beenmade in research
relating to 2-tuple aggregation operators since information
aggregation plays a significant part in the MAGDM process.
For example, Herrera and Mart́ınez [1] defined the 2-tuple
arithmetic mean operator, the 2-tuple weighted averaging
operator, and the 2-tuple ordered weighted averaging oper-
ator. Wei [11] proposed the extended 2-tuple weighted geo-
metric (ET-WG) and the extended 2-tuple ordered weighted
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geometric (ET-OWG) operators and Wei [12] developed
some generalized aggregating operators with 2-tuple linguis-
tic information, such as the generalized 2-tuple weighted
average (G-2TWA), the generalized 2-tuple ordered weighted
average (G-2TOWA), and the induced generalized 2-tuple
ordered weighted average (IG-2TOWA) operators. Yang and
Chen [13] considered the linguistic group decision-making
problemwith interdependent attributes and introduced some
2-tuple linguistic aggregation operators by using the Choquet
integral: the 2-tuple correlated averaging (TCA) operator,
the 2-tuple correlated geometric (TCG) operator, and the
generalized 2-tuple correlated averaging (GTCA) operator.
Xu and Wang [14] developed the 2-tuple linguistic power
average (2TLPA), the 2-tuple linguistic weighted power
average (2TLWPA), and the 2-tuple linguistic power ordered
weighted average (2TLPOWA) operators and studied their
desired properties, such as commutativity, idempotency,
and boundary. Wan [15] developed some hybrid arithmetic
aggregation operators with 2-tuple linguistic information,
involving the 2-tuple hybrid weighted arithmetic average
(THWA) operator, the 2-tuple hybrid linguistic weighted
arithmetic average (T-HLWA) operator, and the extended
2-tuple hybrid linguistic weighted arithmetic average (ET-
HLWA) operator. Recently, Sonia et al. [16] introduced some
linguistic aggregation operators with conservation of inter-
action between criteria, which include the 2-tuple Choquet
integral averaging (TCIA) operator, the 2-tuple ordered Cho-
quet integral averaging (TOCIA) operator, and the combined
2-tuple Choquet integral averaging operator. Considering
the interactive phenomenon among experts (or attributes)
in MAGDM, Lin et al. [17] proposed a generalized interval
2-tuple linguistic Shapley chi-square averaging operator for
facility location selection. Li and Liu [18] proposed some new
aggregation operators of 2-tuple linguistic information based
onHeronianmean, and Ju et al. [19] gave somenewShapley 2-
tuple linguistic Choquet aggregation operators for MAGDM.
The linguistic proportional 2-tuple power average operator
was introduced by Jiang et al. [20] to aggregate linguistic
values of unbalanced linguistic term sets considering the
relationship among the aggregated values. Besides, the 2-
tuple linguistic extended Bonferroni mean (EBM) aggrega-
tion operators and the 2-tuple linguistic partition Bonferroni
mean (PBM) aggregation operators were developed in [21]
and [22], respectively, for dealing with MAGDM problems.

In some situations, however, the input arguments take
the form of interval 2-tuple linguistic values because of
time pressure, lack of knowledge or data, and decision-
makers’ limited attention and information processing capa-
bilities [23–25]. Furthermore, all decision-makers cannot
easily express their evaluations on the established criteria
with one given linguistic term set. That is, some decision-
makers feel that the cardinality of the linguistic term set is
too small to fully express their judgments on the alternatives,
while others think it is so big that the evaluations on
the alternatives are out of their ability. Therefore, Zhang
[26] introduced the interval 2-tuple linguistic representa-
tion model and developed some interval 2-tuple linguistic
aggregation operators, such as the interval 2-tuple weighted
average (ITWA) and the interval 2-tuple ordered weighted

average (ITOWA) operators. Zhang [27] further developed
some new interval 2-tuple linguistic aggregation operators,
including the interval 2-tuple weighted geometric (ITWG),
the interval 2-tuple ordered weighted geometric (ITOWG),
the generalized interval 2-tuple weighted average (GITWA),
and the generalized interval 2-tuple orderedweighted average
(GITOWA) operators. Liu et al. [28] put forward some
Bonferroni mean operators under the interval-valued 2-
tuple linguistic context and investigated their properties and
special cases. Wu et al. [29] presented the 2-tuple linguistic
generalized power average (2TLGPA), the 2-tuple linguistic
generalized power ordered weighted average (2TLGPOWA),
and the interval 2-tuple linguistic generalized power average
(I2TLGPA) operators for MAGDM. Motivated by the idea of
harmonic mean operators [30, 31], in this paper, we develop
some interval 2-tuple linguistic harmonic mean operators,
such as the interval 2-tuple hybrid harmonicmean (ITHHM)
operator, the induced interval 2-tuple ordered weighted
harmonic mean (I-ITOWHM) operator, and the induced
interval 2-tuple hybrid harmonicmean (I-ITHHM) operator.
And a new approach based on the I-ITHHM and the interval
2-tuple weighted harmonic mean (ITWHM) operators for
MAGDM with interval 2-tuple linguistic information is
presented.

The remainder of this paper is set out as follows. In
Section 2, we introduce some basic concepts and operation
laws of interval 2-tuple linguistic variables. In Section 3,
we develop some new aggregation operators called the
ITHHM operator, the I-ITOWHM operator, and the I-
ITHHM operator and investigate some desirable properties
of the I-ITOWHM operator. In Section 4, we develop an
approach based on the I-ITHHM and the ITWHMoperators
to interval 2-tuple linguistic MAGDM. A material selection
example is given in Section 5 to verify the developed approach
and to demonstrate its feasibility and practicality. Finally,
conclusions and future directions are provided in Section 6.

2. Preliminaries

2.1. 2-Tuple Linguistic Variables. A linguistic variable is a
variable whose values are expressed in linguistic terms. In
other words, it is a variable whose values are not numbers
but words or sentences in a natural or artificial language.
The concept of linguistic variables is very useful in dealing
with situations which are too complex or too ill defined to be
reasonably described by traditional quantitative expressions
[32]. For identifying the diversity of each evaluation item and
facilitating the computation, linguistic terms often possess
some characteristics such as finite set, odd cardinality, seman-
tic symmetric, ordinal level, and compensative operation
[33]. Let 𝑆 = {𝑠

𝑖
| 𝑖 = 0, 1, . . . , 𝑔} be a linguistic term set

with odd cardinality, where 𝑠
𝑖
represents a possible value for

a linguistic variable. It is required that the linguistic term set
should satisfy the following characteristics [1]:

(1) Negation operator: Neg(𝑠
𝑖
) = 𝑠
𝑗
such that 𝑗 = 𝑔 − 𝑖.

(2) The set which is ordered: 𝑠
𝑖
> 𝑠
𝑗
, if 𝑖 > 𝑗.

(3) Max operator: max(𝑠
𝑖
, 𝑠
𝑗
) = 𝑠
𝑖
, if 𝑠
𝑖
≥ 𝑠
𝑗
.

(4) Min operator: min(𝑠
𝑖
, 𝑠
𝑗
) = 𝑠
𝑖
, if 𝑠
𝑖
≤ 𝑠
𝑗
.
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The 2-tuple linguistic representation model was firstly
presented by Herrera and Mart́ınez [1] based on the concept
of symbolic translation. It is used to represent the linguistic
information by means of a linguistic 2-tuple, (𝑠, 𝛼), where 𝑠 is
a linguistic term from the predefined linguistic term set 𝑆 and
𝛼 is a numerical value representing the symbolic translation.
In the classical 2-tuple linguistic approach, the range of 𝛽
value is relevant to the granularity of the linguistic term sets.
Here, 𝛽 is the result of an aggregation of the indices of a set of
labels assessed in the linguistic term set 𝑆. To overcome this
restriction, Tai and Chen [33] further proposed a generalized
2-tuple linguistic model and translation functions.

Definition 1. Let 𝑆 = {𝑠
0
, 𝑠
1
, . . . , 𝑠

𝑔
} be a linguistic term

set and let 𝛽 ∈ [0, 1] be a value representing the result
of a symbolic aggregation operation. Then, the generalized
translation function Δ used to obtain the 2-tuple equivalent
to 𝛽 can be defined as follows [33]:

Δ : [0, 1] → 𝑆 × [−
1

2𝑔
,
1

2𝑔
)

Δ (𝛽) = (𝑠
𝑖
, 𝛼) ,

with
{{

{{

{

𝑠
𝑖
, 𝑖 = round (𝛽 ⋅ 𝑔)

𝛼 = 𝛽 −
𝑖

𝑔
, 𝛼 ∈ [−

1

2𝑔
,
1

2𝑔
) ,

(1)

where round(⋅) is the usual rounding operation. The interval
of 𝛼 is determined by the number of linguistic terms in 𝑆. For
example, if 𝑆 contains seven linguistic terms, then 𝑔 = 6 and
𝛼 ∈ [−0.083, 0.083).

