University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2017

Agent-based Crowd Simulation Modelling for a Gaming
Environment

Songgqiao Sun
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Sun, Songgiao, "Agent-based Crowd Simulation Modelling for a Gaming Environment" (2017). Electronic
Theses and Dissertations. 7399.

https://scholar.uwindsor.ca/etd/7399

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7399&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7399?utm_source=scholar.uwindsor.ca%2Fetd%2F7399&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Agent-based Crowd Simulation Modelling
for a Gaming Environment

By

Songgiao Sun

A Thesis
Submitted to the Faculty of Graduate Studies
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2017

(©2017 Songgiao Sun

Agent-based Crowd Simulation Modelling for a Gaming Environment

by

Songgiao Sun

APPROVED BY:

M. Khalid
Department of Electrical and Computer Engineering

D. Wu
School of Computer Science

I. Ahmad, Advisor
School of Computer Science

October 12, 2017

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this
thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon
anyones copyright nor violate any proprietary rights and that any ideas, techniques,
quotations, or any other material from the work of other people included in my
thesis, published or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copyrighted
material that surpasses the bounds of fair dealing within the meaning of the Canada
Copyright Act, I certify that I have obtained a written permission from the copyright
owner(s) to include such material(s) in my thesis and have included copies of such
copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as
approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

111

ABSTRACT

Crowd simulation study has become a favourite subject in the computer graph-
ics community in the past three decades. It usually is a sub-function within many
applications such as video games, films, and public security. This thesis proposes
an independent crowd simulation model that is capable of running an Agent-based
method through a gaming environment. It can simulate realistic human crowds with
user-controllable features to provide a gaming-like experience. Our approach features
an enhanced rendering system based on Distinguishable Agents Generating Method
(DAGM). This method can generate distinguishable and scalable 3D human models
in real-time. We also introduce our Multi-layer Collision System (MCS), which fea-
tures a collision-message collection system and an evaluation processing system. We
also introduce Building & City-planning Generating System (BCGS) for the purpose
of setting up obstacles for the crowd during an evacuation simulation. Moreover,
in this thesis, we also extend the study to other aspects such as crisis training and

human animations to provide a complete agent-based crowd simulation model.

Key Words: Agent-based Model, Crowd Simulation, 3D Visualization, Crisis Train-

ing, Gaming Environment, Visual arts

v

DEDICATION

To my mom, my grandma and the one I love.

AKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Dr.Imran Ahmad, for his inspira-
tional thoughts and the willingness of sharing his wisdom to me. This thesis cannot
be accomplished without my supervisor’s insightful feedback and guidance. It is an
honour to be one of his students.

Second, I would like to appreciate my thesis committee members Dr.Dan Wu and
Dr.Mohammed Khalid for kindly offering their time, encouragement, and valuable
comments to me.

Meanwhile, I would like to express my special thank to my girlfriend Yaxin Li
who supported me through this unforgettable period.

Last, I would like to express my best gratitude to my mom, grandma, and the
rest family for the love, support, and sacrifice. You give me the chance to become

the person I love.

VI

TABLE OF CONTENTS
DECLARATION OF ORIGINALITY
ABSTRACT
DEDICATION
AKNOWLEDGEMENTS
LIST OF TABLES
LIST OF FIGURES

LIST OF ABBREVIATIONS/SYMBOLS

Introduction
1.1 Research Motivation
1.1.1 Evacuation Simulation Needs
1.2 Research Methods
1.3 Thesis Objectives
1.4 Contributions
1.5 Thesis Organization

Related Works
2.1 Agent-based Dynamics Method
2.2 Crowd-Rendering Method
2.3 Environment Generating Method & Summary

Proposed Methodologies
3.1 Distinguishable Agents Generating Method
3.1.1 Method Overview
3.1.2 Separating Components Modelling Rule
3.1.3 Random Colour Rendering System
3.1.4 Random Character Size System
3.1.5 Crowd Spread-level & Gender Ratio Control
3.1.6 Summary
3.2 Multi-layer Collision System
3.2.1 Model Overview
3.2.2 Collision Evaluation Function
3.2.3 Stampede Thresholds
3.24 Summary
3.3 Building & city planning Generating System
3.3.1 Model Overview
3.3.2 City Planning Step oL

VII

I11

1A%

VI

IX

3.3.3 Building Generating Step
3.3.4 Performances

4 Implementations

4.1 Hardware configuration & Software Platforms

4.2 Operational Methods & Animations

4.2.1 Control Methods

4.2.2 Realtime Animations

4.3 Program Procedures L
4.4 Experiments
4.4.1 Priority Rule-based Navigation System
442 Result

5 Conclusions

5.1 Future Work

REFERENCES

VITA AUCTORIS

VIII

37
37
38
38
41
43
45
20
52

56
57

59

65

LIST OF TABLES
Density evaluation base on MCS 27

Animation frames ineach clip 43
The time for evacuation after the application of the rule-based model 51

Major features comparison with other models 54

IX

10
11

12

13

14

15

16
17

LIST OF FIGURES

2014 Shanghai stampede in New Yearseve

Several simulation scenes of our crowd simulation frameworks
Example of crowds moving under the Synthetic-Vision model steering

Our Agent-based crowd simulation model workflow
Agent modelling samples under SCMR
The result of the adjusted male head with proper texture assigned and
smoothed male pants model
Three colour gradient controllers in our simulation system
Two automatically generated male agents with different colour combi-
Nations e
Two automatically generated female agents with different colour com-
binations
Two female characters generated in our simulation with size differences
The spread-level changes while gender ratio, space size and population
remain thesame L
The gender ratio changes while the spread-level, space size and popu-
lation remain the same 0L
An example of the MSC implementation on one agent
The Mutli Layer Collision System
A density evaluation chart showing the analysis on two crowds density
spread-level under the same space size
A piece of the city-map of Manhattan

A 2D map sample of our city scheme design

10

14
16

17
18

19

19
20

22

23

25
26

18

19

20
21

22
23
24
25
26
27

The BCGS showcase and rendering results.(a) Four anchors placed on
the ground with building sections’ boundaries, (b) generated buildings
without the overlap issue, (c¢) the perspective view of buildings through

the in-game camerao 36

Examples of the camera zooming control function.(a) Zoomed view
from our program camera. (b) standard field-of-views from our pro-
Gram CAIMETA. . . « « . o v v v e e e e e e e e e e e e 39
The in-game Ul system overview from the main camera 41
Two animation scenes in our simulation. (a) walking agents in the

navigating process, (b) an agent has fallen on the ground due to the

high-density. 44
Crowd population affects on the FPS 46
Density level affects on the FPS A7
Gender ratio affects on the FPS 48
Urban parameters affects on the FPS 49

A sample picture of agents were being evacuated from the city centre 52
The comparison with HIDAC model on population capability and graph-
icsquality oo 55

XI

LIST OF ABBREVIATIONS/SYMBOLS

3D Three-dimensional

ACS Agent-based Crowd Simulation

BCGS Building & City-planning Generating System
BDI belief, desire, intention

CPU central processing units

DAGM Distinguishable Agents Generating Method
FPS frames per second

GPU graphics processing units

IDE Integrated development environment

k-NN k-Nearest Neighbours

LOD level of details

MACES Multi-Agent Communication for Evacuation Simulation
MCS Multi-layer Collision System

PC personal computer

PMFserv Performance Moderator Functions server
SCMR Separating Components Modelling Rule

Ul user interface

XII

CHAPTER 1

Introduction

Crowds are common and unavoidable in our daily lives. However, simulating this
general phenomenon using computer graphics is still a challenging work. The need
for crowd simulation long existed in film industry [24] and video games [4] for en-
tertainment purposes, in safety projects like crisis training [31], in city architectural
planning, and even in the education field. The natural crowd is usually gathered
because people or animals share a ‘common purpose’ or a ‘mutual destination’ [11].
However, those subconscious decisions are complex to computers and a simulation
usually cost massive computational resources at the early stage. Due to the limi-
tations of computer performance, some early models tend to focus on the dynamics
method of a crowd as a whole rather than its individual movements, which are sim-
plified methods to deal with the complicated crowd movements.

Examples of early models are the Flow-based model [38, 6] and the Entity-based
model [45, 23]. Hence, the crowd models proposed in early studies normally feel ‘un-
realistic” without individual behaviours [42, 29], and lack a genuine physical collision
system [3, 1] to support the simulation.

