7 research outputs found

    Agent-based Crowd Simulation Modelling for a Gaming Environment

    Get PDF
    Crowd simulation study has become a favorite subject in the computer graphics community in the past three decades. It usually is a sub-function within many applications such as video games, films, and public security. This thesis proposes an independent crowd simulation model that is capable of running an Agent-based method through a gaming environment. It can simulate realistic human crowds with user-controllable features to provide a gaming-like experience. Our approach features an enhanced rendering system based on Distinguishable Agents Generating Method (DAGM). This method can generate distinguishable and scalable 3D human models in real-time. We also introduce our Multi-layer Collision System (MCS), which features a collision-message collection system and an evaluation processing system. We also introduce Building & City-planning Generating System (BCGS) for the purpose of setting up obstacles for the crowd during an evacuation simulation. Moreover, in this thesis, we also extend the study to other aspects such as crisis training and human animations to provide a complete agent-based crowd simulation model

    Study of conditions for the emergence of cellular communication using self-adaptive multi-agent systems

    Get PDF
    Les cellules sont des entités complexes qui interagissent pour former des organismes supérieurs avec des comportements émergents. Pour coordonner leurs actions, les cellules utilisent des molécules messagères qui influencent le comportement de leur environnement cellulaire. Cette communication peut prendre la forme d'ordres simples ou complexes et dépendants de diverses conditions internes et externes. L'émergence de ces protocoles de communication est au centre de cette thèse ainsi que sa nature, simple ou structurée comme un langage. Un système multi-agents adaptatif (AMAS) est développé pour étudier les conditions nécessaires à l'émergence de la coopération et de la communication dans le contexte des tissus multicellulaires. A partir d'un modèle simpliste de cellule eucaryote, le comportement de l'agent cellulaire est développé et l'évolution du système global est explorée pour identifier les conditions minimales et nécessaires à l'apparition de la communication. La difficulté par rapport à d'autres systèmes multi-agents réside dans les interactions limitées entre les agents, puisque tout échange d'informations doit passer par l'environnement des cellules, en tant que molécules. A cet égard, la coordination cellulaire dépend de nombreux facteurs tels que la diffusion ou la stabilité chimique des molécules. L'un des défis de cette étude est de trouver une méthodologie de simulation qui n'introduit pas de biais vers le comportement attendu du système, à savoir la communication. Cela impose d'éviter toute méthodologie utilisant des fonctions globales de fitness comme les réseaux neuronaux ou les algorithmes génétiques. Un autre défi est l'exploration de l'espace de paramètres du système qui croît de façon exponentielle avec sa taille. Il doit être efficace et sans parti pris. Le paradigme de coopération utilisé dans le cadre d'AMAS est bien adapté à cette tâche et permet des temps de simulation raisonnables. Ce manuscrit présente l'état de l'art des simulations multicellulaires et leur utilisation potentielle dans ce contexte. Ensuite, le système AMAS est développé étape par étape pour explorer les conditions de l'émergence de la communication. A chaque étape, l'efficacité de la méthodologie est discutée et les résultats expérimentaux sont présentés pour vérifier que l'approche n'introduit pas de biais.Cells are complex entities that interact together to form higher organisms with emergent behaviors. To coordinate their actions, cells use chemical messenger molecules that influence the behavior of their cellular environment. This communication could be in the form of simple orders or complex and dependent of various internal and external conditions. The emergence of these communication protocols is the focus of this thesis as well as its nature, simple or structured as a language. An adaptive multi-agent system (AMAS) is developed to study the necessary conditions for the emergence of cooperation and communication in the context of multicellular tissues. Starting from a simplistic model of eukaryotic cell, the cell agent behavior is developed and the global system evolution explored to identify the minimal and necessary conditions for the apparition of communication. The difficulty when compared with other multi-agent systems lies in the limited interactions between agents, since all information exchange must pass through the environment of the cells, as molecules. In this respect, cellular coordination depends on numerous factors like diffusion or chemical stability of the molecules. One challenge in this study is to be able to find a simulation methodology that does not introduce any bias towards the expected system behavior, namely communication. This imposes to avoid any methodology using global fitness functions like neural networks or genetic algorithms. Another challenge is the exploration of the parameter space of the system that grows exponentially with its size. It must be efficient and bias free. The cooperation paradigm used in the AMAS framework is well suited for this task and allows for reasonable simulation times. This work presents the state of the art in multicellular simulations and their potential use in this context. Then the AMAS system is developed step by step to explore the conditions for the emergence of communication. At each step, the efficiency of the methodology is discussed and experimental results are presented to verify that the approach is unbiased