Definition 2. Let 𝑆 = {𝑠
0
, 𝑠
1
, . . . , 𝑠

𝑔
} be a linguistic term set

and let (𝑠
𝑖
, 𝛼) be a 2-tuple. There exists a function Δ−1, which

is able to convert the 2-tuple into its equivalent numerical
value𝛽 ∈ [0, 1].The reverse functionΔ−1 is defined as follows
[33]:

Δ
−1

: 𝑆 × [−
1

2𝑔
,
1

2𝑔
) → [0, 1] ,

Δ
−1
(𝑠
𝑖
, 𝛼) =

𝑖

𝑔
+ 𝛼 = 𝛽.

(2)

It is obvious that the conversion of a linguistic term into
a linguistic 2-tuple consists of adding a value 0 as symbolic
translation [1]:

𝑠
𝑖
∈ 𝑆 ⇒ (𝑠

𝑖
, 0) . (3)

2.2. Interval 2-Tuple Linguistic Variables. The interval 2-tuple
linguistic representation model was put forward by Zhang
[26] as a generalization of the 2-tuple linguistic variable.

Definition 3. Let 𝑆 = {𝑠
0
, 𝑠
1
, . . . , 𝑠

𝑔
} be a linguistic term set.

An interval 2-tuple linguistic variable is composed of two 2-
tuples, denoted by [(𝑠

𝑖
, 𝛼
𝑖
), (𝑠
𝑗
, 𝛼
𝑗
)], where (𝑠

𝑖
, 𝛼
𝑖
) ≤ (𝑠

𝑗
, 𝛼
𝑗
),

and 𝑠
𝑖
(𝑠
𝑗
) and 𝛼

𝑖
(𝛼
𝑗
) represent the linguistic label of the

linguistic term set 𝑆 and symbolic translation, respectively.

The interval 2-tuple that expresses the equivalent information
to an interval value [𝛽

1
, 𝛽
2
] (𝛽
1
, 𝛽
2
∈ [0, 1], 𝛽

1
≤ 𝛽
2
) is

derived by the following function [26, 27]:

Δ [𝛽
1
, 𝛽
2
] = [(𝑠

𝑖
, 𝛼
𝑖
) , (𝑠
𝑗
, 𝛼
𝑗
)]

with

{{{{{{{{{{

{{{{{{{{{{

{

𝑠
𝑖
, 𝑖 = round (𝛽

1
⋅ 𝑔)

𝑠
𝑗
, 𝑗 = round (𝛽

2
⋅ 𝑔)

𝛼
𝑖
= 𝛽
1
−

𝑖

𝑔
, 𝛼
𝑖
∈ [−

1

2𝑔
,
1

2𝑔
)

𝛼
𝑗
= 𝛽
2
−
𝑗

𝑔
, 𝛼
𝑗
∈ [−

1

2𝑔
,
1

2𝑔
) .

(4)

On the contrary, there is always a function Δ−1 such that
an interval 2-tuple can be converted into an interval value
[𝛽
1
, 𝛽
2
] (𝛽
1
, 𝛽
2
∈ [0, 1], 𝛽

1
≤ 𝛽
2
) as follows:

Δ
−1
[(𝑠
𝑖
, 𝛼
𝑖
) , (𝑠
𝑗
, 𝛼
𝑗
)] = [

𝑖

𝑔
+ 𝛼
𝑖
,
𝑗

𝑔
+ 𝛼
𝑗
] = [𝛽

1
, 𝛽
2
] . (5)

In particular, if 𝑠
𝑖
= 𝑠
𝑗
and 𝛼

𝑖
= 𝛼
𝑗
, then the interval 2-tuple

linguistic variable reduces to a 2-tuple linguistic variable.

Definition 4. Consider any three interval 2-tuples �̃� = [(𝑠, 𝛼),

(𝑡, 𝜀)], �̃�
1
= [(𝑠
1
, 𝛼
1
), (𝑡
1
, 𝜀
1
)], and �̃�

2
= [(𝑠
2
, 𝛼
2
), (𝑡
2
, 𝜀
2
)] and

let 𝜆 ∈ [0, 1]; then, their operations can be defined as follows
[34]:

�̃�
1
⊗ �̃�
2
= [(𝑠
1
, 𝛼
1
) , (𝑡
1
, 𝜀
1
)] ⊗ [(𝑠

2
, 𝛼
2
) , (𝑡
2
, 𝜀
2
)]

= Δ [Δ
−1
(𝑠
1
, 𝛼
1
) ⋅ Δ
−1
(𝑠
2
, 𝛼
2
) , Δ
−1
(𝑡
1
, 𝜀
1
)

⋅ Δ
−1
(𝑡
2
, 𝜀
2
)] ;

(6)

�̃�
1
⊕ �̃�
2
= [(𝑠
1
, 𝛼
1
) , (𝑡
1
, 𝜀
1
)] ⊕ [(𝑠

2
, 𝛼
2
) , (𝑡
2
, 𝜀
2
)]

= Δ [Δ
−1
(𝑠
1
, 𝛼
1
) + Δ
−1
(𝑠
2
, 𝛼
2
) , Δ
−1
(𝑡
1
, 𝜀
1
)

+ Δ
−1
(𝑡
2
, 𝜀
2
)] ;

(7)

�̃�
𝜆
= ([(𝑠, 𝛼) , (𝑡, 𝜀)])

𝜆

= Δ [(Δ
−1
(𝑠, 𝛼))

𝜆

, (Δ
−1
(𝑡, 𝜀))

𝜆

] ;

(8)

𝜆�̃� = 𝜆 [(𝑠, 𝛼) , (𝑡, 𝜀)] = Δ [𝜆Δ
−1
(𝑠, 𝛼) , 𝜆Δ

−1
(𝑡, 𝜀)] . (9)

Motivated by the formulas proposed by Xu [35, 36], the
comparison of linguistic information represented by interval
2-tuples is implemented on the basis of the possibility degree
of the interval 2-tuple linguistic variables. It can be defined as
follows.

Definition 5. Let �̃�
1
= [(𝑠
1
, 𝛼
1
), (𝑡
1
, 𝜀
1
)] and �̃�

2
= [(𝑠
2
, 𝛼
2
),

(𝑡
2
, 𝜀
2
)] be two interval 2-tuples, and let ℎ(�̃�

1
) = Δ
−1
(𝑡
1
, 𝜀
1
) −
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Δ
−1
(𝑠
1
, 𝛼
1
) = 𝛿
1
−𝛽
1
and let ℎ(�̃�

2
) = Δ
−1
(𝑡
2
, 𝜀
2
)−Δ
−1
(𝑠
2
, 𝛼
2
) =

𝛿
2
− 𝛽
2
; then, the possibility degree of �̃�

1
≥ �̃�
2
is defined as

𝑝 (�̃�
1
≥ �̃�
2
)

= max{1 −max(
𝛿
2
− 𝛽
1

ℎ (�̃�
1
) + ℎ (�̃�

2
)
, 0) , 0} .

(10)

Similarly, the possibility degree of �̃�
2
≥ �̃�
1
is defined as

𝑝 (�̃�
2
≥ �̃�
1
)

= max{1 −max(
𝛿
1
− 𝛽
2

ℎ (�̃�
1
) + ℎ (�̃�

2
)
, 0) , 0} .

(11)

FromDefinition 5, we can easily get the following results:

(1) 0 ≤ 𝑝(�̃�
1
≥ �̃�
2
) ≤ 1, 0 ≤ 𝑝(�̃�

2
≥ �̃�
1
) ≤ 1;

(2) 𝑝(�̃�
1
≥ �̃�
2
) + 𝑝(�̃�

2
≥ �̃�
1
) = 1. In particular, 𝑝(�̃�

1
≥

�̃�
1
) = 𝑝(�̃�

2
≥ �̃�
2
) = 0.5.

3. Interval 2-Tuple Linguistic Harmonic
Mean Operators

3.1. Interval 2-Tuple Hybrid Harmonic Mean Operator

Definition 6. Let WHM: (𝑅+)𝑛 → 𝑅
+, if

WHM (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

1

∑
𝑛

𝑖=1
𝑤
𝑖
/𝑎
𝑖

, (12)

where 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is a collection of positive real num-

bers,𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector of 𝑎

𝑖
(𝑖 = 1, 2,

. . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1, and 𝑅

+ is the set of
all positive real numbers; then, WHM is called the weighted
harmonic mean operator [37].

Zhang [27] extended the WHM operator to accommo-
date the situations where the input arguments are interval 2-
tuple linguistic variables. For convenience, we let �̃� be the set
of all interval 2-tuple linguistic variables.

Definition 7. Let �̃�
𝑖
= [(𝑠
𝑖
, 𝛼
𝑖
), (𝑡
𝑖
, 𝜀
𝑖
)] (𝑖 = 1, 2, . . . , 𝑛) be a set

of interval 2-tuples, and let ITWHM: �̃�𝑛 → �̃�, if

ITWHM (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) =

1

⨁
𝑛

𝑖=1
(𝑤
𝑖
/�̃�
𝑖
)

= Δ[
1

∑
𝑛

𝑖=1
𝑤
𝑖
/ (Δ−1 (𝑠

𝑖
, 𝛼
𝑖
))
,

1

∑
𝑛

𝑖=1
𝑤
𝑖
/ (Δ−1 (𝑡

𝑖
, 𝜀
𝑖
))
] ,

(13)

where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector of �̃�

𝑖
(𝑖 =

1, 2, . . . , 𝑛), with 𝑤
𝑖

∈ [0, 1] and ∑
𝑛

𝑖=1
𝑤
𝑖

= 1; then,
ITWHM is called the interval 2-tuple weighted harmonic
mean (ITWHM) operator.