However, computer performances have been improved significantly in recent years.
Current computers have the ability to process much more sophisticated crowd simu-
lation programs than before. More functions [12, 22] and more detailed arrangements
can be applied to many recent simulation models; such as using high-quality 3D mod-
elling for both agents and environments [14] and individual interactions [19]. More
importantly, current computers’ performance can support the simulation operating

in realtime [43, 39]. The agent-based crowd simulation (ACS) [27, 18, 5], a more

1. INTRODUCTION

advanced method, was firstly introduced in helbing’s model [13]. The principal idea
of ACS is controlling the dynamic of crowds that are constructed autonomously. ACS
model is considered as the best method [13] for the purpose of simulating crowds with
realistic behaviours, since it provides the movement by controlling every agent indi-
vidually. However, the cost of the simulation is also the highest. Thus, decreasing the
computational cost while increasing the simulation performances like the scalability,

flexibility, and realism have remained in high demand in the ACS study topics.

1.1 Research Motivation

The ACS studies usually focus on optimizing the decision-making ability and nav-
igation efficiency for autonomous crowds [8, 21, 10] to achieve realistic simulation
outcomes. However, in this thesis, we meant to improve the visual-performance and
realtime interactions between users and the machine for a humanoid crowd simulation
model instead of improving the locomotion method or decision-making approaches.
The efficiency of moving algorithms applied to crowds has been a popular in many
ACS [30, 28, 35] studies before, but many movement methods are similar to each oth-
er as the basic idea is mainly related to tackling the angular and tangential velocity
autonomously when agents meet obstacles. Another fact is that in computer archi-
tectures, central processing units (CPU) are capable of processing more sophisticated
algorithms than what we need in crowd simulation. In contrast, 3D computer graph-
ics still consume considerable power from graphics processing units (GPU). Therefore,
we attempt to create the 3D agent with relatively low vertices, while the render qual-
ity is not sacrificed. We propose a dynamic collision-evaluation system to analyze
agents’ surrounding information while they are moving for the realtime monitoring
study. Our method plan is to monitor crowd movement in definable city maps which
are more complex than a plane. Thus our autonomous crowd can be examined in

different situations. We introduce the specific functions in later paragraphs.

1. INTRODUCTION

1.1.1 Evacuation Simulation Needs

Our thesis proposes an urban evacuation system featuring a simulation of a human
stampede that takes place in a high-density crowd. Crisis training system [32, 44]
is a practical topic for Crowd Simulation studies, but few studies have focused on
stampede probability [30]. The stampede is expected to happen when a large number
of people or animals are fleeing in fear [11, 25]. In the worst case, a stampede happens
under the condition of extreme dense situation, the death toll can be high. Although
historically crushes have been a relatively rare occurrence, the casualty number of
such events cannot be ignored. This is the original motivation for us to simulate
this man-made disaster. Using this simulation, we could make predictions about
and protect against stampedes in the future. Two features in our thesis method are
essential for our stampede study, first, our simulation can adjust crowd density and
size to achieve the appropriate density-level and crowd size that are enough for the
stampede situation; second, every agent has collision system and event-trigger system
to decide the surrounding condition and the falling possibility.

Figure.1 shows a case of dense crowds leading to a stampede. On December 31,
2014, a severe stampede happened in Shanghai, near Chen Yi Square, where nearly
300,000 people gathered in one relatively small area for the New Year celebration.

This tragedy, unfortunately, led to 36 fatalities and 49 injuries.

1.2 Research Methods

Visual rendering is the very direct way to show a crowd simulation. However, it
has not received much of the attention in recent research. It commonly remains at
the basic level in many crowd simulation studies while other aspects like collision
system and navigating system have been well documented. However, improving on
visual rendering quality does not only provides a plausible model for observation need,
but also helps in achieving authentic results. In this thesis, we have devised three

approaches based on the motivations we just mentioned.

1. INTRODUCTION

Fig. 1: 2014 Shanghai stampede in New Years eve

1. We use the Distinguishable Agents Generating Method (DAGM) to model a-
gents that can build up the crowd. This method can generate distinguishable-
appearances agents with lower polygon mesh volume. A set of bionic human
animations corresponding to the agent model are also deployed for lifelike mo-

tion requirements.

2. We have implemented the Multi-layer Collision System (MCS) for the crisis
training study. Our MCS can provide synchronized feedback of the density
level around one agent. Based on the MCS, we also successfully simulated a

city evacuation scenario with the potential for human crashing.

3. The Building & City planning Generate System (BCGS) is designed to support
the environment and surrounding settings. In order to create a virtual system
consisting of more than just the human crowd; buildings and city roads are also
necessary. This system can place obstacles and walkable paths for each agent

in the crowd where autonomous agents move based on the priority rules.

1. INTRODUCTION

Fig. 2: Several simulation scenes of our crowd simulation frameworks

Figure.2 shows some general sketches from the simulation application. Figure.2-
(a) shows a group of male agents has gathered around the destination on the map
while some are still in the navigation process. Figure.2-(b) shows the interface of agent
control panels with information receiver at the top. Also the crowd and buildings were
generated by the control panel. Figure.2-(c) shows the initiation of the navigation
process on female characters to the desired destination and the city control panel on

the right of the screen.

1.3 Thesis Objectives

This thesis intends to study on three topics among the Agent-based crowd simulation
and with the different objectives in the selected topics as explained below.

Our first objective is to improve the modelling method for agent-rendering by
providing the realistic graphics with fewer pre-load resources. In previous research,
the common method for agent-rendering in crowd simulation are mainly divided by
graphical types, 2D shapes or 3D polygons. When the model is applied with 2D
shapes like dots or boxes to represent human agents, the 2D model has the advantage
of less GPU power consumption. It is practical when summing up the dynamic
information such as the moving flows and patterns, but the non-realistic feeling is
the crucial drawback. Some studies [28, 26, 30] have implemented 3D graphics in
their models. However, their rendering model either uses several polygon shapes to

assemble the low-quality agents with the same appearances or their model have to

1. INTRODUCTION

load a massive volume of pre-modelled 3D resources to achieve the variety of agent
rendering types. In comparison, we achieved a high-level 3D graphic model with
massive agent appearances changes without the need of pre-loading model resources.

Next, we want to design a dynamic system for agents that can receive and analyze
information at realtime. We implemented the priority rule as the basic navigation
method for our agents to avoid the possible collision with one or more walkers while
the navigating is in process. Our MCS is the system we designed to help the sur-
rounding evaluation with a linear time algorithm complexity, but it can efficiently
perform the realtime collision feedback. This system is achieved with the help of
collision-detection function. On the other hand, our MCS can also assist our crisis
training study, especially, for the stampede simulation. In comparison, very few re-
searches have provided a collision system with realtime collision feedback. Also, the
research that has focused on evacuation simulation as its topic still rarely simulated
stampede events by its collision systems.

The third objective of our thesis is to present a method that can generate a city
scheme with blocking function to present environmental obstacles. Some approaches
have proposed similar functions to generate surroundings or a village-like architecture
model for realism purposes [37]. However, the interactions between a city environment
and human groups are usually weak. Buildings are typically used as representative
modelling instead of real obstacles, which can block agents when the emergency hap-
pened. Thus, in our model, structures and city-schemes could be assigned during
the simulation with random and controllable factors. Hence, the surroundings are

different with every time it is initiated.

1.4 Contributions

Our contributions are therefore the following: We developed a system for the ACS
study using the Unity game development engine. We created the DAGM for our AC-
S’s agent generating system, featuring the ability of generating high-quality rendered
and body-types individualized agents in the simulation. By applying our DAGM,

1. INTRODUCTION

we can automatically create different types of agents without the need of manually
remodelling on the specific parts to make changes.

Second, we established a new dynamic scheme with two components involved.
Our MCS can evaluate individual density status at the realtime and supports our
crisis training purposes. Also, the priority-rule based navigation system can provide
a method to solve the ‘deadlock’ problem that commonly existed in many decision-
making models.

Third, on the surrounding system aspect, our BCGS can create buildings that co-
hesively interact with moving crowds. The major advantage of BCGS is that buildings
can be randomly placed in a pre-defined area within a few operating steps, but it is
flexible for some specific modifications such as the number of buildings and redefining
the ‘construction area’ to satisfy various city looks and patterns.

Lastly, our study can contribute to crisis training studies using the evacuation
results we received from the simulation system. Our model can also be used in
gaming environments with autonomous crowd needs. Because we designed our model

with a high accessibility, it is also suitable for educational purposes.

1.5 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce and review
several typical agent-based crowd simulation models. In Chapter 3, we demonstrate
and discuss our proposed methodologies: the DAGM, MCS and BCGS. The details
of experiments and the evaluation of our proposed methods are presented in Chapter

4. Finally, we present our conclusions in Chapter 5.

CHAPTER 2

Related Works

In this section, we provide an overview of related works. However, crowd simulation
has many different aspects to investigate, such as dynamic methods, graphics models,
and global settings, etc., which a single model cannot cover comprehensively. For
example, an ACS approach may study the dynamic methods for acquiring a non-
collision navigation model, which improves on moving algorithms. Also, they could
study on the agent’s characteristics to provide a realistic behaviour system. Thus, we
review both the rendering and dynamics methods in previous studies and compare
them with ours. Additionally, other study topics like surrounding systems and crisis
training studies are also the focal points of this thesis. So we also provided some

reviews on other works related to this two topics.

