119 research outputs found

    Calcul sur architecture non fiable

    Get PDF
    Although materials could be fabricated as error-free theoretically with a huge cost for worst-case design methodologies, the circuit is still susceptible to transient faults by the effects of radiation, temperature sensitivity, and etc. On the contrary, an error-resilient design enables the manufacturing process to be relieved from the variability issue so as to save material cost. Since variability and transient upsets are worsening as emerging fabrication process and size shrink are tending intense, the requirement of robust design is imminent. This thesis addresses the issue of designing on unreliable circuit. The main contributions are fourfold. Firstly a fast error-correction and low cost redundancy fault-tolerant method is presented. Moreover, we introduce judicious two-dimensional criteria to estimate the reliability and the hardware efïŹciency of a circuit. A general-purpose model offers low-redundancy error-resilience for contemporary logic systems as well as future nanoeletronic architectures. At last, a decoder against internal transient faults is designed in this work.En thĂ©orie, les circuits Ă©lectroniques conçus selon la mĂ©thode du pire-cas sont supposĂ©s garantir un fonctionnement sans erreur pourun coĂ»t d’implĂ©mentation Ă©levĂ©. Dans la pratique les circuits restent sujets aux erreurs transitoires du fait de leur sensibilitĂ© aux alĂ©astels que la radiation et la tempĂ©rature. En revanche, une conception prenant en compte la tolĂ©rance aux fautes permet de faire face Ă  detels alĂ©as comme la variabilitĂ© du processus de fabrication. De plus, les erreurs transitoires et la variabilitĂ© de fabrication s’intensiïŹentavec l’émergence de nouveaux processus de fabrication et des circuits de dimension de plus en plus rĂ©duite. La demande d’une conceptionintĂ©grant la tolĂ©rance aux fautes devient dĂ©sormais primordiale. La prĂ©sente thĂšse a pour objectif de cerner la problĂ©matique de laconception de circuits sur des puces peu ïŹables et apporte des contributions suivant quatre aspects. Dans un premier temps, nous proposonsune mĂ©thode de tolĂ©rance aux fautes, basĂ©e sur la correction d’erreurs et la redondance Ă  faible coĂ»t. Puis, nous prĂ©sentonsun critĂšre bidimensionnel judicieux permettant d’évaluer la ïŹabilitĂ© et l’efïŹcacitĂ© matĂ©rielle de circuits. Nous proposons ensuite un modĂšleuniversel qui apporte une tolĂ©rance avec fautes Ă  redondance faible pour les systĂšmes logiques d’aujourd’hui et les architecturesnanoĂ©lectroniques de demain. EnïŹn, nous dĂ©couvrons un dĂ©codeur tolĂ©rant aux fautes transitoires internes

    Cross-Layer Optimization for Power-Efficient and Robust Digital Circuits and Systems

    Full text link
    With the increasing digital services demand, performance and power-efficiency become vital requirements for digital circuits and systems. However, the enabling CMOS technology scaling has been facing significant challenges of device uncertainties, such as process, voltage, and temperature variations. To ensure system reliability, worst-case corner assumptions are usually made in each design level. However, the over-pessimistic worst-case margin leads to unnecessary power waste and performance loss as high as 2.2x. Since optimizations are traditionally confined to each specific level, those safe margins can hardly be properly exploited. To tackle the challenge, it is therefore advised in this Ph.D. thesis to perform a cross-layer optimization for digital signal processing circuits and systems, to achieve a global balance of power consumption and output quality. To conclude, the traditional over-pessimistic worst-case approach leads to huge power waste. In contrast, the adaptive voltage scaling approach saves power (25% for the CORDIC application) by providing a just-needed supply voltage. The power saving is maximized (46% for CORDIC) when a more aggressive voltage over-scaling scheme is applied. These sparsely occurred circuit errors produced by aggressive voltage over-scaling are mitigated by higher level error resilient designs. For functions like FFT and CORDIC, smart error mitigation schemes were proposed to enhance reliability (soft-errors and timing-errors, respectively). Applications like Massive MIMO systems are robust against lower level errors, thanks to the intrinsically redundant antennas. This property makes it applicable to embrace digital hardware that trades quality for power savings.Comment: 190 page

    Improved fault tolerance of Turbo decoding based on optimized index assignments

    Get PDF

    Low-Power and Error-Resilient VLSI Circuits and Systems.

    Full text link
    Efficient low-power operation is critically important for the success of the next-generation signal processing applications. Device and supply voltage have been continuously scaled to meet a more constrained power envelope, but scaling has created resiliency challenges, including increasing timing faults and soft errors. Our research aims at designing low-power and robust circuits and systems for signal processing by drawing circuit, architecture, and algorithm approaches. To gain an insight into the system faults due to supply voltage reduction, we researched the two primary effects that determine the minimum supply voltage (VMIN) in Intel’s tri-gate CMOS technology, namely process variations and gate-dielectric soft breakdown. We determined that voltage scaling increases the timing window that sequential circuits are vulnerable. Thus, we proposed a new hold-time violation metric to define hold-time VMIN, which has been adopted as a new design standard. Device scaling increases soft errors which affect circuit reliability. Through extensive soft error characterization using two 65nm CMOS test chips, we studied the soft error mechanisms and its dependence on supply voltage and clock frequency. This study laid the foundation of the first 65nm DSP chip design for a NASA spaceflight project. To mitigate such random errors, we proposed a new confidence-driven architecture that effectively enhances the error resiliency of deeply scaled CMOS and post-CMOS circuits. Designing low-power resilient systems can effectively leverage application-specific algorithmic approaches. To explore design opportunities in the algorithmic domain, we demonstrate an application-specific detection and decoding processor for multiple-input multiple-output (MIMO) wireless communication. To enhance the receive error rate for a robust wireless communication, we designed a joint detection and decoding technique by enclosing detection and decoding in an iterative loop to enhance both interference cancellation and error reduction. A proof-of-concept chip design was fabricated for the next-generation 4x4 256QAM MIMO systems. Through algorithm-architecture optimizations and low-power circuit techniques, our design achieves significant improvements in throughput, energy efficiency and error rate, paving the way for future developments in this area.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110323/1/uchchen_1.pd

    Roads towards fault-tolerant universal quantum computation

    Get PDF
    A practical quantum computer must not merely store information, but also process it. To prevent errors introduced by noise from multiplying and spreading, a fault-tolerant computational architecture is required. Current experiments are taking the first steps toward noise-resilient logical qubits. But to convert these quantum devices from memories to processors, it is necessary to specify how a universal set of gates is performed on them. The leading proposals for doing so, such as magic-state distillation and colour-code techniques, have high resource demands. Alternative schemes, such as those that use high-dimensional quantum codes in a modular architecture, have potential benefits, but need to be explored further
    • 

    corecore