Based on the OWA and the ITWHM operators, Zhang
[27] developed the interval 2-tuple ordered weighted har-
monic mean (ITOWHM) operator as follows.

Definition 8. Let �̃�
𝑖
= [(𝑠
𝑖
, 𝛼
𝑖
), (𝑡
𝑖
, 𝜀
𝑖
)] (𝑖 = 1, 2, . . . , 𝑛) be a set

of interval 2-tuples. An ITOWHM operator of dimension 𝑛

is a mapping ITOWHM: �̃�𝑛 → �̃�, which has an associated
weight vector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 with 𝜔

𝑗
∈ [0, 1] and

∑
𝑛

𝑗=1
𝜔
𝑗
= 1, such that

ITOWHM (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) =

1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/�̃�
𝜎(𝑗)

)

= Δ[

[

1

∑
𝑛

𝑗=1
𝜔
𝑗
/ (Δ−1 (𝑠

𝜎(𝑗)
, 𝛼
𝜎(𝑗)

))

,

1

∑
𝑛

𝑗=1
𝜔
𝑗
/ (Δ−1 (𝑡

𝜎(𝑗)
, 𝜀
𝜎(𝑗)

))

]

]

,

(14)

where �̃�
𝜎(𝑗)

= [(𝑠
𝜎(𝑗)

, 𝛼
𝜎(𝑗)

), (𝑡
𝜎(𝑗)

, 𝜀
𝜎(𝑗)

)] is the 𝑗th largest of
�̃�
𝑖
(𝑖 = 1, 2, . . . , 𝑛).

Obviously, the fundamental characteristic of the ITWHM
operator is that it considers the importance of each given
interval 2-tuple linguistic variable, whereas the fundamental
characteristic of the ITOWHM operator is the reordering
step, and it weights all the ordered positions of interval
2-tuple linguistic variables instead of weighting the given
interval 2-tuples themselves. In the following, by combining
the advantages of the ITWHM and ITOWHM operators, we
develop an interval 2-tuple hybrid harmonicmean (ITHHM)
operator that weights both the given interval 2-tuple linguis-
tic variables and their ordered positions.

Definition 9. Let �̃�
𝑖
= [(𝑠
𝑖
, 𝛼
𝑖
), (𝑡
𝑖
, 𝜀
𝑖
)] (𝑖 = 1, 2, . . . , 𝑛) be a set

of interval 2-tuples. An ITHHM operator of dimension 𝑛 is
a mapping ITHHM: �̃�𝑛 → �̃�, which has an associated weight
vector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 with 𝜔

𝑗
∈ [0, 1] and∑𝑛

𝑗=1
𝜔
𝑗
= 1,

such that

ITHHM (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) =

1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/ ̇̃𝑎
𝜎(𝑗)

)

= Δ[

[

1

∑
𝑛

𝑗=1
𝜔
𝑗
/ (Δ−1 ( ̇𝑠

𝜎(𝑗)
, �̇�
𝜎(𝑗)

))

,

1

∑
𝑛

𝑗=1
𝜔
𝑗
/ (Δ−1 ( ̇𝑡

𝜎(𝑗)
, ̇𝜀
𝜎(𝑗)

))

]

]

,

(15)

where ̇̃𝑎
𝜎(𝑗)

= [( ̇𝑠
𝜎(𝑗)

, �̇�
𝜎(𝑗)

), ( ̇𝑡
𝜎(𝑗)

, ̇𝜀
𝜎(𝑗)

)] is the 𝑗th largest of
the weighted interval 2-tuples ̇̃𝑎

𝑖
( ̇̃𝑎
𝑖
= 𝑛𝑤
𝑖
�̃�
𝑖
, 𝑖 = 1, 2, . . . , 𝑛),

𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector of �̃�

𝑖
(𝑖 =

1, 2, . . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1, and 𝑛 is the

balancing coefficient.
In particular, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)

𝑇, then the
ITHHM operator is reduced to the ITOWHM operator;
if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)

𝑇, then the ITHHM operator is
reduced to the ITWHMoperator.Thus, the ITHHMoperator
generalizes both the ITWHM and ITOWHM operators and
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reflects the importance degrees of both the given argument
and its ordered position. Moreover, if the interval 2-tuples
�̃�
𝑗
= [(𝑠

𝑗
, 𝛼
𝑗
), (𝑡
𝑗
, 𝜀
𝑗
)] (𝑗 = 1, 2, . . . , 𝑛) are degenerated to

the 2-tuples �̂�
𝑗
= (𝑠
𝑗
, 𝛼
𝑗
) (𝑗 = 1, 2, . . . , 𝑛), then the ITHHM

operator is reduced to the 2-tuple linguistic hybrid harmonic
(2TLHH) operator [38].

To rank these interval 2-tuple linguistic arguments �̃�
𝑖
(𝑖 =

1, 2, . . . , 𝑛), we first compare each argument �̃�
𝑖
with all

arguments �̃�
𝑗
(𝑗 = 1, 2, . . . , 𝑛) by using (10) and let 𝑝

𝑖𝑗
=

𝑝 (�̃�
𝑖
≥ �̃�
𝑗
). Then, we can construct a complementary matrix

𝑃 = (𝑝
𝑖𝑗
)
𝑛×𝑛

, where 𝑝
𝑖𝑗
≥ 0, 𝑝

𝑖𝑗
+ 𝑝
𝑗𝑖

= 1, and 𝑝
𝑖𝑖
= 0.5,

𝑖, 𝑗 = 1, 2, . . . , 𝑛. Summing all elements in each line of the
matrix 𝑃, we have 𝑝

𝑖
= ∑
𝑛

𝑗=1
𝑝
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑛).Then, we can

rank the arguments �̃�
𝑖
(𝑖 = 1, 2, . . . , 𝑛) in descending order in

accordance with the values of 𝑝
𝑖
(𝑖 = 1, 2, . . . , 𝑛).

Example 10. Assuming 𝑆 = {𝑠
0
, 𝑠
1
, . . . , 𝑠

6
} is a linguistic

term set, �̃�
1
= [(𝑠

3
, 0), (𝑠

4
, 0)], �̃�

2
= [(𝑠

3
, 0), (𝑠

3
, 0)], �̃�

3
=

[(𝑠
2
, 0), (𝑠

4
, 0)], and �̃�

4
= [(𝑠

1
, 0), (𝑠

3
, 0)] and let 𝑤 =

(0.3, 0.2, 0.3, 0.2)
𝑇 be the weight vector of �̃�

𝑖
(𝑖 = 1, 2, 3, 4).

Then, we get the weighted interval 2-tuples:

̇̃𝑎
1
= 4 × 0.3 × [(𝑠

3
, 0) , (𝑠

4
, 0)]

= [(𝑠
4
, 0.133) , (𝑠

5
, −0.033)] ,

̇̃𝑎
2
= 4 × 0.2 × [(𝑠

3
, 0) , (𝑠

3
, 0)]

= [(𝑠
2
, 0.067) , (𝑠

2
, 0.067)] ,

̇̃𝑎
3
= 4 × 0.3 × [(𝑠

2
, 0) , (𝑠

4
, 0)]

= [(𝑠
2
, 0.467) , (𝑠

5
, −0.033)] ,

̇̃𝑎
4
= 4 × 0.2 × [(𝑠

1
, 0) , (𝑠

3
, 0)]

= [(𝑠
1
, 0.233) , (𝑠

2
, 0.067)] .

(16)

To rank these arguments, we first compare each argument
̇̃𝑎
𝑖
with all arguments ̇̃𝑎

𝑗
(𝑗 = 1, 2, 3, 4) by using (10) and then

construct a complementary matrix

𝑃 =

[
[
[
[
[

[

0.5 1 0.667 1

1 0.5 0 1

0.333 1 0.5 1

0 0 0 0.5

]
]
]
]
]

]

. (17)

Summing all elements in each line of the matrix 𝑃, we
have

𝑝
1
= 3.167,

𝑝
2
= 1.5,

𝑝
3
= 2.833,

𝑝
4
= 0.5.

(18)

Then, we rank the arguments ̇̃𝑎
𝑖
(𝑖 = 1, 2, 3, 4) in

descending order in accordance with the values of 𝑝
𝑖
(𝑖 =

1, 2, 3, 4):

̇̃𝑎
𝜎(1)

= ̇̃𝑎
1
= [(𝑠
4
, 0.133) , (𝑠

5
, −0.033)] ,

̇̃𝑎
𝜎(2)

= ̇̃𝑎
3
= [(𝑠
2
, 0.467) , (𝑠

5
, −0.033)] ,

̇̃𝑎
𝜎(3)

= ̇̃𝑎
2
= [(𝑠
2
, 0.067) , (𝑠

2
, 0.067)] ,

̇̃𝑎
𝜎(4)

= ̇̃𝑎
4
= [(𝑠
1
, 0.233) , (𝑠

2
, 0.067)] .

