565 research outputs found

    GNSS array-based acquisition: theory and implementation

    Get PDF
    This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. The term GNSS classi es those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the American GPS is already available, which coexists with the renewed Russian Glonass, the forthcoming European contribution (Galileo) along with the Chinese Compass will be operative soon. Therefore, a variety of satellite constellations and signals will be available in the next years. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. The positioning availability must be guaranteed all the time, specially in safety-critical and mission-critical services. Examining the threats against the service availability, it is important to take into account that all the present and the forthcoming GNSSs make use of Code Division Multiple Access (CDMA) techniques. The ranging signals are received with very low precorrelation signal-to-noise ratio (in the order of ���22 dB for a receiver operating at the Earth surface). Despite that the GNSS CDMA processing gain o ers limited protection against Radio Frequency interferences (RFI), an interference with a interference-to-signal power ratio that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service, specially conventional receivers equipped with minimal or basic level of protection towards RFIs. As a consequence, RFIs (either intentional or unintentional) remain as the most important cause of performance degradation. A growing concern of this problem has appeared in recent times. Focusing our attention on the GNSS receiver, it is known that signal acquisition has the lowest sensitivity of the whole receiver operation, and, consequently, it becomes the performance bottleneck in the presence of interfering signals. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in low SNR scenarios or in the presence of wideband interferences. On the other hand, antenna arrays receivers can bene t from spatial-domain processing, and thus mitigate the e ects of interfering signals. Spatial diversity has been traditionally applied to the signal tracking operation of GNSS receivers. However, initial tracking conditions depend on signal acquisition, and there are a number of scenarios in which the acquisition process can fail as stated before. Surprisingly, to the best of our knowledge, the application of antenna arrays to GNSS signal acquisition has not received much attention. This Thesis pursues a twofold objective: on the one hand, it proposes novel arraybased acquisition algorithms using a well-established statistical detection theory framework, and on the other hand demonstrates both their real-time implementation feasibility and their performance in realistic scenarios. The Dissertation starts with a brief introduction to GNSS receivers fundamentals, providing some details about the navigation signals structure and the receiver's architecture of both GPS and Galileo systems. It follows with an analysis of GNSS signal acquisition as a detection problem, using the Neyman-Pearson (NP) detection theory framework and the single-antenna acquisition signal model. The NP approach is used here to derive both the optimum detector (known as clairvoyant detector ) and the sov called Generalized Likelihood Ratio Test (GLRT) detector, which is the basis of almost all of the current state-of-the-art acquisition algorithms. Going further, a novel detector test statistic intended to jointly acquire a set of GNSS satellites is obtained, thus reducing both the acquisition time and the required computational resources. The eff ects of the front-end bandwidth in the acquisition are also taken into account. Then, the GLRT is extended to the array signal model to obtain an original detector which is able to mitigate temporally uncorrelated interferences even if the array is unstructured and moderately uncalibrated, thus becoming one of the main contributions of this Dissertation. The key statistical feature is the assumption of an arbitrary and unknown covariance noise matrix, which attempts to capture the statistical behavior of the interferences and other non-desirable signals, while exploiting the spatial dimension provided by antenna arrays. Closed form expressions for the detection and false alarm probabilities are provided. Performance and interference rejection capability are modeled and compared both to their theoretical bound. The proposed array-based acquisition algorithm is also compared to conventional acquisition techniques performed after blind null-steering beamformer approaches, such as the power minimization algorithm. Furthermore, the detector is analyzed under realistic conditions, accounting for the presence of errors in the covariance matrix estimation, residual Doppler and delay errors, and signal quantization e ects. Theoretical results are supported by Monte Carlo simulations. As another main contribution of this Dissertation, the second part of the work deals with the design and