2.1 Agent-based Dynamics Method

Several authors proposed their models for the Agent-based crowd simulation. Helbling
et al.’s Social Forced Model [13] settle the fundamental idea about how to apply the
agent-based approach to a crowd simulation model. In this model, authors apply the
repulsion and tangential forces on each agent; therefore, the steering agent can avoid
obstacles and other moving agents. However, the major drawback of this approach is
that every agent shares the same attributes without individual identity; also, agents
are navigated under the same moving speed; unlike a real human crowd, which has
individual differences regarding mobility. Besides, when Helbling’s moving method

is applied on a 3D model, the agents tends to ‘shake’ and ‘vibrate’ unpredictably

2. RELATED WORKS

with increasing density and non-priority rule applied. Overall, Helbing’s model has
introduced the fundamental conception of the ACS study and his research inspired
us enormously.

Jan Ondrej et al. [28] proposed a Synthetic-Vision Based Steering approach for
crowd simulation, where they drive agents according to ‘visual perception’. In their
approach, agents use the visual field to receive information about their surroundings.
They analyzed the reason for a collision occurrence and what time it about to happen.
Then based on the information above, they proposed their collision-free locomotion
model. The primary principle is that each agent will adjust its angular and tangential
velocity based on the bearing angle with the obstacle in the current view and its time-
derivative. From the experimental results, this collision-free dynamic approach shows
the moving crowds similar to lines of disciplined soldiers passing through each other.
Figure.3 shows an example of crowd moving toward and across each other with the
collision-free approach applied. In comparison, our thesis is focusing on simulating an
ordinary crowd of citizens without any training experience. With this condition, there
is no reason to present a collision-free model because our citizens will flee in a chaotic
and panicked manner in the scenario. Although Jan Ondrej’s and our simulation
offer two different types of crowd motions, our study is still greatly influenced by
their work.

Dutra et al. proposed a gradient-based steering [7] algorithm which is derived
from the vision-based steering method. In their algorithm, each agent considers both
the risks of future collision and the desired destination. After computing the partial
derivatives, the agent moves by following the gradient on the map. This model has a
better range of perceiving information for each agent to make decisions of moving.

Classification and regression algorithms also have some contributions on the ACS
simulation process. Vermeulen et al. [40] proposed a comparative method based on
the k-Nearest Neighbour (k-NN) for solving the collision avoidance problem in their

crowd simulation program.

2. RELATED WORKS

Fig. 3: Example of crowds moving under the Synthetic-Vision model steering

2.2 Crowd-Rendering Method

For the rendering aspect, some of the studies successfully applied the 3D graphics
[15, 25] into their simulation model. The necessity of 3D models in a crowd simula-
tion environment is not merely for the visual performance but also for the advanced
physical interactions in a 3D system [7], which is the most similar computer model to
the real world environment. Furthermore, all agents can have one more dimension to
support the collision system, where the 2D model [41] commonly does not include the
actual physical sizes of the agents’ bodies. That is the reason for some 2D particle
system methods that [9, 20, 2] can achieve extremely dense crowds by sharing one
spot for two or more agents. It means the positions is overlapped, but a real human
crowd is unlikely to reach the same density level as in a particle system. Thus we
decided to apply a human body ratios 3D characters in our model to enhance the
realism.

Nuria et al. [30]; the authors proposed a HiDAC system with cellular-automata
models. Although this model only uses several basic polygon shapes to assemble
a humanoid character in low-quality, it solved the common problem of overlapping

agents in particle systems. Also, his model especially focused on ‘pushing’ behaviour

10

2. RELATED WORKS

and ‘squeezing’ between people. However, to the best of my knowledge, there are no
bionic animations attached to the human crowd.

Rahul et al. proposed their Aggregate Dynamics for Dense Crowd Simulation
[26]. This approach implements a standard human ratio model controlled by fluid
dynamics. It features scalable sizes [36] and adjustable densities. The agent is also
rendered in high-level graphics. Rahuls model can manage to simulate a large-scale
crowd moving around in one designated area. However, in his approach, agents are
produced by one 3D male prototype with fewer individual differences in the simulation
process.

In contrast, our method includes agents with gender differences and individual
body types. Those multi-factorial agents are produced by the DAGM. It can raise the
diversity of crowd composition in the rendering aspect. The benefit from it is that we
can automatically create a crowd with non-similar agents. With this function we can
have more individualized modifications on every agent’s identifications. In addition,
we could use the individuality for the idea of creating a multi-factorial decision-
making model that takes the individual attributes as mobility factors. For example,
an athlete usually is stronger than an average person after professional training. Also,
age could be another factor affecting strength-level; young people usually have more
power than elders. Those could be decisive factors influencing an individuals chances
of escape from an emergency scene. Thus all those physical attributes will combine
to create an integrated system to decide agent’s moving behaviour. Based on that,
agents in our model could present more individualized decisions when moving and

making other choices.

2.3 Environment Generating Method & Summary

Besides the dynamic method and rendering method in a crowd simulation model, some
other aspects that related to our model are also worth to mention. In our cases, urban
planning and surrounding system are designed to serve emergency crowd evacuation

agenda [17]. A visualizing method [37] has generated a village environment at the

11

2. RELATED WORKS

real-time. However, as the best we know from the authors’ paper, the village is
pre-modelled and not transformable. In contrast to our model, we can control the
building number and generating area at realtime. Hence, our model could satisfy
multiple environment requirements; making changes at the simulation time is also
possible. We also designed some functions, which do not typically exist in other
crowd simulation models, for example, a control system for run-time manipulations
and the stampede module for the crisis training.

In summary, there are plenty of topics inside the agent-based crowd simulation
subject, for instance, the reachable density-level, the capability of population size,
the applied dynamic method, and the visualization model type. Thus, most studies
generally focused to make improvements on the particular one or two topics. In
our case, we attempt to improve the visual-variety of 3D rendered crowd and the

extensibility of simulation system.

12

CHAPTER 3

Proposed Methodologies

In this chapter, we present our thesis methodologies for the approaches that we used
to achieve the objectives in Chapter 1.

Our thesis involves the design and study of an operational real-time Agent-based
crowd simulation model. Comparing our model with previous agent-based crowd
simulation models, the major contributions are the diversity of creating crowd and
environments, and the operability of simulation processing. The actual methods to
achieve those advantages are explained in later paragraphs. However, a comprehensive
workflow can help to understand our thesis’ idea better.

Figure.4 illustrates the complete workflow of our model. Each sub-box in this
workflow is our original work and the software we labeled in the workflow only provides
the working environment. We divide the working section into three main parts based
on the developing platforms that we use. First, the preparation works section, this
part includes character modelling for the DAGM requirements, rigging the skeleton for
characters and creating animations based on the skeleton joints transformation. All
of that work is done in Autodesk Maya, a commercial modelling software. After that,
we import the finished 3D models to the Unity game engine as part of development
assets. The work inside the Unity software is closely related to the programming in the
MonoDevelop. The MonoDevelop is an Integrated Development Environment (IDE)
that supports the scripting in the Unity. It provides the foundational environment
for us to implement many simulation functions, hence, our thesis’ methods can be
primarily built through programming. Our thesis ultimately presents an independent

software that can run on any personal computer (PC) with Microsoft Windows or

13

3. PROPOSED METHODOLOGIES

(AUTODESK \

MAYA

unity j

Build 3D models for

(@)
__/

the SCMS (" Import models to)
Project asset and
Create Skeleton for compr?ssing them as
Agents _ 'prefad”)
) C reate fAttach models with\ Package the
& Animations for Visual J scripts to create framework
) _ crowds)
r RS :
Create the pAGM Edit animations for\ Run & start the
coding part / events: Idle, Walking, simulation
_ Fall)
Set thresholds for
the MCS

Complete sub-

functions: base
Add Ul, Key, N PR environment, Ul,
Camera controls. lighting, camera,

shadows, etc
. ® .)

Fig. 4: Our Agent-based crowd simulation model workflow

o

macOS operating systems, but it also can be ported to other operating platforms.