(19)

Suppose that the weight vector of the ITHHM operator is
𝜔 = (0.2, 0.3, 0.3, 0.2)

𝑇; then by (15), we get

ITHHM (�̃�
1
, �̃�
2
, �̃�
3
, �̃�
4
)

= (
0.2

[(𝑠
4
, 0.133) , (𝑠

5
, −0.033)]

⊕
0.3

[(𝑠
2
, 0.467) , (𝑠

5
, −0.033)]

⊕
0.3

[(𝑠
2
, 0.067) , (𝑠

2
, 0.067)]

⊕
0.2

[(𝑠
1
, 0.233) , (𝑠

2
, 0.067)]

)

−1

= Δ [0.300, 0.533]

= [(𝑠
2
, −0.033) , (𝑠

3
, 0.033)] .

(20)

3.2. Induced Interval 2-Tuple Ordered Weighted
Harmonic Mean Operator

Definition 11. An induced ordered weighted harmonic mean
(IOWHM) operator [39] is defined as follows:

IOWHM (⟨𝑢
1
, 𝑎
1
⟩ , ⟨𝑢
2
, 𝑎
2
⟩ , . . . , ⟨𝑢

𝑛
, 𝑎
𝑛
⟩)

=
1

∑
𝑛

𝑗=1
𝜔
𝑗
/𝑎
𝜎(𝑗)

,
(21)

where 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is a weight vector such that 𝜔

𝑗
∈

[0, 1] and ∑𝑛
𝑗=1

𝜔
𝑗
= 1, 𝑎

𝜎(𝑗)
is the 𝑎

𝑖
value of the IOWA pair

⟨𝑢
𝑖
, 𝑎
𝑖
⟩ having the 𝑗th largest 𝑢

𝑖
, and 𝑢

𝑖
in ⟨𝑢
𝑖
, 𝑎
𝑖
⟩ is referred

to as the order inducing variable.
In the following, we will develop an induced interval

2-tuple ordered weighted harmonic mean (I-ITOWHM)
operator.

Definition 12. Let �̃�
𝑖
= [(𝑠
𝑖
, 𝛼
𝑖
), (𝑡
𝑖
, 𝜀
𝑖
)] (𝑖 = 1, 2, . . . , 𝑛) be a

set of interval 2-tuples and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be an

associated weight vector, with 𝜔
𝑗
∈ [0, 1], ∑

𝑛

𝑗=1
𝜔
𝑗
= 1. The

induced interval 2-tuple ordered weighted harmonic mean
(I-ITOWHM) operator is defined as

I-ITOWHM (⟨𝑢
1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩)

=
1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/�̃�
𝜎(𝑗)

)
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= Δ[

[

1

∑
𝑛

𝑗=1
𝜔
𝑗
/ (Δ−1 (𝑠

𝜎(𝑗)
, 𝛼
𝜎(𝑗)

))

,

1

∑
𝑛

𝑗=1
𝜔
𝑗
/ (Δ−1 (𝑡

𝜎(𝑗)
, 𝜀
𝜎(𝑗)

))

]

]

,

(22)

where �̃�
𝜎(𝑗)

= [(𝑠
𝜎(𝑗)

, 𝛼
𝜎(𝑗)

), (𝑡
𝜎(𝑗)

, 𝜀
𝜎(𝑗)

)] is the �̃�
𝑖
value of the

IOWA pair ⟨𝑢
𝑖
, �̃�
𝑖
⟩ having the 𝑗th largest 𝑢

𝑖
and 𝑢

𝑖
in ⟨𝑢
𝑖
, �̃�
𝑖
⟩

is referred to as the order inducing variable.
If there is a tie between ⟨𝑢

𝑖
, �̃�
𝑖
⟩ and ⟨𝑢

𝑗
, �̃�
𝑗
⟩ with respect

to the order inducing variables such that 𝑢
𝑖

= 𝑢
𝑗
, in

this case, we replace the argument component of each of
⟨𝑢
𝑖
, �̃�
𝑖
⟩ and ⟨𝑢

𝑗
, �̃�
𝑗
⟩ by their average (�̃�

𝑖
+ �̃�
𝑗
)/2 in the

process of aggregation. If 𝑘 items are tied, then we replace
these by 𝑘 replicas of their average. The weight vector 𝜔 =

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 can be determined by using some weight

determining methods like the normal distribution based
method [40].

In particular, if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the I-

ITOWHM operator is reduced to the interval 2-tuple har-
monic mean (ITHM) operator:

ITHM (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) =

𝑛

⨁
𝑛

𝑗=1
(1/�̃�
𝑗
)

= Δ[

[

𝑛

∑
𝑛

𝑗=1
1/ (Δ−1 (𝑠

𝑗
, 𝛼
𝑗
))

,

𝑛

∑
𝑛

𝑗=1
1/ (Δ−1 (𝑡

𝑗
, 𝜀
𝑗
))

]

]

.

(23)

If 𝑢
𝑖
= 𝑖, for all 𝑖, where 𝑖 is the ordered position of �̃�

𝑖
, the

I-ITOWHM operator is reduced to the ITWHM operator; if
𝑢
𝑖
= �̃�
𝑖
, for all 𝑖, then the I-ITOWHM operator is reduced

to the ITOWHM operator. Moreover, if the interval 2-tuples
�̃�
𝑖
= [(𝑠
𝑖
, 𝛼
𝑖
), (𝑡
𝑖
, 𝜀
𝑖
)] (𝑖 = 1, 2, . . . , 𝑛) are degenerated to the

2-tuples �̂�
𝑖
= (𝑠
𝑖
, 𝛼
𝑖
) (𝑖 = 1, 2, . . . , 𝑛), then the I-ITOWHM

operator is reduced to the induced 2-tuple ordered weighted
harmonic mean (I-TOWHM) operator:

I-ITOWHM (⟨𝑢
1
, �̂�
1
⟩ , ⟨𝑢
2
, �̂�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̂�
𝑛
⟩)

=
1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/�̂�
𝜎(𝑗)

)

= Δ[

[

1

∑
𝑛

𝑗=1
𝜔
𝑗
/ (Δ−1 (𝑠

𝜎(𝑗)
, 𝛼
𝜎(𝑗)

))

]

]

,

(24)

where �̂�
𝜎(𝑗)

= (𝑠
𝜎(𝑗)

, 𝛼
𝜎(𝑗)

) is the �̂�
𝑖
value of the IOWA pair

⟨𝑢
𝑖
, �̂�
𝑖
⟩ having the 𝑗th largest 𝑢

𝑖
, and 𝑢

𝑖
in ⟨𝑢
𝑖
, �̂�
𝑖
⟩ is referred to

as the order inducing variable. If there is a tie between ⟨𝑢
𝑖
, �̂�
𝑖
⟩

and ⟨𝑢
𝑗
, �̂�
𝑗
⟩with respect to the order inducing variables such

that 𝑢
𝑖
= 𝑢
𝑗
, then we replace the argument component of

each of ⟨𝑢
𝑖
, �̂�
𝑖
⟩ and ⟨𝑢

𝑗
, �̂�
𝑗
⟩ by their average (�̂�

𝑖
+ �̂�
𝑗
)/2 in

the process of aggregation. If 𝑘 items are tied, then we replace
these by 𝑘 replicas of their average.

The I-ITOWHM operator has the following properties
similar to those of the IOWHM [39] and the IOWAoperators
[41].

Theorem 13 (commutativity). Consider
𝐼-𝐼𝑇𝑂𝑊𝐻𝑀(⟨𝑢

1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩)

= 𝐼-𝐼𝑇𝑂𝑊𝐻𝑀(⟨𝑢
1
, �̃�


1
⟩ , ⟨𝑢
2
, �̃�


2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�


𝑛
⟩) ,

(25)

where (⟨𝑢
1
, �̃�


1
⟩, ⟨𝑢
2
, �̃�


2
⟩, . . . , ⟨𝑢

𝑛
, �̃�


𝑛
⟩) is any permutation of

(⟨𝑢
1
, �̃�
1
⟩, ⟨𝑢
2
, �̃�
2
⟩, . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩).

Proof. Let
I-ITOWHM (⟨𝑢

1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩)

=
1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/�̃�
𝜎(𝑗)

)

,

I-ITOWHM (⟨𝑢
1
, �̃�


1
⟩ , ⟨𝑢
2
, �̃�


2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�


𝑛
⟩)

=
1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/�̃�


𝜎(𝑗)
)

.

(26)

Since (⟨𝑢
1
, �̃�


1
⟩, ⟨𝑢
2
, �̃�


2
⟩, . . . , ⟨𝑢

𝑛
, �̃�


𝑛
⟩) is any permutation of

(⟨𝑢
1
, �̃�
1
⟩, ⟨𝑢
2
, �̃�
2
⟩, . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩), we have �̃�

𝜎(𝑗)
= �̃�


𝜎(𝑗)
(𝑗 =

1, 2, . . . , 𝑛); then,
I-ITOWHM (⟨𝑢

1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩)

= I-ITOWHM (⟨𝑢
1
, �̃�


1
⟩ , ⟨𝑢
2
, �̃�


2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�


𝑛
⟩) .