    Global emergence of the computational financial ecosystem

    Get PDF
    El ecosistema financiero está compuesto por agentes e interacciones en un sistema abierto que genera segundo a segundo miles de interacciones entre agentes humanos, no humanos y exobiológicos. Al ser los sistemas financieros parte de la complejidad social y como resultado de una creciente transformación tecnológica, esta tesis hace referencia a una forma transdisciplinar de pensar que ayude a resolver las preguntas sobre la evolución del ecosistema y de buscar las respuestas en la sabiduría colectiva de un grupo de ciencias y no en el egoísmo y las verdades absolutas de la disciplinariedad. Esta tesis acude a los sistemas complejos, a la ciencia de redes, a las ciencias computacionales, a la biología evolutiva, a la topología, a la geometría, a la historia, a la economía, a la sociología y a la ficción para identificar los futuros posibles que tiene el ecosistema financiero al incorporar las transformaciones tecnológicas, la simbiosis con el ecosistema tecnológico y la sinapsis de las inteligencias natural y artificial. Es entender la emergencia de un ecosistema computacional como resultado de una simbiogénesis y una vida computacional no conocida. Pero también, de una fusión científica pues, con la articulación de varias ciencias, se logran simular las interacciones que no son visibles en la escala humana, ya que con la sinapsis de las inteligencias será fácil interactuar en microtiempos y microespacios, reduciendo las diferencias temporales y espaciales que nos han acompañado. ¿Cuál es el futuro de los agentes financieros? ¿Cómo será la interacción entre los agentes financieros? ¿Por qué la transformaciones y convergencias tecnológicas cambiarán al ecosistema? En las próximas páginas se conocerá sobre la evolución de los agentes financieros desde una perspectiva histórica hasta la simulación computacional de los futuros posibles del ecosistema. Es así como se articulan fuentes históricas, modelos matemáticos, argumentos sociológicos y filosóficos, teorías de la física, guiones cinematográficos, simulaciones, código computacional e imaginación para identificar la emergencia global del ecosistema financiero computacional. Un ecosistema en el que las aglomeraciones digitales serán la forma de interactuar entre agentes humanos, no humanos y exobiológicos, pero también de coevolucionar hacia una nueva forma de interactuar en Gaia, una nueva Gaia. El lector debe estar preparado para aprender de los mecanismos que identifican a los agentes financieros, de la dinámica del ecosistema, de los procesos de transmisión, difusión y transición de la tecnología, de la simbiosis de los ecosistemas, de la sinapsis de las inteligencias y la simbiogénesis de un nuevo tipo de agentes financieros, siempre en el marco de la ciencia de redes, pues los agentes se moverán indistintamente en el ecosistema y entender la distancia entre ellos será fundamental. También para alternar en diferentes dimensiones temporales y espaciales, pues como sistema abierto, esta tesis explora su curiosidad y si quiere profundizar un hecho o una narración específica deberá salir de la tesis o buscar en su interior los senderos que lo lleven a encontrar las respuestas.The financial ecosystem is made up of agents and interactions in an open system that generates, second to second, thousands of interactions between human, non-human, and exobiological agents. As financial systems are part of social complexity and as a result of increasing technological transformation, this thesis refers to a transdisciplinary way of thinking that helps to answer questions about the ecosystem evolution of and to seek answers in the collective wisdom of a group of sciences and not in selfishness and the absolute truths of disciplinarily. This thesis turns to complex systems, network science, computer science, evolutionary biology, topology, geometry, history, economics, sociology, and fiction to identify possible futures that the financial ecosystem has by incorporating technological transformations, symbiosis with the technological ecosystem, and the synapse of natural and artificial intelligence. It is to understand the emergence of a computational ecosystem because of symbiogenesis and unknown computational life. But also, of a scientific fusion because, with the articulation of several sciences, it is possible to simulate interactions that are not visible on the human scale, since with the synapse of both intelligence will be easy to interact in micro-times and micro-spaces, reducing temporal and spatial differences that have accompanied us. What is the future of financial agents? How will be the interaction between those agents? Why will technological transformations and convergences change the ecosystem? In the following pages, we will learn about the evolution of financial agents from the historical perspective until the computational simulation of the ecosystem's possible futures. In consequence, I articulated historical sources, mathematical models, sociological and philosophical arguments, physics theories, scripts, simulations, computational code, and imagination to identify the global emergence of the computational financial ecosystem. In this ecosystem, the digital agglomerations will be the form of interacting between human, non-human, and exobiological agents, but also to co-evolving towards new ways of interacting in Gaia, a new Gaia. The reader must be prepared to learn from the mechanisms that identify financial agents, from the ecosystem dynamics, from processes of transmission, diffusion, and transition of technology, from the ecosystems symbiosis, from the synapse of both intelligence and the symbiogenesis of a new type of financial agents, always in the network science framework. Because the agents will move interchangeably in the ecosystem, and understanding the distance between them will be fundamental. Also, to alternate in different temporal and spatial dimensions because as an open system, this thesis explores your curiosity, and if you want to deepen a fact or a specific narration, you must leave it or look inside the paths that lead you to find the answers.Doctor en Ciencias Sociales y HumanasDoctoradohttps://orcid.org/0000-0002-4992-897
    corecore