3.1 Distinguishable Agents Generating Method

3.1.1 Method Overview

Our DAGM is a multi-functional crowd generating system. This system is designed
to generate a number of agents at once with individual differences, which means
all agents have several distinguishable appearance-factors that provide us a chance to
make modifications. The generating function can be recalled unlimited times until the
program reaches the computational limits. It means the crowd size could be expanded
during the simulation process. Furthermore, all agents are supported by realistic
physical interactions between agents themselves and also with surroundings. We

have developed several sub-functions to assemble the entire DAGM as an integrated

14

3. PROPOSED METHODOLOGIES

method. First, we design and implement a new modelling method to create the male
and female characters; it features generating agents of different body types and visual
uniforms. Then we arrange it with our colour rendering method to give random body,
clothing and hair colours. Also, our DAGM has achieved several crowd attribute
control functions as:

1. Population control: takes an input value as number of people in the crowd.

2. Agent density control: capable of generating crowds with low-density or high-
density.

3. Agent gender ratio: male and female agents ratio in one crowd.

3.1.2 Separating Components Modelling Rule

We define the Separating Components Modelling Rule (SCMR) as a rule to create
a modifiable 3D human model without manual adjustment. The character that was
created under our SCMR can use fewer polygon meshes compared with normal mod-
elling methods, which means less computing time required. We created a group of
male and female model prototypes under the SCMR. Each character contains five
disconnected body parts: hair, head, torso, legs and arms, and two clothes, shirt and
trousers for male, skirt for female. The reason of using SCMR is due to the two points

below:

1. Detail Modifications: each agent’s parts can be re-scaled and painted indi-
vidually, because of this feature our agents can have random colour and size

differences. We introduce this part in the next two sections.

2. Saving computational power: we want to decrease the ‘PolyMesh’ numbers on
each agent to reduce the graphics power needed. It can improve the overall
simulation performance. Our models’ meshes are in a separated form without
the connection part, thus, the agent has fewer polygon count than a standard

modeled human agent.

Those separated model parts are used to assemble agents in the later process,

as the ultimate expectation on our DAGM is to auto-generate a crowd with most

15

3. PROPOSED METHODOLOGIES

a
A

Fig. 5: Agent modelling samples under SCMR

visually distinguishable agents. Thus, each agent in a crowd has dissimilar body
styles without the need of loading different resources.

Figure.5 shows a set of character modelling samples under the SCMR, which are
in a preview-mode before importing to the developing environment. From top left to
right: female arm, female head and female leg, from middle left to right: female shirt,
female hair and female skirt, from bottom left to right: male head and male trousers.
In this preview mode, we can notice that most of our modelling resources kept in a
good and smooth quality. However, some male models have several exporting issues.

First, the male head mesh is not textured correctly and the reason for this is due

16

3. PROPOSED METHODOLOGIES

Fig. 6: The result of the adjusted male head with proper texture assigned and s-
moothed male pants model

to the reversed mesh’s normals. Second, the trousers for the male model are in an
un-smooth condition and not qualified for the high-quality rendering. Although those
issues commonly existed when transplanting models from one software to another; it
still affects the overall quality of the visual experiment. However, we solved those
problems by correcting the mesh normals of the male head and adding more smooth

angles for the trousers model. The fixed models are shown in Figure.6.

3.1.3 Random Colour Rendering System

To give the diversity on clothing variation and body appearances, we divide each agent
into four major sections: skin colour, hair colour and two clothing colours. A normal
method of giving 3D models a random colour texture could be done by altering the
numeric representations of RGB triplet value, by providing random numeric value to
the specific red, green or blue colour. However, our method is more straightforward;
we created three colour gradient controllers, and each of them contains a different
range of hue degrees. The colour range is re-definable in the developing environment.
The main advantage of this hue system is that we can select one colour by adjusting
a single number instead of three in the RGB system. Thus, with the application of

random-number generator, our agent can have different colours that are automatically

17

3. PROPOSED METHODOLOGIES

Ran Color -
Ran Cloth C T
Ran Hair C N

Fig. 7: Three colour gradient controllers in our simulation system

selected. Figure.7 is an illustration of our hue colour controllers. The ‘Ran Color’ is
for the skin colour section. The ‘Ran Cloth C’ is to provide the colour range for each
clothing colour on one agent. Last, the ‘Ran Hair C’ can assign a random hair colour
to our agents.

In order to render realistic and distinguishable agents, we selected the hue range
for each colour controller according to the principle of avoiding similar colour tones.
It is hard to visually identify the clothing and skin on one agent if the both colours
are similar.

We assigned a random selection function to pick colours within the spectrum in
each gradient controller. To realistically render our agents, different body sections
should have preferred colour choices based on the reality, for instance, skin colour
should have the spectrum from white to yellow and black for race diversity. This
function helps our agents look close to a real human in terms of appearance. With
the wide colour range support, our simulation can avoid the issue of agents rendered
in similar colours without identifiable features. As in our observation, we can quickly
identify a single agent in a crowd without difficulty.

Figure.8 shows two male characters that were auto-generated under our random
colour system. The left man is rendered in a lighter skin colour tone and wearing
a violet shirt with blue trousers and comparing with the right male has darker skin
colour and clothing colour is different. Figure.9 is a same type of example of two

female characters colour comparison.

18

3. PROPOSED METHODOLOGIES

Fig. 8: Two automatically generated male agents with different colour combinations

Fig. 9: Two automatically generated female agents with different colour combinations

19

3. PROPOSED METHODOLOGIES

3.1.4 Random Character Size System

Another objective of our DAGM is to provide body size variation on one agent. To
expand the diversity, we want to control one agent with several controllable body-
part sections and they are head size, arm size, torso size and leg size and we have
attached the clothing size on the torso size because we consider the cloth should
generally cover the body parts to make it sensible. By assembling body-parts with
individual variations, each agent can automatically have a wild range of changes on
body parameters in our simulation. Thus, a crowd can have an unique composition

of various agents without any manual settings.

Fig. 10: Two female characters generated in our simulation with size differences

Figure.10 is an example of our random body-size system implemented on two
female characters. We can directly observe that left female is slim and right one has

an obviously larger body size.

20

3. PROPOSED METHODOLOGIES

3.1.5 Crowd Spread-level & Gender Ratio Control

Our spread control function and gender ratio function are designed for supplying
various simulation needs on the crowd control stage. The crowd spread control adjusts
the spread-level for one pending to be generated crowd. The gender ratio adjusts the
proportion of male and female characters in one crowd after the total population is
specified.

The way to control the spread-level of one crowd in our approach is to enlarge or
narrow the possible position that every agent could be generated on. As we built our
model in a 3D environment, that commonly use z, ¥ and z as the coordinate system
parameters, So we want to have control on the z & z value for the agent position
because the y represents the height and it should equivalent to the agent height to

make the agent feet on the ground. Therefore, the spread function is as follows:

a = random(1, %) (1)
r=(a—d) (2)
z=(a—a”) (3)

Where a is a random value for us to control the agent positions, the a’ and a” are
two duplications of a, but the random value is singly assigned when creating. The
random range of a is from 1 to % where S is the space size, and it is an input value
assigned by the user. D is the spread-level parameter and its assigned value from 1
to 5; the higher numerical value, the higher density-level on the crowd. Thus, we can
decide the possible positions for the agent by giving a range of values to the spread
control parameter. In our case, we can have a crowd in the constant space size but
with maximum five times changes on spread-level. After the random parameter is
calculated, the position parameter x and z could thus be calculated as in Equation.2
and Equation.3.

Figure.11 shows two groups of twenty (the entire generated amount, some may

not capture by the view-camera) agents generated under same space size (100ft) but

21

3. PROPOSED METHODOLOGIES

with the different spread-level settings. The lower group has spread out more than

the upper group from the visual results.

Fig. 11: The spread-level changes while gender ratio, space size and population remain
the same

The second operating method is to control the character gender proportion; the

control function is defined as:

M= (@)
F=A-M (5)
C=M+F (6)

Where A is an integer number as the user input and it represents the desired
crowd-size by the user. M is the desired male agent number, and F' is the desired
female agent number. C'is the total agent number that sums male and female agents’
number after the gender ratio control. R is the ratio value, which is assigned to
influence the crowd ratio. We set the value range from 0.01f to 1.0f, f means our
function can receive the fractional part of one real number in here. In our function,
we positively control the male character number by dividing the total agent number
by the ratio value and flooring the result. Then we assign this value as the male
character number in the simulation, and we can calculate the rest value as the female
character number.

Figure.12 shows the gender ratio controlling result in two simulations, such that
upper scene contains more female characters than male, conversely, the other one has
male numbers that outnumber than females. With the gender ratio controlling panel

displayed at the bottom right in each case.

22

3. PROPOSED METHODOLOGIES

Fig. 12: The gender ratio changes while the spread-level, space size and population
remain the same

Those two functions that we just discussed are built in Monodevlop and using the

C# programming language.

3.1.6 Summary

In this section, we have demonstrated our DAGM and all sub-functions that included
to support this method. Overall, our DAGM builds the foundation of our crowd
system both on generating and manipulating. The DAGM features several unique
functions of a crowd generating method. On the individual level, it can create random
size and colour agents where we made the base model resources under the separating
components modelling rule. On the crowd level, the generating method could be
called multiple times to enlarge to the crowd size. We can use this feature to alter on
crowd’s specifications at each enlarging time, for example, assigning new crowd size,

density-level and gender ratio to differentiate the simulation results.