the implementation of a novel Field Programmable Gate Array (FPGA)-based GNSS real-time antenna-array receiver platform. The platform is intended to be used as a research tool tightly coupled with software de ned GNSS receivers. A complete signal reception chain including the antenna array and the multichannel phase-coherent RF front-end for the GPS L1/ Galileo E1 was designed, implemented and tested. The details of the digital processing section of the platform, such as the array signal statistics extraction modules, are also provided. The design trade-o s and the implementation complexities were carefully analyzed and taken into account. As a proof-of-concept, the problem of GNSS vulnerability to interferences was addressed using the presented platform. The array-based acquisition algorithms introduced in this Dissertation were implemented and tested under realistic conditions. The performance of the algorithms were compared to single antenna acquisition techniques, measured under strong in-band interference scenarios, including narrow/wide band interferers and communication signals. The platform was designed to demonstrate the implementation feasibility of novel array-based acquisition algorithms, leaving the rest of the receiver operations (mainly, tracking, navigation message decoding, code and phase observables, and basic Position, Velocity and Time (PVT) solution) to a Software De ned Radio (SDR) receiver running in a personal computer, processing in real-time the spatially- ltered signal sample stream coming from the platform using a Gigabit Ethernet bus data link. In the last part of this Dissertation, we close the loop by designing and implementing such software receiver. The proposed software receiver targets multi-constellation/multi-frequency architectures, pursuing the goals of e ciency, modularity, interoperability, and exibility demanded by user domains that require non-standard features, such as intermediate signals or data extraction and algorithms interchangeability. In this context, we introduce an open-source, real-time GNSS software de ned receiver (so-named GNSS-SDR) that contributes with several novel features such as the use of software design patterns and shared memory techniques to manage e ciently the data ow between receiver blocks, the use of hardware-accelerated instructions for time-consuming vector operations like carrier wipe-o and code correlation, and the availability to compile and run on multiple software platforms and hardware architectures. At this time of writing (April 2012), the receiver enjoys of a 2-dimensional Distance Root Mean Square (DRMS) error lower than 2 meters for a GPS L1 C/A scenario with 8 satellites in lock and a Horizontal Dilution Of Precision (HDOP) of 1.2.Esta tesis aborda el problema de la adquisición de la señal usando arrays de antenas en el marco general de los receptores de Sistemas Globales de Navegación por Satélite (GNSS). El término GNSS engloba aquellos sistemas de navegación basados en una constelación de satélites que emiten señales útiles para el posicionamiento. Aunque el GPS americano ya está disponible, coexistiendo con el renovado sistema ruso GLONASS, actualmente se está realizando un gran esfuerzo para que la contribución europea (Galileo), junto con el nuevo sistema chino Compass, estén operativos en breve. Por lo tanto, una gran variedad de constelaciones de satélites y señales estarán disponibles en los próximos años. Estos sistemas proporcionan las infraestructuras necesarias para una multitud de aplicaciones y servicios que demandan un servicio de posicionamiento confiable y preciso. La disponibilidad de posicionamiento se debe garantizar en todo momento, especialmente en los servicios críticos para la seguridad de las personas y los bienes. Cuando examinamos las amenazas de la disponibilidad del servicio que ofrecen los GNSSs, es importante tener en cuenta que todos los sistemas presentes y los sistemas futuros ya planificados hacen uso de técnicas de multiplexación por división de código (CDMA). Las señales transmitidas por los satélites son recibidas con una relación señal-ruido (SNR) muy baja, medida antes de la correlación (del orden de -22 dB para un receptor ubicado en la superficie de la tierra). A pesar de que la ganancia de procesado CDMA ofrece una protección inherente contra las interferencias de radiofrecuencia (RFI), esta protección es limitada. Una interferencia con una relación de potencia de interferencia a potencia de la señal que excede la ganancia de procesado puede degradar el rendimiento de los receptores o incluso negar por completo el servicio GNSS. Este riesgo es especialmente importante en receptores convencionales equipados con un nivel mínimo o básico de protección frente las RFIs. Como consecuencia, las RFIs (ya sean intencionadas o no intencionadas), se identifican como la causa más importante de la degradación del rendimiento en GNSS. El problema esta causando una preocupación creciente en los últimos tiempos, ya que cada vez hay más servicios