(27)

Theorem 14 (idempotency). If �̃�
𝑖
= �̃� for all 𝑖, then

𝐼-𝐼𝑇𝑂𝑊𝐻𝑀(⟨𝑢
1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩) = �̃�. (28)

Proof. Since �̃�
𝑖
= �̃� for all 𝑖, we have

I-ITOWHM (⟨𝑢
1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩)

=
1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/�̃�
𝜎(𝑗)

)

=
1

∑
𝑛

𝑗=1
𝜔
𝑗
/�̃�

= �̃�.
(29)

Theorem 15 (monotonicity). If �̃�
𝑖
≤ �̃�


𝑖
for all 𝑖, then

𝐼-𝐼𝑇𝑂𝑊𝐻𝑀(⟨𝑢
1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩)

≤ 𝐼-𝐼𝑇𝑂𝑊𝐻𝑀(⟨𝑢
1
, �̃�


1
⟩ , ⟨𝑢
2
, �̃�


2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�


𝑛
⟩) .

(30)

Proof. Let
I-ITOWHM (⟨𝑢

1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩)

=
1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/�̃�
𝜎(𝑗)

)

,

I-ITOWHM (⟨𝑢
1
, �̃�


1
⟩ , ⟨𝑢
2
, �̃�


2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�


𝑛
⟩)

=
1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/�̃�


𝜎(𝑗)
)

.

(31)
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Since �̃�
𝑖
≤ �̃�


𝑖
for all 𝑖, it follows that �̃�

𝜎(𝑗)
≤ �̃�


𝜎(𝑗)
(𝑗 =

1, 2, . . . , 𝑛); then,

I-ITOWHM (⟨𝑢
1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩)

≤ I-ITOWHM (⟨𝑢
1
, �̃�


1
⟩ , ⟨𝑢
2
, �̃�


2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�


𝑛
⟩) .

(32)

Example 16. Assuming 𝑆 = {𝑠
0
, 𝑠
1
, . . . , 𝑠

6
} is a linguistic term

set, ⟨𝑢
1
, �̃�
1
⟩ = ⟨0.2, [(𝑠

2
, 0), (𝑠

3
, 0)]⟩, ⟨𝑢

2
, �̃�
2
⟩ = ⟨0.4, [(𝑠

4
,

0), (𝑠
5
, 0)]⟩, ⟨𝑢

3
, �̃�
3
⟩ = ⟨0.3, [(𝑠

4
, 0), (𝑠

4
, 0)]⟩, and ⟨𝑢

4
, �̃�
4
⟩ =

⟨0.8, [(𝑠
3
, 0), (𝑠

4
, 0)]⟩ are four IOWA pairs. Then, we desire

to aggregate using the weight vector 𝜔 = (0.1, 0.4, 0.4, 0.1)
𝑇.

Performing the ordering of the IOWA pairs with respect to
the first component, we get

⟨𝑢
4
, �̃�
4
⟩ = ⟨0.8, [(𝑠

3
, 0) , (𝑠

4
, 0)]⟩ ,

⟨𝑢
2
, �̃�
2
⟩ = ⟨0.4, [(𝑠

4
, 0) , (𝑠

5
, 0)]⟩ ,

⟨𝑢
3
, �̃�
3
⟩ = ⟨0.3, [(𝑠

4
, 0) , (𝑠

4
, 0)]⟩ ,

⟨𝑢
1
, �̃�
1
⟩ = ⟨0.2, [(𝑠

2
, 0) , (𝑠

3
, 0)]⟩ .

(33)

This ordering includes the ordered interval 2-tuple argu-
ments:

�̃�
𝜎(1)

= �̃�
4
= [(𝑠
3
, 0) , (𝑠

4
, 0)] ,

�̃�
𝜎(2)

= �̃�
2
= [(𝑠
4
, 0) , (𝑠

5
, 0)] ,

�̃�
𝜎(3)

= �̃�
3
= [(𝑠
4
, 0) , (𝑠

4
, 0)] ,

�̃�
𝜎(4)

= �̃�
1
= [(𝑠
2
, 0) , (𝑠

3
, 0)] .

(34)

Thus, we get an aggregated value

I-ITOWHM (⟨𝑢
1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , ⟨𝑢
3
, �̃�
3
⟩ , ⟨𝑢
4
, �̃�
4
⟩)

= (
0.1

[(𝑠
3
, 0) , (𝑠

4
, 0)]

⊕
0.4

[(𝑠
4
, 0) , (𝑠

5
, 0)]

⊕
0.4

[(𝑠
4
, 0) , (𝑠

4
, 0)]

⊕
0.1

[(𝑠
2
, 0) , (𝑠

3
, 0)]

)

−1

= Δ [0.588, 0.699] = [(𝑠
4
, −0.078) , (𝑠

4
, 0.033)] .

(35)

3.3. Induced Interval 2-Tuple Hybrid Harmonic Mean Opera-
tor. Inspired by the induced hybrid averaging (IHA) operator
[42], in the following, we further generalize the ITHHM
operator by using order inducing variables, obtaining the
induced interval 2-tuple hybrid harmonic mean (I-ITHHM)
operator.

Definition 17. Let �̃�
𝑖
= [(𝑠
𝑖
, 𝛼
𝑖
), (𝑡
𝑖
, 𝜀
𝑖
)] (𝑖 = 1, 2, . . . , 𝑛) be a set

of interval 2-tuples. An I-ITHHM operator of dimension 𝑛 is
amapping I-ITHHM: �̃�𝑛 → �̃�, which has an associatedweight

vector 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 with 𝜔

𝑗
∈ [0, 1] and∑𝑛

𝑗=1
𝜔
𝑗
= 1,

such that

I-ITHHM (⟨𝑢
1
, �̃�
1
⟩ , ⟨𝑢
2
, �̃�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̃�
𝑛
⟩)

=
1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/ ̇̃𝑎
𝜎(𝑗)

)

= Δ[

[

1

∑
𝑛

𝑗=1
𝜔
𝑗
/ (Δ−1 ( ̇𝑠

𝜎(𝑗)
, �̇�
𝜎(𝑗)

))

,

1

∑
𝑛

𝑗=1
𝜔
𝑗
/ (Δ−1 ( ̇𝑡

𝜎(𝑗)
, ̇𝜀
𝜎(𝑗)

))

]

]

,

(36)

where ̇̃𝑎
𝜎(𝑗)

= [( ̇𝑠
𝜎(𝑗)

, �̇�
𝜎(𝑗)

), ( ̇𝑡
𝜎(𝑗)

, ̇𝜀
𝜎(𝑗)

)] is the weighted
interval 2-tuple ̇̃𝑎

𝑖
( ̇̃𝑎
𝑖
= 𝑛𝑤
𝑖
�̃�
𝑖
, 𝑖 = 1, 2, . . . , 𝑛) of the IOWA

pair ⟨𝑢
𝑖
, �̃�
𝑖
⟩ having the 𝑗th largest 𝑢

𝑖
, 𝑢
𝑖
is the order inducing

variable, 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector of �̃�

𝑖
(𝑖 =

1, 2, . . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1, and 𝑛 is the

balancing coefficient.
In particular, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)

𝑇, then the I-
ITHHM operator is reduced to the I-ITOWHM operator;
if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)

𝑇, then the I-ITHHM operator is
reduced to the ITWHM operator. If 𝑢

𝑖
= 𝑛𝑤
𝑖
�̃�
𝑖
, for all 𝑖, then

the I-ITHHM operator is reduced to the ITHHM operator.
Moreover, if the interval 2-tuples �̃�

𝑖
= [(𝑠
𝑖
, 𝛼
𝑖
), (𝑡
𝑖
, 𝜀
𝑖
)] (𝑖 =

1, 2, . . . , 𝑛) are degenerated to the 2-tuples �̂�
𝑖
= (𝑠
𝑖
, 𝛼
𝑖
) (𝑖 =

1, 2, . . . , 𝑛), then the I-ITHHM operator is reduced to the
induced 2-tuple hybrid harmonic mean (I-THHM) operator:

I-THHM (⟨𝑢
1
, �̂�
1
⟩ , ⟨𝑢
2
, �̂�
2
⟩ , . . . , ⟨𝑢

𝑛
, �̂�
𝑛
⟩)

=
1

⨁
𝑛

𝑗=1
(𝜔
𝑗
/ ̇̂𝑎
𝜎(𝑗)

)

= Δ[

[

1

∑
𝑛

𝑗=1
𝜔
𝑗
/ (Δ−1 ( ̇𝑠

𝜎(𝑗)
, �̇�
𝜎(𝑗)

))

]

]

,

(37)

where ̇̂𝑎
𝜎(𝑗)

= ( ̇𝑠
𝜎(𝑗)

, �̇�
𝜎(𝑗)

) is the weighted 2-tuple ̇̂𝑎
𝑖
( ̇̂𝑎
𝑖
=

𝑛𝑤
𝑖
�̂�
𝑖
, 𝑖 = 1, 2, . . . , 𝑛) of the IOWA pair ⟨𝑢

𝑖
, �̂�
𝑖
⟩ having

the 𝑗th largest 𝑢
𝑖
, 𝑢
𝑖
is the order inducing variable, 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector of �̂�

𝑖
(𝑖 = 1, 2, . . . , 𝑛),

with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1, and 𝑛 is the balancing

coefficient.