3.2 Multi-layer Collision System

Our Multi-layer Collision System has combined both collision-detection function and
physical-collision reaction system together. It can present a comprehensive system
that is qualified to support a modern designed agent-based crowd simulation model
on realistic dynamic interactions. Furthermore, we have implemented an evaluation

function into MCS to estimate the information of both predictable collisions and

23

3. PROPOSED METHODOLOGIES

actual collisions. Thus, we can show the statistics of the risk-level around one agent
at realtime by summarizing the information that processed by the evaluation function,
whereas the principle of our MCS is explained in the following paragraph.

In the beginning, we first inspected on the real human anatomy because we want
to know that the scale of the visual field a person in a crowded circumstance. A
normal persons visual field has 70 degrees to 80 [16] in horizontal meridian. However,
we can gain a much wider field of view by twisting our neck and waist which extended
the visual field to nearly 360 degrees. Thus we can presume that people have a full
circle-perception of the environment in the standard situation. Moreover, the distance
between viewer and obstacles decides the warning-level in the viewer’s ‘mind’. For
example, an object that is far away from the viewer does not cause much attention
to the viewer, although the viewer maybe aware of the object existence. However,
an obstacle that is close to the viewer, may lead the viewer to make an immediate
decision to avoid it. This theory is the basis of our principle idea of the MCS.

Figure.13 is a sample implementation of MCS inside the Unity environment. The

agent positioning at the center has three layers to detect and react any collisions:

1. The outside ‘Collider” which has a square shape and has the widest range to
detect the objects appearing.

2. The inner ‘Collider’ has a sphere shape and works for a narrower range to detect

the short-range objects with potential of crushing.

3. The core ‘Collider’ is a capsule shape collision detector that just cover the 3D

agent body to react the physic interactions with obstacles.

The details of our multi-layer function is discussed in the next section.

3.2.1 Model Overview

Our collision system is primarily based on the vision approach by Ondrej et al. [28§]
where they presented a model of agents deciding their moves by a triangle shape of

the vision field. However, we consider that limiting the humans vision to a triangle

24

3. PROPOSED METHODOLOGIES

Fig. 13: An example of the MSC implementation on one agent

25

3. PROPOSED METHODOLOGIES

is over restricted. Moreover, walkers can judge the surrounding obstacles by the
distance and this is the basic idea of our multi-layer collision system. As we show in
Figure.14, one agent in our model has three layers to detect the imminent collision

and auto-evaluate the risky level about current surroundings:

Vision layer

\ 4

Warning layer

Y

Physical layer

Other agents

Fig. 14: The Mutli Layer Collision System

1. The vision layer: it represents the agent’s maximum visual distance in our
model. Obstacles or other agents appeared in this layer are recorded but it is

inferior than the information in other layers.

2. The warning layer: this layer gives the information about obstacles that are
going to collide with the agent; if there is no detour or slow down actions that

are taken by the agent. It requires the agent pays more attentions to avoid.

3. The physical layer: this layer represents the actual physical body of one charac-
ter. Any information retrieved from this layer means that a collision has already
happened. In the case of multiple agents crashing happened, there is a possi-
bility of falling. Agents fall due to multiple ‘competing forces’” which exceed
the individual durability on outside forces; and this durability is decided by the

evaluation function and the falling decision algorithm.

26

3. PROPOSED METHODOLOGIES

Table 1: Density evaluation base on MCS

Threshold Density

E <10 Low-density
1<FE <100 Medium-density
10<FE <1000 | Dense

1000<E Overdense

3.2.2 Collision Evaluation Function

In our model, once a agent received the ‘visual” information of surrounding, the MCS
can synchronize all those information into a data set which is updated by each frame
while the program running. The evaluation function can dynamically detect the
enter and exit of other agents from each layer. The method we transfer this ‘visual’

information to a numerical data set is by Equation.7 below:

E=Y Vi+) Wi+) Pi (7)
=0 i=0 =0

This Equation.7 sums all ‘visual” information that received from one agent’s MCS
and process it as a numerical feedback information. We compute the evaluation value
E from the summation of source layers. We make Vision, Warning and Physical as
three parameters to divide the information according which layer it comes from; and
they contain the weight of each three layers: the vision, the warning and the physical
where V' < W << P. 1 as the obstacle amount indicator inside each layer, in this
case, the number of other agents inside of each layer. Thus we could calculate the
emergency level of one’s surrounding based on this weighted value.

After the value processed from Equation.7, we set several thresholds to evaluate
the current density-level of one agent’s surrounding and the results are shown in
Table.1. All data in Table.1 is based on the parameters’ value that are preset in
our program as V = 1, W = 10, P = 100. Note that the value of all parameter is

just for dividing the classified results, therefore they do not have the actual meaning.

27

3. PROPOSED METHODOLOGIES

However, we can adjust the parameter value to achieve different dynamic results
where those parameters become factors for the stampede simulation study in next

section.

3.2.3 Stampede Thresholds

We could formulate our stampede scenario with the benefit from our MCS’s evaluation
system which introduced in the last section. An individual tends to fall if there are
several forces ‘pushing’ him [her| from one or several directions. This case in our model
is that any contact from the physical layer is a pushing force to one specific agent.
This agent could endure the forces with a certain amount of durability. Besides,
the durability varies on the individual attributes. Thus, those principles make the
foundation of our stampede simulation scheme. We first made an assumption that
each agent has some amount of durability, and the amount is decided by gender,
body size and current velocity. The durability can be considered as the thresholds of
falling. When the pushing force over the durability, the agent has the possibility to

fall. By the conditions above, we can form the equation for falling simulation as:
F=D-) Pi (8)
i=0

The interpretation of Equation.8 is as follows. The collapse indicator F is deter-
mined by the threshold value D, which each individual has their own calculated value
in the simulation as the characteristic attributes. When the total forces » ., Pi is
over the threshold D, then the equation returns a negative value on F, which means
the agent is in a possible-to-fall condition. However, it is not a certainty condition
that once F meets the threshold, and the agent should fall. We consider that F
represents the ‘chance’ of falling instead of the ‘switch’ to fall or not. That means
after 7 meets the condition, the agent’s status to fall or sustain that force are decided
by our Falling Decision Algorithm as follows:

Algorithm 1 is the method we determine the agent’s status of falling or enduring,

when the agent current surrounding density is over the density threshold from the

28

3. PROPOSED METHODOLOGIES

Algorithm 1 Falling Decision Algorithm

Require: Falling chance F, Random Parameter N/
initialize and update F from equation.8
and a loop counter i = 0
while Agent condition is not in Fall and the velocity>0 do
if 7 <0 then
F <« |F|
Using pseudorandom number generator to generating a number as the value
of N
if 7 +1i> N then
Return agent condition as Fall
else
1+ +
return to while
end if
else
return to while
end if
end while

evaluation function. As more forces the agent suffering, the calculation result F also
increases; the higher risk helher| falls. Furthermore, we applied a pseudo-random
number generator to produce the limitation trigger. This trigger gives a nonidentical
individual endurability on fallen event simulation in our model. The A’s value has
the scale from 1 to 10 and we compare F with N. If F is greater than A in one
loop, the agent falls. This algorithm gives the principal function to decide the falling
condition for any walker in the crowd. After the agents reached the ‘pushing forces
limit, they has more possibility to fall, when they hold the over limit forces longer.
However, the specific limitation value can be modified to catering particular study

goals. The time complexity of our Algorithm 1 is o(F).

3.2.4 Summary

Our MCS is an adequate tool when we target to analyze one agent’s surrounding in
a crowd. This system gives an instant feedback about both happened collisions and
foreseeable collisions at the current running frame. By analyzing feedback for every

agent in the crowd, we could form a bar chart like in Figure.15. It shows two groups of

29

3. PROPOSED METHODOLOGIES

people split by different density-levels. We can easily observe that people in Crowd 1
share a higher density-level situation than Crowd 2 because Corwd 1 has more people
in the dense and overdense bar. This kind of information that accumulated by MCS

can help us to understand a visually-complex human crowd by a highly summarized

- 60 g — % V
% 50 = o = % /
%40 % 7% %38 %
. %i % %

Density Level

Fig. 15: A density evaluation chart showing the analysis on two crowds density spread-
level under the same space size

3.3 Building & city planning Generating System

Besides our model generating method, the DAGM, and our dynamic system, the MCS,
we have built an environment & obstacles system for our ACS system, Building &
City planning Generating System (BCGS). This system is designed for providing the

basic environment of the evacuation scenario, which is highly demanded as recently

30

3. PROPOSED METHODOLOGIES

terror attacks happened more frequently in Europe cities and worldwide.