que dependen de los GNSSs Si centramos la atención en el receptor GNSS, es conocido que la adquisición de la señal tiene la menor sensibilidad de todas las operaciones del receptor, y, en consecuencia, se convierte en el factor limitador en la presencia de señales interferentes. Un receptor de una sola antena puede hacer uso de la diversidad en tiempo y frecuencia para mitigar las interferencias, aunque el rendimiento de estas técnicas se ve comprometido en escenarios con baja SNR o en presencia de interferencias de banda ancha. Por otro lado, los receptores basados en múltiples antenas se pueden beneficiar del procesado espacial, y por lo tanto mitigar los efectos de las señales interferentes. La diversidad espacial se ha aplicado tradicionalmente a la operación de tracking de la señal en receptores GNSS. Sin embargo, las condiciones iniciales del tracking dependen del resultado de la adquisición de la señal, y como hemos visto antes, hay un número de situaciones en las que el proceso de adquisición puede fallar. En base a nuestro grado de conocimiento, la aplicación de los arrays de antenas a la adquisición de la señal GNSS no ha recibido mucha atención, sorprendentemente. El objetivo de esta tesis doctoral es doble: por un lado, proponer nuevos algoritmos para la adquisición basados en arrays de antenas, usando como marco la teoría de la detección de señal estadística, y por otro lado, demostrar la viabilidad de su implementación y ejecución en tiempo real, así como su medir su rendimiento en escenarios realistas. La tesis comienza con una breve introducción a los fundamentos de los receptores GNSS, proporcionando algunos detalles sobre la estructura de las señales de navegación y la arquitectura del receptor aplicada a los sistemas GPS y Galileo. Continua con el análisis de la adquisición GNSS como un problema de detección, aplicando la teoría del detector Neyman-Pearson (NP) y el modelo de señal de una única antena. El marco teórico del detector NP se utiliza aquí para derivar tanto el detector óptimo (conocido como detector clarividente) como la denominada Prueba Generalizada de la Razón de Verosimilitud (en inglés, Generalized Likelihood Ratio Test (GLRT)), que forma la base de prácticamente todos los algoritmos de adquisición del estado del arte actual. Yendo más lejos, proponemos un nuevo detector diseñado para adquirir simultáneamente un conjunto de satélites, por lo tanto, obtiene una reducción del tiempo de adquisición y de los recursos computacionales necesarios en el proceso, respecto a las técnicas convencionales. El efecto del ancho de banda del receptor también se ha tenido en cuenta en los análisis. A continuación, el detector GLRT se extiende al modelo de señal de array de antenas para obtener un detector nuevo que es capaz de mitigar interferencias no correladas temporalmente, incluso utilizando arrays no estructurados y moderadamente descalibrados, convirtiéndose así en una de las principales aportaciones de esta tesis. La clave del detector es asumir una matriz de covarianza de ruido arbitraria y desconocida en el modelo de señal, que trata de captar el comportamiento estadístico de las interferencias y otras señales no deseadas, mientras que utiliza la dimensión espacial proporcionada por los arrays de antenas. Se han derivado las expresiones que modelan las probabilidades teóricas de detección y falsa alarma. El rendimiento del detector y su capacidad de rechazo a interferencias se han modelado y comparado con su límite teórico. El algoritmo propuesto también ha sido comparado con técnicas de adquisición convencionales, ejecutadas utilizando la salida de conformadores de haz que utilizan algoritmos de filtrado de interferencias, como el algoritmo de minimización de la potencia. Además, el detector se ha analizado bajo condiciones realistas, representadas con la presencia de errores en la estimación de covarianzas, errores residuales en la estimación del Doppler y el retardo de señal, y los efectos de la cuantificación. Los resultados teóricos se apoyan en simulaciones de Monte Carlo. Como otra contribución principal de esta tesis, la segunda parte del trabajo trata sobre el diseño y la implementación de una nueva plataforma para receptores GNSS en tiempo real basados en array de antenas que utiliza la tecnología de matriz programable de puertas lógicas (en ingles Field Programmable Gate Array (FPGA)). La plataforma está destinada a ser utilizada como una herramienta de investigación estrechamente acoplada con receptores GNSS definidos por software. Se ha diseñado, implementado y verificado la cadena completa de recepción, incluyendo el array de antenas y el front-end multi-canal para las señales GPS L1 y Galileo E1. El documento explica en detalle el procesado de señal que se realiza, como por ejemplo, la implementación del módulo de extracción de estadísticas de la señal. Los compromisos de diseño y las complejidades derivadas han sido cuidadosamente analizadas y tenidas en cuenta. La plataforma ha sido utilizada como prueba de concepto