Example 18. Assuming 𝑆 = {𝑠
0
, 𝑠
1
, . . . , 𝑠

6
} is a linguistic term

set, ⟨𝑢
1
, �̃�
1
⟩ = ⟨0.2, [(𝑠

2
, 0), (𝑠

3
, 0)]⟩, ⟨𝑢

2
, �̃�
2
⟩ = ⟨0.5, [(𝑠

1
, 0),

(𝑠
3
, 0)]⟩, ⟨𝑢

3
, �̃�
3
⟩ = ⟨0.3, [(𝑠

2
, 0), (𝑠

4
, 0)]⟩, and ⟨𝑢

4
, �̃�
4
⟩ = ⟨0.7,

[(𝑠
3
, 0), (𝑠

4
, 0)]⟩ are four IOWA pairs. Let 𝑤 = (0.2, 0.3, 0.2,

0.3)
𝑇 be the weight vector of �̃�

𝑖
(𝑖 = 1, 2, 3, 4). Performing
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the ordering of the IOWA pairs with respect to the first
component, we get

⟨𝑢
4
, �̃�
4
⟩ = ⟨0.7, [(𝑠

3
, 0) , (𝑠

4
, 0)]⟩ ,

⟨𝑢
2
, �̃�
2
⟩ = ⟨0.5, [(𝑠

1
, 0) , (𝑠

3
, 0)]⟩ ,

⟨𝑢
3
, �̃�
3
⟩ = ⟨0.3, [(𝑠

2
, 0) , (𝑠

4
, 0)]⟩ ,

⟨𝑢
1
, �̃�
1
⟩ = ⟨0.2, [(𝑠

2
, 0) , (𝑠

3
, 0)]⟩ .

(38)

Then, we get the weighted interval 2-tuples

̇̃𝑎
𝜎(1)

= 4 × 0.2 × [(𝑠
3
, 0) , (𝑠

4
, 0)]

= [(𝑠
2
, 0.200) , (𝑠

3
, 0.033)] ,

̇̃𝑎
𝜎(2)

= 4 × 0.3 × [(𝑠
1
, 0) , (𝑠

3
, 0)]

= [(𝑠
1
, 0.043) , (𝑠

4
, −0.067)] ,

̇̃𝑎
𝜎(3)

= 4 × 0.2 × [(𝑠
2
, 0) , (𝑠

4
, 0)]

= [(𝑠
2
, 0.200) , (𝑠

3
, 0.033)] ,

̇̃𝑎
𝜎(4)

= 4 × 0.3 × [(𝑠
2
, 0) , (𝑠

3
, 0)]

= [(𝑠
2
, 0.267) , (𝑠

4
, −0.067)] .

(39)

Suppose that the weight vector of the I-ITHHM operator is
𝜔 = (0.2, 0.4, 0.3, 0.1)

𝑇; then, by (36), we get

I-ITHHM (�̃�
1
, �̃�
2
, �̃�
3
, �̃�
4
)

= (
0.2

[(𝑠
2
, 0.200) , (𝑠

3
, 0.033)]

⊕
0.4

[(𝑠
1
, 0.043) , (𝑠

4
, −0.067)]

⊕
0.3

[(𝑠
2
, 0.200) , (𝑠

3
, 0.033)]

⊕
0.1

[(𝑠
2
, 0.267) , (𝑠

4
, −0.067)]

)

−1

= Δ [0.258, 0.565] = [(𝑠
2
, −0.075) , (𝑠

3
, 0.065)] .

(40)

4. An Approach to MAGDM with Interval
2-Tuple Linguistic Information

In this section, we will develop an approach based on the pro-
posed interval 2-tuple linguistic harmonicmean operators for
the MAGDM problems in which both the attribute weights
and the expert weights take the form of real numbers and
the attribute values take the form of interval 2-tuple linguistic
variables.

Suppose that a MAGDM problem has 𝑙 decision-makers
DM
𝑘
(𝑘 = 1, 2, . . . , 𝑙), 𝑚 alternatives 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝑚),

and 𝑛 decision attributes 𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑛). Each decision-

maker DM
𝑘
is given a weight 𝜆

𝑘
> 0 (𝑘 = 1, 2, . . . , 𝑙)

satisfying∑𝑙
𝑘=1

𝜆
𝑘
= 1 to reflect his/her relative importance in

the group decision-making process. Let𝐷
𝑘
= (𝑑
𝑘

𝑖𝑗
)
𝑚×𝑛

be the
linguistic decision matrix of the 𝑘th decision-maker, where
𝑑
𝑘

𝑖𝑗
is the linguistic information provided by DM

𝑘
on the

assessment of𝐴
𝑖
with respect to𝐶

𝑗
. Let𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇

be the weight vector of attributes, where 𝑤
𝑗

≥ 0, 𝑗 =

1, 2, . . . , 𝑛, and ∑
𝑛

𝑗=1
𝑤
𝑗
= 1. In addition, decision-makers

may use different linguistic term sets to express their pref-
erence values.

In the following, we apply the I-ITHHMand the ITWHM
operators to multiple attribute group decision-making with
interval 2-tuple linguistic information.

Step 1. Convert the linguistic decision matrix 𝐷
𝑘
= (𝑑
𝑘

𝑖𝑗
)
𝑚×𝑛

into interval 2-tuple linguistic decision matrix �̃�
𝑘

=

(�̃�
𝑘

𝑖𝑗
)
𝑚×𝑛

= ([(𝑠
𝑘

𝑖𝑗
, 0), (𝑡

𝑘

𝑖𝑗
, 0)])
𝑚×𝑛

, where 𝑠𝑘
𝑖𝑗
, 𝑡
𝑘

𝑖𝑗
∈ 𝑆, 𝑆 = {𝑠

0
, 𝑠
1
,

. . . , 𝑠
𝑔
} and 𝑠𝑘

𝑖𝑗
≤ 𝑡
𝑘

𝑖𝑗
.

Suppose that DM
𝑘
provides its assessments in a set of

five linguistic terms and the linguistic term set is denoted
as 𝑆 = {𝑠

0
= Very poor, 𝑠

1
= Poor, 𝑠

2
= Medium, 𝑠

3
=

Good, 𝑠
4
= Very good}. The linguistic information provided

in the decision matrix 𝐷
𝑘
can be converted into its corre-

sponding interval 2-tuple linguistic assessments according to
the following ways:

(i) A certain grade such as Poor, which can be written as
[(𝑠
1
, 0), (𝑠

1
, 0)];

(ii) an interval such as Poor-Medium, which means that
the assessment of an alternative with respect to the
attribute under consideration is between Poor and
Medium which can be written as [(𝑠

1
, 0), (𝑠

2
, 0)].

Step 2. Utilize the I-ITHHM operator which has an associ-
ated weight vector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 with 𝜔

𝑗
∈ [0, 1] and

∑
𝑛

𝑗=1
𝜔
𝑗
= 1

�̃�
𝑖𝑗
= [(𝑠
𝑖𝑗
, 𝛼
𝑖𝑗
) , (𝑡
𝑖𝑗
, 𝜀
𝑖𝑗
)]

= I-ITHHM (⟨𝜆
1
, �̃�
1

𝑖𝑗
⟩ , ⟨𝜆

2
, �̃�
2

𝑖𝑗
⟩ , . . . , ⟨𝜆

𝑛
, �̃�
𝑙

𝑖𝑗
⟩)

=
1

⨁
𝑛

𝑘=1
(𝜔
𝑗
/ ̇̃𝑟
𝜎(𝑘)

𝑖𝑗
)

,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

(41)

to aggregate all the decision matrices �̃�
𝑘
(𝑘 = 1, 2, . . . , 𝑙) into

a collective decision matrix �̃� = (�̃�
𝑖𝑗
)
𝑚×𝑛

, where ̇̃𝑟
𝜎(𝑘)

𝑖𝑗
is the

weighted interval 2-tuple ̇̃𝑟
𝑘

𝑖𝑗
( ̇̃𝑟
𝑘

𝑖𝑗
= 𝑙𝜆
𝑘
�̃�
𝑘

𝑖𝑗
, 𝑘 = 1, 2, . . . , 𝑙) of

the IOWA pair ⟨𝜆
𝑘
, �̃�
𝑘

𝑖𝑗
⟩ having the 𝑘th largest 𝜆

𝑘
.

Step 3. Utilize the decision information given inmatrix �̃� and
the ITWHM operator

�̃�
𝑖
= [(𝑠
𝑖
, 𝛼
𝑖
) , (𝑡
𝑖
, 𝜀
𝑖
)] = ITWHM (�̃�

𝑖1
, �̃�
𝑖2
, . . . , �̃�

𝑖𝑛
)

=
1

⨁
𝑛

𝑗=1
(𝑤
𝑗
/�̃�
𝑖𝑗
)

, 𝑖 = 1, 2, . . . , 𝑚,
(42)
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to derive the collective overall preference value �̃�
𝑖
of the

alternative 𝐴
𝑖
.