3.3.1 Model Overview

The BCGS contains two generating steps:

1. City planning step: at this step, the BCGS divide the ground into two sections:
the ‘building’ section and the ‘crowd’ section. One simulation map can contain
multiple ‘building’ and ‘crowd’ sections in it but each unit area should be as-
signed by one of this two sections to avoid the undefined problem. After this
compartmentalization step, all agent can only be generated on the land marked

as ‘crowd’ section, and all ‘building’ section would become obstacles to crowds.

2. Building generating step: the second step of our BCGS is creating buildings
within the ‘building’ area. For the convenience purpose, buildings can be auto-
generated by user’s control. Moreover, this step can be called unlimited times
during the simulation to make modifications on buildings’ amount, positions

and sizes.

After this two steps, the general ground has clearly defined boundaries that prohib-
ited agents generated into. Also, the buildings has restricted the agent’s movement.
In certain conditions, those obstacles can change the agent’s navigation path due to

the avoidance function in our navigation system.

3.3.2 City Planning Step

Before the city planning step, our agent can walk around on the entire ground that has
defined map size without limitation. Therefore, the default ground is a ‘crowd’ section
originally. What we need to do is adding the ‘building’ section boundaries above the
ground. We consider that with different building section boundaries applied, this
system can generate a street block, a residence area, or an urban downtown area
by modifying on the blueprints. Figure.16 provides a better explanation of our idea

about the city-scheme method. The coloured boxes on the Manhattan map are equal

31

3. PROPOSED METHODOLOGIES

Fig. 16: A piece of the city-map of Manhattan

32

3. PROPOSED METHODOLOGIES

to the ‘Building’ areas in our model. Those sections together formed the streets in a
city as the way we construct the ‘crowd’ section in our model. Our building section
can alter the size and shape for different city arrangements. The size editing can
not only provide more space to place buildings in it but also oppositely changes the
‘street’ width from wide to narrow. By enlarging the building section’s size, the street
is narrower and vice versa. Editing on the geometry shape of each section can provide
the stylish design for the urban planning. We have implemented a cross street sample
with four building sections and an intersection in the centre. Figure.17 is a simplified
2D map of the street block framework in our simulation. Giving more explanation
on this, the circle represents the map size and any position inside the circle area can
have crowds generated on it, except the grey squares which represent the building
areas and buildings are generated inside them. All agents still can move into the grey

section after they start the navigation process.

Buildings Buildings

Ground

Buildings Buildings

Fig. 17: A 2D map sample of our city scheme design

33

3. PROPOSED METHODOLOGIES

3.3.3 Building Generating Step

This step is a subsequence step after the city planning step finished. Due to the
buildings can only be placed after the city section is specified, and apparently these
two steps are nonreversible. The main point of this step is, after the city scheme is
constructed, we can to fill it with 3D buildings for placing obstacles and the urban
parameter performance testing.

In our model, all buildings are represented by shaded rectangles with the same
texture applied. However, to avoid the duplicate looking, we applied a random func-
tion on the building’s sizes. So that the buildings could have the differences in height
and width between each other, which can also increase the ‘city-like’ feeling. However,
we did not provide more modifications on this function and the main reason for this
simplification is in consider of the current geometric needs from our program. We
want all sub-functions only reach to the necessary level without spending too many
computational resources. Thus, we could optimize our computer power on the crowd
geometry performance. However, our BCGS is still capable of producing a realistic
environmental scenario with same rendering quality as in our agents.

Our surrounding approach can generate a number of buildings at one time. Thus,

there are two issues that need to deal with while we setup this function:

1. Recognition ability, buildings should positively recognize the position whether

is in the allow-to-place section before they are going to be assigned.

2. Avoiding overlap between buildings, due to our generating method can create
multiple buildings simultaneously, that may cause the polygon shapes across
with other models. So we need our algorithm has duplication detection function

to avoid this problem.

We have designed this Algorithm 2 by using the duplication testing method. It
has the ability to solve both the recognition and overlapping problem.

As the algorithm begins, we need to load an input value for A, which is the
number of buildings. & is assigned with a random three-dimensional coordination,

which is generated by the pseudo-random number system. A building is placed in the

34

3. PROPOSED METHODOLOGIES

Algorithm 2 Building Collisions Detection Algorithm

Require: Building position X', Buildings amount A, i =0
System generate a new position X automatically, if previous one failed.
for i<A do

if Check X is in building section then
if X = any value in the array [X] then
Request a new position X
else
Place the building
Store X to the array [X]
1++
end if
else
Request a new position X
end if
end for

simulation environment after satisfied our algorithm examination. Its X', which is the
position information is stored in the array of X as [X] for later duplication checking
process. Therefore our method can create non-overlapping buildings inside the fixed
area. The time complexity of Algorithm 2 is o(A).

The buildings can interact with crowds as solid obstacles that have the function to
block all agents to cross or access into it. If an agent is blocked by a building, he[she]
can only take a detour instead cross from it. We also provided a ‘refresh’ function for
the buildings’ establishing where old buildings are replaced by new if this function is

recalled during the simulation.

3.3.4 Performances

We implement a cross street scene by using our BCGS. Once the space size is specified
by the user, four ‘anchors’ are created around each corner of the rectangle ground.
Anchors’ positions are according to the fixed space size.

Figure.18 illustrates the procedures of implementing the environment by using
BCGS. The building section’s boundary appears as light green edged cubes. We
can observe that some buildings are partially out of the boundary and that is due

to the pivot of one building is set at the centre. However, all buildings have same

35

3. PROPOSED METHODOLOGIES

blocking function as a wall. After the simulation begins, the agent can walk into
the boundary but cannot cross through a building. The building’s variation on sizes
is showed in the right bottom picture of Figure.18, with this feature applied, the

building function provide more diverse looks of the modelled urban environment for

program observations.

(c)

Fig. 18: The BCGS showcase and rendering results.(a) Four anchors placed on the
ground with building sections’ boundaries, (b) generated buildings without the over-
lap issue, (c) the perspective view of buildings through the in-game camera

36

CHAPTER 4

Implementations

In this chapter, we first provide information about the working environment of our
crowd simulation program. Next, we give a summary of the in-simulation operating
methods and additional system features that we designed for supporting the simula-
tion. After those, we present a step-by-step simulation sample as the user guide of
our ACS system, where we simulated a crowd that contains two hundred agents. The

experimental results are described in the last section of this chapter.

4.1 Hardware configuration & Software Platforms

We developed and tested our ACS program on a computer with macOS, and its
system configuration is 2.7 GHz Intel Core i5 CPU, 8 GB 1867 MHz DDR3 memory,
and the Intel Iris Graphics 6100 1536 MB integrated GPU. Our model could generate
a crowd with two thousand agents within seconds under the display resolution of 1024
x 768 pixels. Also, we tested our model’s performances by using another computer
with Windows 10 operating system, and its system configuration is 2.5 GHz Intel
Core i7 CPU, 8 GB memory and a NVIDIA GeForce GTX 970m dedicated GPU.

Our program is developed across multiple development platforms:

1. Unity 5.5.1f1 personal (64bit)

2. MonoDevelop 5.9.6

3. AutoDesk Maya 2016 SP5 (Educational version)

37

4. IMPLEMENTATIONS

4.2 Operational Methods & Animations

Besides the methods we have introduced in Chapter 3, our program also has the
controllability features for users through electronic devices like a mouse and keyboard.
By interacting with our model through those electronic devices, the gaming experience
can be significantly improved. On the other hand, we have created bionic animations
for character motions, and animations in the simulation can immensely enhance the

realistic feeling on the visualization aspect.

4.2.1 Control Methods

Camera Control: The way to inspect a 3D gaming environment is to go through the
view camera. At this perspective, we set our camera with a good range of flexibility.
The default camera setting has 140° on the width and 60° on the height in terms
of the field-of-view. The rendering distance of the camera is set at one thousand
unit-distance in the Unity. This rendering distance can provide sufficient details
of all agents without wasting any additional resources. We place the camera ahead
of the crowd generating area and shoot with twenty-degree top-down angles for a
comfortable viewing angle to catch the most rendered objects in the scene.

We established some functions to extend the controllability on the camera view;
in the case that we want to observe more of the rendered model’s details on generated

crowds. There are two functions to support that:

1. Zooming function: the camera can zoom in or out by scrolling the scroll-
wheel on the connected computer mouse while holding the right-click button.
The zooming range are not easy to describe by words, thus we have provided

the comparison picture in Figure.19.

2. Rotation function: the rotation angle of the camera is by tracking the mouse
movement that is similar to many first-person shooting games. To avoid the
mishandling problem, we need users to move the mouse while holding the right

click button to make the camera rotation. Technically, our camera can support

38

4. IMPLEMENTATIONS

Fig. 19: Examples of the camera zooming control function.(a) Zoomed view from our
program camera. (b) standard field-of-views from our program camera.