para solucionar el problema presentado de la vulnerabilidad del GNSS a las interferencias. Los algoritmos de adquisición introducidos en esta tesis se han implementado y probado en condiciones realistas. El rendimiento de los algoritmos se comparó con las técnicas de adquisición basadas en una sola antena. Se han realizado pruebas en escenarios que contienen interferencias dentro de la banda GNSS, incluyendo interferencias de banda estrecha y banda ancha y señales de comunicación. La plataforma fue diseñada para demostrar la viabilidad de la implementación de nuevos algoritmos de adquisición basados en array de antenas, dejando el resto de las operaciones del receptor (principalmente, los módulos de tracking, decodificación del mensaje de navegación, los observables de código y fase, y la solución básica de Posición, Velocidad y Tiempo (PVT)) a un receptor basado en el concepto de Radio Definida por Software (SDR), el cual se ejecuta en un ordenador personal. El receptor procesa en tiempo real las muestras de la señal filltradas espacialmente, transmitidas usando el bus de datos Gigabit Ethernet. En la última parte de esta Tesis, cerramos ciclo diseñando e implementando completamente este receptor basado en software. El receptor propuesto está dirigido a las arquitecturas de multi-constalación GNSS y multi-frecuencia, persiguiendo los objetivos de eficiencia, modularidad, interoperabilidad y flexibilidad demandada por los usuarios que requieren características no estándar, tales como la extracción de señales intermedias o de datos y intercambio de algoritmos. En este contexto, se presenta un receptor de código abierto que puede trabajar en tiempo real, llamado GNSS-SDR, que contribuye con varias características nuevas. Entre ellas destacan el uso de patrones de diseño de software y técnicas de memoria compartida para administrar de manera eficiente el uso de datos entre los bloques del receptor, el uso de la aceleración por hardware para las operaciones vectoriales más costosas, como la eliminación de la frecuencia Doppler y la correlación de código, y la disponibilidad para compilar y ejecutar el receptor en múltiples plataformas de software y arquitecturas de hardware. A fecha de la escritura de esta Tesis (abril de 2012), el receptor obtiene un rendimiento basado en la medida de la raíz cuadrada del error cuadrático medio en la distancia bidimensional (en inglés, 2-dimensional Distance Root Mean Square (DRMS) error) menor de 2 metros para un escenario GPS L1 C/A con 8 satélites visibles y una dilución de la precisión horizontal (en inglés, Horizontal Dilution Of Precision (HDOP)) de 1.2

    Multi-purpose TDM Component for GNSS

    Get PDF
    International audienceThis article proposes a Time-Division-Multiplexing (TDM) technique applied at PRN code level as a signal design solution able to cope with the provision of several functionalities in one signal component: the allocation of the signal to the different functionalities is made at PRN code level. The functionalities targeted in this article are low-complexity acquisition, fast Time-ToFirst-Fix Data (TTFFD), Security Code Authentication (SCA) and, additionally, non-coherent signal processing. The interest of using a TDM component signal design lays on the introduction of just one new component to reduce the complexity to be added to the legacy GNSS satellite payload and to the GNSS receiver. Moreover, a TDM signal design solution presents a great flexibility able to adapt the signal design to the different GNSS strategic directives. The TDM component is constituted of period blocks called short basic blocks and advanced blocks; the introduction of such blocks simplifies the TDM component processing by a GNSS receiver. The TDM component is divided first in a continuous stream of short basic blocks of 20ms, where the short basic blocks are used to provide a signal periodic structure for the acquisition functionality. Then, the short basic blocks are grouped in advanced blocks to provide the signal periodicity for fast TTFFD and SCA. The low-complexity acquisition functionality is provided by the first PRN codes of a short basic block: PRN codes are selected to have a low duration and are always at the same position inside the block. Code Shift Keying Modulation is used to provide the fast TTFFD and the SCA key delivery. An example of application on the Galileo E1 civil signals is presented with different target scenarios or type of users: lowcomplexity user, high performance – no TTFFD, high performance – TTFFD and high dynamics user

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    Optimization of demodulation performance of the GPS and GALILEO navigation messages

    Get PDF