Step 4. To rank these collective overall preference values
�̃�
𝑖
(𝑖 = 1, 2, . . . , 𝑚), we first compare each �̃�

𝑖
with all �̃�

𝑗
(𝑗 =

1, 2, . . . , 𝑚) by using (10). Let 𝑝
𝑖𝑗
= 𝑝 (�̃�

𝑖
≥ �̃�
𝑗
), and then

we develop a complementary matrix as 𝑃 = (𝑝
𝑖𝑗
)
𝑚×𝑚

, where
𝑝
𝑖𝑗
≥ 0, 𝑝

𝑖𝑗
+ 𝑝
𝑗𝑖
= 1, and 𝑝

𝑖𝑖
= 0.5, 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

Summing all elements in each line of the matrix 𝑃, we
have 𝑝

𝑖
= ∑
𝑚

𝑗=1
𝑝
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑚. Then, we rank �̃�

𝑖
(𝑖 =

1, 2, . . . , 𝑚) in descending order in accordancewith the values
of 𝑝
𝑖
(𝑖 = 1, 2, . . . , 𝑚).

Step 5. Rank all the alternatives 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑚) and

select the best one(s) in accordance with the collective overall
preference values �̃�

𝑖
(𝑖 = 1, 2, . . . , 𝑚).

Step 6. End.

5. An Illustrative Example

In what follows, an illustrative example adapted from [43]
is presented to illustrate the application of the developed
method for material selection problem. This example prob-
lem is related with selection of a suitable work material for
a product which needs to be designed for operating in a
high-temperature environment. After preliminary screening,
five alternative materials, 𝐴

𝑖
(𝑖 = 1, 2, . . . , 5), have been

designated for further evaluation. An expert committee of
four decision-makers, that is, DM

1
, DM
2
, DM
3
, and DM

4
,

has been created in order to evaluate and select the most
appropriate material for the application.The attributes which
have been considered for the analysis are

𝐶
1
: tensile strength;

𝐶
2
: Young’s modulus;

𝐶
3
: density;

𝐶
4
: corrosion resistance.

The weight vector of these attributes is 𝑤 = (0.13, 0.25,

0.50, 0.12)
𝑇. The four decision-makers, whose weight vector

𝜆 = (0.15, 0.20, 0.35, 0.30)
𝑇, employ different linguistic term

sets to assess the suitability of the material with respect to the
above selection attributes. Specifically, the decision-maker
DM
1
provides his assessments by using the linguistic term set

𝐴; DM
2
provides his assessments using 𝐵; DM

3
provides his

assessments using 𝐶; DM
4
provides his assessments using𝐷.

These linguistic term sets are denoted as follows:

𝐴 = {𝑎
0
= Very poor (VP) , 𝑎1 = Poor (P) , 𝑎2

= Medium (M) , 𝑎3 = Good (G) , 𝑎4
= Very good (VG)} ,

𝐵 = {𝑏
0
= Very poor (VP) , 𝑏1 = Poor (P) , 𝑏2

= Medium poor (MP) , 𝑏3 = Medium (M) , 𝑏4

= Medium good (MG) , 𝑏5 = Good (G) , 𝑏6

= Very good (VG)} ,

𝐶 = {𝑐
0
= Extra poor (EP) , 𝑐1 = Very poor (VP) , 𝑐2

= Poor (P) , 𝑐3 = Medium poor (MP) , 𝑐4

= Medium (M) , 𝑐5 = Medium good (MG) , 𝑐6

= Good (G) , 𝑐7 = Very good (VG) , 𝑐8

= Extra Good (EG)} ,

𝐷 = {𝑑
0
= Very poor (VP) , 𝑑1 = Poor (P) , 𝑑2

= Medium (M) , 𝑑3 = Good (G) , 𝑑4

= Very good (VG)} .
(43)

The linguistic assessments of the five alternatives on each
attribute provided by the four decision-makers are presented
in Table 1.

Then, we utilize the method being proposed to get the
most desirable alternative(s).

Step 1. Convert the linguistic decision matrix shown in
Table 1 into interval 2-tuple linguistic decision matrix �̃�

𝑘
=

([(𝑠
𝑘

𝑖𝑗
, 0), (𝑡

𝑘

𝑖𝑗
, 0)])
5×4

, which is depicted in Table 2.

Step 2. Utilize the decision information given in matrixes
�̃�
𝑘
(𝑘 = 1, 2, 3, 4) and the I-ITHHM operator to get a

collective decision matrix, as presented in Table 3.
In this example, the weight vector of the I-ITHHM

operator is 𝜔 = (0.15, 0.35, 0.35, 0.15)
𝑇 according to the

normal distribution based method [40].

Step 3. Utilize the decision information given in matrix �̃�

and the ITWHM operator to obtain the collective overall
preference value �̃�

𝑖
of the alternative 𝐴

𝑖
(𝑖 = 1, 2, . . . , 5):

�̃�
1
= Δ [0.811, 0.865] ,

�̃�
2
= Δ [0.350, 0.359] ,

�̃�
3
= Δ [0.317, 0.365] ,

�̃�
4
= Δ [0.686, 0.716] ,

�̃�
5
= Δ [0.477, 0.570] .

(44)

Step 4. Calculate the values 𝑝
𝑖
(𝑖 = 1, 2, . . . , 5) of the

collective overall preference values 𝑟
𝑖
(𝑖 = 1, 2, . . . , 5) by using

(10), and the results obtained are given as follows:

𝑝
1
= 4.5,

𝑝
2
= 1.239,

𝑝
3
= 0.761,

𝑝
4
= 3.5,

𝑝
5
= 2.5.

(45)

Step 5. Rank all the alternative 𝐴
𝑖
(𝑖 = 1, 2, . . . , 5) in accor-

dance with the values of 𝑝
𝑖
(𝑖 = 1, 2, . . . , 5) in descending
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Table 1: Linguistic assessments of the five alternatives.

Decision-makers Alternatives Attributes
𝐶
1

𝐶
2

𝐶
3

𝐶
4

DM
1

A
1

G G-VG VG G
A
2

M-G M G M
A
3

M M P-M P
A
4

G G-VG M G
A
5

M M-G G G

DM
2

A
1

VG VG G VG
A
2

MP M P M
A
3

MP MG M MP
A
4

G G G MG-G
A
5

M-G M MP-M MG

DM
3

A
1

EG VG VG-EG VG
A
2

M-MG M-G G G
A
3

P MP P P-MP
A
4

VG VG G-VG G-VG
A
5

M M G-VG G

DM
4

A
1

VG VG G-VG VG
A
2

M-G M G G
A
3

P-M M P P-M
A
4

G VG G G-VG
A
5

M-G M G G

Table 2: Interval 2-tuple linguistic decision matrix of the four decision makers.

Decision-makers Alternatives Attributes
𝐶
1

𝐶
2

𝐶
3

𝐶
4

DM
1

𝐴
1

[(𝑎
3
, 0), (𝑎

3
, 0)] [(𝑎

3
, 0), (𝑎

4
, 0)] [(𝑎

4
, 0), (𝑎

4
, 0)] [(𝑎

3
, 0), (𝑎

3
, 0)]

𝐴
2

[(𝑎
2
, 0), (𝑎

3
, 0)] [(𝑎

2
, 0), (𝑎

2
, 0)] [(𝑎

3
, 0), (𝑎

3
, 0)] [(𝑎

2
, 0), (𝑎

2
, 0)]

𝐴
3

[(𝑎
2
, 0), (𝑎

2
, 0)] [(𝑎

2
, 0), (𝑎

2
, 0)] [(𝑎

1
, 0), (𝑎

2
, 0)] [(𝑎

1
, 0), (𝑎

1
, 0)]

𝐴
4

[(𝑎
3
, 0), (𝑎

3
, 0)] [(𝑎

3
, 0), (𝑎

4
, 0)] [(𝑎

2
, 0), (𝑎

2
, 0)] [(𝑎

3
, 0), (𝑎

3
, 0)]

𝐴
5

[(𝑎
2
, 0), (𝑎

2
, 0)] [(𝑎

2
, 0), (𝑎

3
, 0)] [(𝑎

3
, 0), (𝑎

3
, 0)] [(𝑎

3
, 0), (𝑎

3
, 0)]

DM
2

𝐴
1

[(𝑏
6
, 0), (𝑏

6
, 0)] [(𝑏

6
, 0), (𝑏

6
, 0)] [(𝑏

5
, 0), (𝑏

5
, 0)] [(𝑏

6
, 0), (𝑏

6
, 0)]

𝐴
2

[(𝑏
2
, 0), (𝑏

2
, 0)] [(𝑏

3
, 0), (𝑏

3
, 0)] [(𝑏

1
, 0), (𝑏

1
, 0)] [(𝑏

3
, 0), (𝑏

3
, 0)]

𝐴
3

[(𝑏
2
, 0), (𝑏

2
, 0)] [(𝑏

4
, 0), (𝑏

4
, 0)] [(𝑏

3
, 0), (𝑏

3
, 0)] [(𝑏

2
, 0), (𝑏

2
, 0)]

𝐴
4

[(𝑏
5
, 0), (𝑏

5
, 0)] [(𝑏

5
, 0), (𝑏

5
, 0)] [(𝑏

5
, 0), (𝑏

5
, 0)] [(𝑏

4
, 0), (𝑏

5
, 0)]