39

4. IMPLEMENTATIONS

a 360° full-range view both horizontally and vertically.

Keyboard Control:
We applied several keyboard functions to control different in-simulation events

and they are listed below:

1. Key ‘R’ and Key ‘L’ control the male and female agents navigating system
separately. With the associate button pressed, agents in the current scene will

start walking towards their target point on the map.

2. Key ‘Space’ controls our buildings establishing function. Once ‘Space’ is pressed
during the simulation, a new group of buildings is created around the building
section by our BCGS. However, this function has to be applied after the space

size is defined, which is a prerequisite setting.

Mouse Control: Besides supporting zooming and rotating camera view in the pro-
gram, we have designed an information tracking function. It can acquire individual
agent information at the simulation scene. By right clicking on an agent in the scene,
we can display the information of the agent’s name (we arranged this by gender +
number) and his [her| current coordinates on the Ul panel.

UI Control: Our crowd simulation system contains panel based user interfaces,
which has several interaction functions to control simulation parameters. We listed

them below, based on the interaction types:

1. Input field panel: this kind of panel can support users to enter any value by
a keyboard. As in our case, it is used to define the agent number (population)

and space size.

2. Slide bar panel: this panel has a slide bar to control the volume of the input
value. We use this type of panels to control the spread parameter and gender
ratio parameter. Both parameters have one same feature that percentage is

more important than the precise value.

40

4. IMPLEMENTATIONS

3. Button panel: this panel has the function to initiate a defined event. We
use the buttons to apply the settings we have made in previous panels. To be
specific, we have separate buttons to control the crowd generating function and

the space generating function.

Press SPACE to create Buildinas.

Fig. 20: The in-game Ul system overview from the main camera

Figure.20 shows the layout of the Ul system in our program. The left side pan-
els group are crowd control panels with AgentNumber input, GenderRatio control,
Spread control and the Create button. The one on the top left is the tracking panel,
which we have introduced in the last section. On the right side, there are two pan-
els, the upper one is the Map control panel with SpaceSize and CreateMap button.
The last one is an instruction notice that tells users how to build buildings in the

environment.

4.2.2 Realtime Animations

Providing a realistic simulation process is our primary goal from both agent behaviour
aspect and the rendering quality aspect. We want them both as close as possible

to real human crowds. On the agent behaviour level, we have MCS to evaluate

41

4. IMPLEMENTATIONS

the surroundings and provide a sensible decision-making ability. On the rendering
quality level, our DAGM can provide high-quality 3D characters with random body
features. However, we intend to create the animation feature to enhance the visual
performance regarding the realism. To achieve that, we crafted several animation
clips for different situations on our prototype models. We constructed the animation
in AutodeskMaya with its animation system. We imitated the human anatomy to
avoid the puppet feeling animations, which is a common issue in other animated
crowd simulation studies. The first thing to create bionic animations is to build the
‘skeleton’ that emulates on human structures. Just like the normal human structure,
our agent’s skeleton also connected by joints. The skeleton size is adjusted to fit for
our agent’s size differences. In our case, we built two independent skeletons for male
and female characters. Thus, we also need to design animations for two skeleton sets
separately. After the skeletons is built, we need to connect them with the agent body.
At this step, we painted the ‘body weight’ for each joint in the skeleton. This step is
to define a specific value of how much a joint can control on the ‘skin” motions. With
properly aligned body weight painting, our agent can present several poses, which
are identical to human poses. After this step, our agent’s actions can be modified by
controlling the positions of skeleton joints. Last, we have created the animations by
designing a sequel of motions in the key-frame animation system to produce series of
animations for both characters.

To satisfy our simulation requirements, we have created three animation clips for
both male and female characters. We named them as ‘Idle’, ‘Walking’ and ‘Fall’.
Because we have made two independent skeletons based on gender differences, so we
have six clips of animation in total. Each animation clip has different time, which is
indicated at Table.2. Our computer animations’ frame rate is placed at 24 frames per
second of which we can capture smooth motions of our agent during the animation
process.

Animations have different active conditions in our simulation program. To be
specific, the ‘Idle’ animation is played after agents are generated or their movement

is stopped. The ‘Walking’ animation is set to active while the agent starts moving.

42

4. IMPLEMENTATIONS

Table 2: Animation frames in each clip

Male Female

Idle 40 frames | 24 frames

Walking | 50 frames | 40 frames

Falling | 27 frames | 20 frames

The ‘Fall’ animation triggers according to the stampede evaluation system, which
is introduced in Section 3.2.3. After the agent fallen, his[her| animation system is
locked at the last frame of ‘Fall’ animation. The movability of the agent was frozen
too, thus, the agent becomes an obstacle to others.

Figure.21 shows two examples of simulation scenes with animated agents. (a)
shows agents walk toward their desired destinations on the map while un-moving
agents remain stand. (b) shows one male agent has fallen in the crowd, and other

agents try to avoid him or step on his body if avoidance is not possible.

4.3 Program Procedures

Our crowd simulation program has many controllable features, as we have introduced
in the previous section. This section gives a step-based operating instruction for one
completed simulation procedure. Thus, many control functions can be described in

more details.

I : Open the program executable file, the default interface and the 3D environment

(ground and skybox) show in the program’s interface window.

IT : Enter the space size, we usually set this at 100, which gives enough space for
placing agents. Click the ‘Create map’ button to apply the ideal map size. Then
press ‘Space’ on the keyboard to create buildings, this part could be repeated

multiple times to construct the desired city scene.

III : Enter the ideal agent amount in the ‘AgentNumber’ panel, then adjust the

density and gender ratio settings. Last, click on the ‘Create’ button after rest

43

4. IMPLEMENTATIONS

(b)

Fig. 21: Two animation scenes in our simulation. (a) walking agents in the navigating
process, (b) an agent has fallen on the ground due to the high-density.

44

4. IMPLEMENTATIONS

crowd settings are confirmed. One crowd that related to parameter settings is

generated.

IV : After the crowd is placed in the scene, we could observe it from different angles
and distance by controlling the camera view. The camera control is set as active
during the simulation. Next, we can press ‘R’ or ‘L’ to initiate the evacuation

simulation on the current crowd.

V : Step III & Step IV can be repeated unlimited times till the simulation result

meets the expectation or the computer power is exhausted.

4.4 Experiments

In this section, we provide details of our experiments and discuss the obtained results.
The evaluation of an agent-based crowd simulation model can be complex, from the
scalability, flexibility to applicability and realism-level. All those factors could be a
crucial assessment for one crowd simulation model. Sometimes it is quite frustrating
to chase them all at the same time. Typically, a research focuses only on one or two
topics to propose the improvements and contributions.

As in our case, we have put our study objective on making improvements at the
simulation realism, while other factors still moderately developed. Thus, this section
is arranged as follows:

Self Experiment: we first measure our proposed methods performances inde-
pendently by conducting simulation statistics that is extracted from our program
self. Where some factors cannot share the same standard with others work, and the
possible reason could be dissimilar of rendering resources, the differences of computer
configurations, and etc.

Cross Experiment: We compare our model’s features with other proposed mod-
els where the same standard could be shared for a comparison, for example, the
rendering system and the dynamic methods.

We successfully simulated several crowds with the different population, spread-

45

4. IMPLEMENTATIONS

level, and gender ratio applied. Due to our program is a real-time simulation ap-
proach, we choose the frames per second (FPS) as the performance parameter in our

tests. The results are demonstrated in the charts below:

Rendered crowd population affects on the FPS

5 59 58 Integrated GPU Dedicated GPU
53
50
48
45
2
S 34
& 30
3 30
£
©
L
15 11
0
100 200 500 1000 2000
Population

Fig. 22: Crowd population affects on the FPS

The reason for using the FPS as our evaluation parameter other than the gen-
erating time is because the FPS can indicate a dynamic performance for a period.
However, the generating time is mostly decided by the preprocessing speed which is
not crucial in a real-time simulation program. Due to the frame rate value fluctuates
during the system running, we decide to take the average frequency value. The max-
imum frame rate has been locked at 60 FPS in all experiments, because a program
with over 60 FPS has no noticeable differences to the observation and it is a waste of
computational power.

We used the controlling variables method to obtain the performance of one par-

ticular factor in our simulation, then we can measure the impact on our model from

46

Frames per second

4. IMPLEMENTATIONS

Density-level affects on the FPS

60 60 60 60 59

rd

55
53
45 50 50 48
30
15
O Integrated GPU *» Dedicated GPU

0

Low-density Light-density Medium-density High-density Overdense

Density-Level

Fig. 23: Density level affects on the FPS

47

4. IMPLEMENTATIONS

Gender Ratio affects on the FPS performance
52

Frame per second
S B~ h
(=) o0 o

N
=

B
(S

Tii ik ¢
MN\\\§

44

All male Male 3:1 Female Half and half Female 3:1 male All female
Gender Ratios

40

Fig. 24: Gender ratio affects on the FPS

this factor.