    La performance de démodulation des signaux GNSS existants, GPS L1 C/A, L2C ou L5, est satisfaisante en environnements ouverts où le C/N0 disponible est assez élevé. Cependant, en milieu urbain, le niveau de C/N0 du signal reçu est souvent très bas et est affecté de variations rapides qui peuvent nuire la démodulation des messages GNSS. Donc, car les applications du marché de masse sont appelées à être déployées dans ces environnements, il est nécessaire d'étudier et de chercher des méthodes de démodulation/décodage qui améliorent la performance de démodulation des messages GNSS dans ces environnements. Il est aussi nécessaire de considérer les nouveaux signaux GPS L1C et GALILEO E1. Ces signaux doivent fournir un service de positionnement par satellite dans tout type d'environnement, et spécifiquement en milieu urbain. Ainsi, cette thèse analyse aussi les performances de démodulation des nouveaux signaux GNSS tels que définis dans les documents publics actuels. De plus, de nouvelles structures de message GALILEO E1 sont proposées et analysées afin d'optimiser la performance de démodulation ainsi que la quantité d'information diffusée. En conséquence, le but principal de cette thèse est d'analyser et améliorer la performance de démodulation des signaux GNSS ouverts au public, spécifiquement en milieu urbain, et de proposer de nouvelles structures de messages de navigation pour GALILEO E1. La structure détaillée des chapitres de cette thèse est donnée ci-après. En premier lieu, le sujet de cette thèse est introduit, ses contributions originales sont mises en avant, et le plan du rapport est présenté. Dans le 2ième chapitre, la thèse décrit la structure actuelle des signaux GNSS analysés, en se concentrant sur la structure du message de navigation, les codages canal implantés et leurs techniques de décodage. Dans le 3ième chapitre, deux types de modèles de canal de propagation sont présentés pour deux différents types de scénarios. D'un côté, un canal AWGN est choisi pour modéliser les environnements ouverts. De l'autre côté, le modèle mathématique de Perez-Fontan d'un canal mobile est choisi pour représenter les environnements urbains et indoor. Dans le 4ième chapitre, une tentative pour effectuer une prédiction binaire d'une partie du message de navigation GPS L1 C/A est présentée. La prédiction est essayée en utilisant les almanachs GPS L1 C/A, grâce à un programme de prédiction à long terme fourni par TAS-F, et des méthodes de traitement du signal: estimation spectrale, méthode de PRONY et réseau de neurones. Dans le 5ème chapitre, des améliorations à la performance de démodulation du message de GPS L2C et L5 sont apportées en utilisant leur codage canal de manière non traditionnelle. Deux méthodes sont analysées. La première méthode consiste à combiner les codages canal internes et externes du message afin de corriger davantage de mots reçus. La deuxième méthode consiste à utiliser les probabilités des données d'éphémérides afin d'améliorer le décodage traditionnel de Viterbi. Dans le 6ième chapitre, la performance de démodulation des messages de GPS L1C et du Open Service GALILEO E1 est analysée dans différents environnements. D'abord, une étude de la structure de ces deux signaux est présentée pour déterminer le C/N0 du signal utile reçu dans un canal AWGN. Puis, la performance de démodulation de ces signaux est analysée grâce à des simulations dans différents environnements, avec un récepteur se déplaçant à différentes vitesses et avec différentes techniques d'estimation de la phase porteuse du signal. ABSTRACT : The demodulation performance achieved by any of the existing GPS signals, L1 C/A, L2C or L5, is satisfactory in open environments where the available C/N0 is quite high. However, in indoor/urban environments, the C/N0 level of the received signal is often very low and suffers fast variations which can further affect the GNSS messages demodulation. Therefore, since the mass-market applications being designed nowadays are aimed at these environments, it is necessary to study and to search alternative demodulation/decoding methods which improve the GNSS messages demodulation performance in these environments. Moreover, new GNSS signals recently developed, such as GPS L1C and GALILEO E1, must also be considered. These signals aim at providing satellite navigation positioning service in any kind of environment, giving special attention to indoor and urban environments. Therefore, the demodulation performances of the new GNSS signals as they are defined in the current public documents is also analysed. Moreover, new GALILEO E1 message structures are proposed and analysed in order to optimize the demodulation performance as well as the quantity of broadcasted information. Therefore, the main goal of this dissertation is to analyse and to improve the demodulation performance of the current open GNSS signals, specifically in indoor and urban environments, and to propose new navigation message structures for GALILEO E1. A detailed structure of this dissertation sections is given next. First, the subject of this thesis is introduced, original contributions are highlighted, and the outline of the report is presented. Second, this dissertation begins by a description of the current structure of the different analysed GNSS signals, paying special attention to the