𝐴
5

[(𝑏
3
, 0), (𝑏

5
, 0)] [(𝑏

3
, 0), (𝑏

3
, 0)] [(𝑏

2
, 0), (𝑏

3
, 0)] [(𝑏

4
, 0), (𝑏

4
, 0)]

DM
3

𝐴
1

[(𝑐
8
, 0), (𝑐

8
, 0)] [(𝑐

7
, 0), (𝑐

7
, 0)] [(𝑐

7
, 0), (𝑐

8
, 0)] [(𝑐

7
, 0), (𝑐

7
, 0)]

𝐴
2

[(𝑐
4
, 0), (𝑐

5
, 0)] [(𝑐

4
, 0), (𝑐

6
, 0)] [(𝑐

6
, 0), (𝑐

6
, 0)] [(𝑐

6
, 0), (𝑐

6
, 0)]

𝐴
3

[(𝑐
2
, 0), (𝑐

2
, 0)] [(𝑐

3
, 0), (𝑐

3
, 0)] [(𝑐

2
, 0), (𝑐

2
, 0)] [(𝑐

2
, 0), (𝑐

3
, 0)]

𝐴
4

[(𝑐
7
, 0), (𝑐

7
, 0)] [(𝑐

7
, 0), (𝑐

7
, 0)] [(𝑐

6
, 0), (𝑐

7
, 0)] [(𝑐

6
, 0), (𝑐

7
, 0)]

𝐴
5

[(𝑐
4
, 0), (𝑐

4
, 0)] [(𝑐

4
, 0), (𝑐

4
, 0)] [(𝑐

6
, 0), (𝑐

7
, 0)] [(𝑐

6
, 0), (𝑐

6
, 0)]

DM
4

𝐴
1

[(𝑑
4
, 0), (𝑑

4
, 0)] [(𝑑

4
, 0), (𝑑

4
, 0)] [(𝑑

3
, 0), (𝑑

4
, 0)] [(𝑑

4
, 0), (𝑑

4
, 0)]

𝐴
2

[(𝑑
2
, 0), (𝑑

3
, 0)] [(𝑑

2
, 0), (𝑑

2
, 0)] [(𝑑

3
, 0), (𝑑

3
, 0)] [(𝑑

3
, 0), (𝑑

3
, 0)]

𝐴
3

[(𝑑
1
, 0), (𝑑

2
, 0)] [(𝑑

2
, 0), (𝑑

2
, 0)] [(𝑑

1
, 0), (𝑑

1
, 0)] [(𝑑

1
, 0), (𝑑

2
, 0)]

𝐴
4

[(𝑑
3
, 0), (𝑑

3
, 0)] [(𝑑

4
, 0), (𝑑

4
, 0)] [(𝑑

3
, 0), (𝑑

3
, 0)] [(𝑑

3
, 0), (𝑑

4
, 0)]

𝐴
5

[(𝑑
2
, 0), (𝑑

3
, 0)] [(𝑑

2
, 0), (𝑑

2
, 0)] [(𝑑

3
, 0), (𝑑

3
, 0)] [(𝑑

3
, 0), (𝑑

3
, 0)]
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Table 3: Collective decision matrix by I-ITHHM.

Alternatives Attributes
𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

Δ[0.855, 0.855] Δ[0.844, 0.908] Δ[0.777, 0.852] Δ[0.844, 0.844]
𝐴
2

Δ[0.383, 0.453] Δ[0.460, 0.476] Δ[0.287, 0.287] Δ[0.524, 0.524]
𝐴
3

Δ[0.293, 0.354] Δ[0.494, 0.494] Δ[0.288, 0.337] Δ[0.256, 0.314]
𝐴
4

Δ[0.730, 0.730] Δ[0.786, 0.841] Δ[0.642, 0.651] Δ[0.657, 0.786]
𝐴
5

Δ[0.460, 0.614] Δ[0.460, 0.499] Δ[0.459, 0.582] Δ[0.657, 0.657]

Table 4: Ranking comparisons.

Operators Ranking The best alternative
By ITHHM 𝐴

1
≻ 𝐴
4
≻ 𝐴
5
≻ 𝐴
2
≻ 𝐴
3

𝐴
1

By I-ITOWHM 𝐴
1
≻ 𝐴
4
≻ 𝐴
5
≻ 𝐴
2
≻ 𝐴
3

𝐴
1

By I-ITHHM 𝐴
1
≻ 𝐴
4
≻ 𝐴
5
≻ 𝐴
2
≻ 𝐴
3

𝐴
1

By FWHM + FHHM 𝐴
1
≻ 𝐴
4
≻ 𝐴
5
≻ 𝐴
2
≻ 𝐴
3

𝐴
1

By ULHHM + ULWHM 𝐴
1
≻ 𝐴
4
≻ 𝐴
5
≻ 𝐴
2
≻ 𝐴
3

𝐴
1

By THWA + TWA 𝐴
1
≻ 𝐴
4
≻ 𝐴
5
≻ 𝐴
2
≻ 𝐴
3

𝐴
1

order:𝐴
1
≻ 𝐴
4
≻ 𝐴
5
≻ 𝐴
2
≻ 𝐴
3
, and thus themost desirable

alternative is 𝐴
1
.

Next, we use the ITHHM and the I-ITOWHM operators
in Step 2 to rank the alternatives. The ranking results are
shown in Table 4. It is easy to see from Table 4 that the best
selection is the alternative𝐴

1
for all the aggregation operators

used in this example. It should be noted that, depending on
the aggregation operators used, the ranking orders of the
alternative materials may be different. Therefore, according
to the particular type of aggregation operator used, the results
may lead to different decisions. But, in this example, it seems
clear that𝐴

1
is the optimal choice. Hence, the committee can

recommend thatmaterial𝐴
1
is themost suitable selection for

the product.
In addition, to further evaluate the proposed method, we

use the above material selection problem to analyze some
comparable methods, which are based on the aggregation
operators proposed by Xu [30], Park et al. [31], andWan [15],
respectively. In the first method, the fuzzy hybrid harmonic
mean (FHHM) operator is utilized in the aggregation stage
and the fuzzy weighted harmonic mean (FWHM) operator is
used in the exploitation stage. Similarly, the second method
employs the uncertain linguistic hybrid harmonic mean
(ULHHM) operator in the aggregation stage and the uncer-
tain linguistic weighted harmonic mean (ULWHM) operator
in the exploitation stage; the third method employs the 2-
tuple hybrid weighted arithmetic average (THWA) operator
in the aggregation stage and the 2-tuple weighted averaging
(TWA) operator in the exploitation stage.The ranking results
of the four alternatives derived by using these methods are
presented in Table 4.

According to Table 4, the ranking orders of the alter-
natives obtained by the method proposed in this paper are
exactly the same as those determined by the methods based
on previous operators. Thus, the proposed method is vali-
dated. However, in comparison with the listed methods, the

proposed approach using interval 2-tuple linguistic harmonic
mean operators is more reasonable and flexible for solving
MAGDM problems because of the following:

(i) It has exact characteristic in linguistic information
processing and can effectively avoid the loss and
distortion of information which occur formerly in
other types of linguistic computational models.

(ii) The uncertainty and diversity of decision-makers’
assessment information can be well reflected and
modelled using interval 2-tuple linguistic variables.
Moreover, the linguistic term sets with different gran-
ularity of uncertainty can be used by decision-makers
for assessing alternatives.

(iii) We can represent more complex group decision-
making processes that include psychological factors
such as time pressure and personal affects to each
alternative, by using order inducing variables in the
aggregation stage.

6. Conclusions

In this paper, we have developed some new harmonic
aggregation operators including the interval 2-tuple hybrid
harmonic mean (ITHHM) operator, the induced interval
2-tuple ordered weighted harmonic mean (I-ITOWHM)
operator, and the induced interval 2-tuple hybrid harmonic
mean (I-ITHHM) operator. It has been shown that both the
ITWHM and ITOWHM operators are the special cases of
the ITHHM operator, and if all the input interval 2-tuple
data are reduced to the 2-tuple data, then the developed
operators are reduced to the 2TLHHoperator, the I-TOWHM
operator, and the I-THHM operator, respectively. We have
studied some desired properties of the I-ITOWHM operator,
such as commutativity, idempotency, and monotonicity, and
applied the I-ITHHM and the ITWHM operators to mul-
tiple attribute group decision-making with interval 2-tuple
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linguistic information. Finally, a material selection example
has been given to verify the developed method and to
demonstrate its practicality and effectiveness.

In the future, we expect to present further extensions
to the proposed approach by adding new characteristics in
the decision process and consider the potential applications
of the developed interval 2-tuple linguistic harmonic mean
operators to other fields. First, in many real-world situa-
tions, decision-makers may hesitate among several possible
linguistic values or think of richer expressions for assessing
an alternative because of uncertainty. Thus, extending the
proposed decision model by using the hesitant fuzzy linguis-
tic term sets [44–46] is recommended in future research to
solve the material selection problemmore efficiently. Second,
the proposed approach for group decision-making based
on interval 2-tuple linguistic harmonic mean operators is a
general method, which can be easily applied to deal with
other decision-making problems such as robot evaluation
and selection, green supply chain management, and electric
vehicle charging station planning.
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