navigation message structure, implemented channel code and their decoding techniques. In the third section, two types of transmission channel models are presented for two different types of environments. On one hand, an AWGN channel is used to model the signal transmission in an open environments. On the other hand, the choice of a specific mobile channel, the Perez-Fontan channel model, is chosen to model the signal transmission in an urban environment. In the fourth section, a tentative to make a binary prediction of the broadcasted satellite ephemeris of the GPS L1 C/A navigation message is presented. The prediction is attempted using the GPS L1 C/A almanacs data, a long term orbital prediction program provided by TAS-F, and some signal processing methods: spectral estimation, the PRONY method, and a neural network. In the fifth section, improvements to the GPS L2C and GPS L5 navigation message demodulation performance are brought by using their channel codes in a non-traditional way. Two methods are inspected. The first method consists in sharing information between the message inner and outer channel codes in order to correct more received words. The second method consists in using the ephemeris data probabilities in order to improve the traditional Viterbi decoding. In the sixth section, the GPS L1C and GALILEO E1 Open Service demodulation performance is analysed in different environments. First, a brief study of the structure of both signals to determine the received C/N0 in an AWGN channel is presented. Second, their demodulation performance is analysed through simulations in different environments, with different receiver speeds and signal carrier phase estimation techniques

    GNSS Signal spoofing detection

    Get PDF
    This thesis elaborates on the implementation of spoofing detection techniques for GPS L1 C/A signals, topic which is up to the minute in the GNSS community. The interest of this topic has its origin on the fact that, currently, there is a large number of applications relying on GNSS communications. Moreover, the public character of the communication details and specifications have exposed the communications to spoofing agents, which, with a relatively cheap equipment, are capable of controlling the tracking loops of a victim receiver and, as a result, manipulate the its timing or navigation solution. In front of this issue, this project aims to contribute on the spoofing detection community by implementing, in the recognized Borre¿s GNSS receiver software, and testing some techniques. To do so, the project is organized in three sections; the preliminary study of the state of the art and the software that will be considered as the starting point, the spoofing signal analysis and the implementation of the selected spoofing detection techniques, and the result¿s evaluation

    Design and development of a technological demonstrator for the study of high dynamics GNSS receivers

    Full text link
    [ES] En el marco de esta tesis se van a estudiar, principalmente, los efectos del movimiento de alta dinámica en receptores de Sistemas Globales de Navegación por Satélite (GNSS). El término alta dinámica es un término utilizado para referirse al movimiento de los vehículos en los que van embarcados receptores GNSS, los cuales se mueven lo suficientemente rápido como para causar un gran desplazamiento en frecuencia de la portadora debido al efecto Doppler. Se identificarán los problemas inherentes a este tipo de entornos y se estudiarán y propondrán soluciones. Para poder efectuar el estudio de estos fenómenos, se diseñará un demostrador tecnológico (conjunto de hardware y software para prueba y prototipado de tecnologías) en el que desarrollar el estudio de los casos de interés. Con el fin de trabajar en un entorno repetible, se utilizará un generador de señal GNSS. La señal generada se traslada a un receptor de radiofrecuencia definido por software, Software Defined Radio (SDR). Este tipo de receptor únicamente se encarga de digitalizar la señal de entrada y de llevar las muestras digitales a un ordenador, de modo que todo el procesado de señal se implementa en dicho ordenador. Este esquema de trabajo es ideal habida cuenta de su simplicidad y flexibilidad. Dicha flexibilidad conlleva la posibilidad de sintonizar el demostrador para poder estudiar una amplia gama de arquitecturas de receptor GNSS. Una vez se haya ensamblado el demostrador, se comprobará su correcto funcionamiento en escenarios conocidos usando los algoritmos más utilizados a día de hoy en receptores GNSS. Asegurado el correcto funcionamiento, se comparará el rendimiento de algoritmos de referencia con los algoritmos a estudiar y se extraerán conclusiones.[CA] En aquest treball s'estudiaran, principalment, els efectes del moviment d'alta dinámica en receptors de Navegació per Satèl.lit GNSS (Global Navigation Satellite System). La denominació alta dinámica, s'utilitza per a descriure el moviment dels vehicles dins dels quals hi han receptors GNSS. El moviment d'aquests vehicles és suficientment ràpid com per a causar un gran desplaçament en freqüència de la freqüència portadora. Aquest desplaçament és consqüència de l'efecte Doppler. S'identificaran els problemes inherents d'aquest tipus de entorns GNSS i es propsararàn solucions. Per a estudiar l'efecte de l'alta dinàmica, es dissenyarà un demostrador tecnològic (conjunt de maquinari i software per a proves i prototipat de tecnologies) en que es pot desenvolupar l'estudi dels casos d'interès. Amb l'objectiu d'aconseguir treballar en un entorn repetible s'utilitzarà un generador de senyal GNSS. El senyal es processarà mitjançant un receptor SDR (Software Defined Radio). Aquest tipus de receptor s'encarrega del processat que fa un receptor GNSS en un PC. Aquesta filosofia de treball és idónia per la seua flexibilitat i simplicitat. Quan s'haja ensamblat el demostrador, és comprovarà el seu correct funcionament en escenaris de prova utilitzant els algoritmes implementats en receptors GNSS comercials. En aquest moment, el demostrador estarà preparat per a estudiar el casos d'alta dinàmica, que és l'objectiu fonamental d'aquest treball.[EN] The study of the effects of the high dynamics on Global Navigation Satellite System (GNSS) receivers constitute the main matter of study in this work. The term high dynamics refers to the movement of vehicles that carry GNSS embedded receivers, which move fast enough to generate a large carrier frequency drift caused by the Doppler effect. The problems linked to these environments will be characterized and solutions to counteract possible signal impairments will be discussed. In order to correctly characterize these problems, a technological demonstrator (set of hardware components interacting with software tools enabling fast prototyping) will be designed and constructed. Using this technological demonstrator, different case studies will be developed. With the aim of achieving experimental repeatability, a GNSS signal generator will be used. The generated GNSS signal is fed to a Software Defined Radio (SDR) GNSS receiver. This receiver type is in charge of digitizing the analog RF signal and carrying the resulting samples to a computer in which signal processing tasks implementing the functions of GNSS receivers, take place. The main advantage linked to the usage of this work scheme is that by changing the software part, different receiver architectures can be implemented in a simple manner. Furthermore, by taking advantage of the flexible architecture it is possible to tune the detector in such a manner that it is possible to implement many different architecture types. Once the technological demonstrator is assembled, tests to assure its correct operation will be conducted by performing comparisons with the behaviour of well-known GNSS receivers in known scenarios. Later on, comparative tests using signals from high dynamics scenarios will take place. Insight and analysis of comparative performance will be given.Alcaide Guillén, C. (2019). Design and development of a technological demonstrator for the study of high dynamics GNSS receivers [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/131697TESI

    Authentication and Integrity Protection at Data and Physical layer for Critical Infrastructures

    Get PDF
    This thesis examines the authentication and the data integrity services in two prominent emerging contexts such as Global Navigation Satellite Systems (GNSS) and the Internet of Things (IoT), analyzing various techniques proposed in the literature and proposing novel methods. GNSS, among which Global Positioning System (GPS) is the most widely used, provide affordable access to accurate positioning and timing with global coverage. There are several motivations to attack GNSS: from personal privacy reasons, to disrupting critical infrastructures for terrorist purposes. The generation and transmission of spoofing signals either for research purpose or for actually mounting attacks has become easier in recent years with the increase of the computational power and with the availability on the market of Software Defined Radios (SDRs), general purpose radio devices that can be programmed to both receive and transmit RF signals. In this thesis a security analysis of the main currently proposed data and signal level authentication mechanisms for GNSS is performed. A novel GNSS data level authentication scheme, SigAm, that combines the security of asymmetric cryptographic primitives with the performance of hash functions or symmetric key cryptographic primitives is proposed. Moreover, a generalization of GNSS signal layer security code estimation attacks and defenses is provided, improving their performance, and an autonomous anti-spoofing technique that exploits semi-codeless tracking techniques is introduced. Finally, physical layer authentication techniques for IoT are discussed, providing a trade-off between the performance of the authentication protocol and energy expenditure of the authentication process
    • …
    corecore