Figure.22 shows the frame rate slopes down while the population of rendered crowd
increases in both system configurations. The frame rate drops significantly after the
crowd size is over five hundred in the computer system with an integrated GPU. We
acquired a better performance in the system with a dedicated graphics card, where
the frame rate start to drop dramatically after we simulated one thousand agents in
the scene. However, we do not set the limitation of the population in our system.
Although, it inevitably takes more time to render if we want to expand the population
even more. The computational complexity for generating our 3D graphics crowd is
O(c") where ¢ is the constant that represents the computational requirement per
agent and n represents the number of agents have been generated.

Figure.23 shows a moderate frame rate changes due to the density-level increases
where we rendered groups of one hundred agents under the same gender ratio. The

density-level as the value of X-axis is acquired by adjusting the spread-level value

48

Frame per second

4. IMPLEMENTATIONS

Urban parameters effect on the FPS

>9 > 57 57 56

- ---"-
---"---"----”

50
45
47
30
15
O Integrated GPU +» Dedicated GPU
0
0 10 20 30 40 50

Number of buildings

Fig. 25: Urban parameters affects on the FPS

49

4. IMPLEMENTATIONS

from the minimum to maximum and we select five different values from low to high.
From this chart, we can observe that low-density could increase the system running
performance slightly better compared with other density-levels. However, the density-
level does not have too much impacts on the overall frame rate performance in both
system configurations.

At first, we did not consider that the gender ratio could be a factor, which affects
on the program running performances. Figure.24 shows the example of the variation
on the gender ratio changes the frame rate in our program. Those data were recorded
under the condition of two hundred agents and with the same spread-level. Although,
the frame rate was not affected dramatically as in the population experiments. We
still can explain the reason for this situation. A scene with full male characters has
higher frame rates than any other scene, which has female characters existed. Thus,
we can find the reason for this is our female model has approximately five hundred
more vertices (total 8067 versus 7600) than the male model, which female agent
consumes more computational power when rendering and this leads the frame rate
dropping.

Figure.25 indicates the frame rate comparison result base on the number of build-
ings in the urban scene. From no building at all, which leaves a spacious area to
place crowds, to fifty buildings, which almost assigned buildings at every possible
spot on the map. However, the number of buildings in the environment causes an
unremarkable frame rate drop in both system configurations, just around ten FPS

dropped in the integrated GPU system.

4.4.1 Priority Rule-based Navigation System

Besides the experiments on the crowd generating system, we also tested our dynamic
methods to evaluate the navigation system. At first, our model has experimented
with non-priority rule applied to our agents. The non-priority navigation system
brings us a behaviour problem that all agents have no ‘knowledge’ to yield the right
of way to others when their navigation paths are crossed. This issue made our walkers

sometimes got into an endless trapping condition when two or more agents come face-

50

4. IMPLEMENTATIONS

to-face without avoiding or detouring actions. This ‘deadlock’ problem apparently
affected our navigation efficiency and it is an immediate issue to our decision-making
function. To deal with this issue, we implemented the priority-rule model exclusively
for our agents. Agents in our model can detect and avoid buildings [obstacles] when
moving. However, when this ‘deadlock’ situation happens, the agents can only ‘stick’
with the other walker|[s|. That’s why we need to give different priority-levels to every
walker in the simulation. To make them ‘aware’ which agent has more the right
of way when they met. We use a numeral system to decide the priority level for
each agent particularly. Currently, we assigned the priority level with one hundred
levels, from the lowest with value 1 to the highest with value 100. The agent with
low-priority should present a behaviour of yield the right of way to any other agent
who has higher priority value. In our model, low-priority agents need to decrease the
current velocity or change the walking route to avoid collision with agents who have
greater priority-value. In the reverse case, the high-priority agents can push away
other agents to clear the path for themselves. After this rule-based model applied in
our model, we can simulate a full evacuation scenario without the ‘deadlock’ issue.
We experimented the dynamic model performances by several sample tests. We
have designed a typical four-way urban model for the testing environment and with

buildings that generated by BCGS.

Table 3: The time for evacuation after the application of the rule-based model

Crowd Size | Evacuation Time | Fallen Agents
100 2 min 14 sec 0
200 5 min 12 sec 0
300 14 min 59 sec 2
400 25 min 06 sec)

We formed four groups of testing samples by changing on number of agents that
need to be evacuated. The Table.3 shows the result of the full evacuation time (all

agents arrived around the destination except the fallen agents) with our rule-based

51

4. IMPLEMENTATIONS

model applied. We found that the evacuation time almost doubled with the increase
of the number of people in the crowd. With the simulation has over three hundred
agents involved, we can find some agents has fallen due to the surrounding density.
Figure.26 is a screenshot of our agents were being evacuated from centre area to
the destinations. This picture also captured two fallen walkers that have left on the

ground.

Fig. 26: A sample picture of agents were being evacuated from the city centre

There is a special case that we want to discuss for a clarification of our navigation
system computational complexity. In our model, perceived obstacles can interfere the
current pathfinding function on one agent at the realtime and our BCGS can generate
buildings in any time during the simulation. So, the case is when an agent path is
blocked by a newly spawned building, by our dynamic function, he [she| perceives it
and reroute. Then, what is the computational complexity to make this detour? Here
is the explanation: first, the pathfinding method connects the desired destination and
the current agent position in a polynomial computational complexity. In the case that
a new obstacle has generated and blocked on one agent’s current moving path, we still
can reroute a new path in the same computational complexity. Thus, in the worst case
(continuously generates new obstacles on the agent path during navigation, which is
unlikely to happen in our crowd simulation system), the computational complexity

of re-navigation is o(n?) where n is the pathfinding system complexity.

4.4.2 Result

In this section, we discuss the program functionality and evaluate general perfor-

mances of our proposed methods with other existed models.

52

4. IMPLEMENTATIONS

Incorporate Performance

An analysis on the incorporate performance is important for one complete system. In
our simulation system, the performance cost is mainly from two sources, the rendering
system and the dynamic system. The agent rendering is the main source in rendering
system and its computational cost is O(c") where ¢ is the unit graphics cost per
agent and n represents the number of agents rendered. On the other hand, the
cost of our dynamic system is mainly divided by two sub-functions, the collision
algorithm with a polynomial computational complexity, and the navigation system
with o(n?) computational complexity. Thus, The general performance of our model
is f(n) = O(c"+n*>+mn)asn — oo where f(n) represents the incorporate

performance complexity.

Comparison with Other Proposed models

We chose four proposed models to compare with our model: Pelechano’s psychological
model [33], Tecchia’s Real-time model [37], Ondfej’s synthetic-vision model [28], and
Shendarkar’s BDI agent model [34]. The principle of choosing which model to present
the comparison is based on each method’s relevant-degrees with our thesis objectives.
In the selected models, we can find the most comparable aspects with our model.
Thus, the evaluating criterion could be reliable. The evaluation result is shown in
Table.4.

The population capability and the density-level are not included in our evaluation
chart, although they are crucial factors in a crowd simulation study. The reason
for this is the performance of those two features are firmly related to the computer
power and the rendering quality that implemented on the model. To clarify, each
agent in our program has roughly 8000 vertices regarding the polygons, which is
eighty times more than the 3D agents in Pelechano’s HIDAC [30] model as shown in
Figure.27. Moreover, in his model, he rendered six hundred human models in one
time as limitation. However, our model can render more than two thousand agents

at the same time. The reason for this performance differences is partially due to the

53

4. IMPLEMENTATIONS

Table 4: Major features comparison with other models

BDI [34] Vision [28] | Real time | PMFserv | Our
[37] [35] Method
Crowd 2D graphics | 3D Triangle | 3D male | 3D Polygons | 3D male
Ren- Shapes model with and female
dering LOD and model with
Type IBR DAGM
applied
Agent BDI (belief, | Vision-based | 2D grid | PMFserv MCS gives
be- desire, inten- | collision contains stress-based | the com-
haviour tion) avoidance behaviour model prehensive
method method layer to evaluation
agents of an agent
surround-
ings
Dynamic | Dijkastra’s Angular Collision, In- | MACES Navigation
Method shortest & velocity | tercollision, | crowd sim- | and
path algo- | control Behaviour, ulation pathfind-
rithm Callback method ing based
layers on the
priority-rule
Computer | No anima- | No anima- | Walking ani- | Animation Idle, walk-
Anima- tion applied | tion applied | mation included ing, falling
tions but did not | with active
present in | conditions
the paper
Environ- | Matrix rep- | An orthogo- | Collision Blocks BCGS cre-
ment resentation nal corridors | map with ates both
Features | maps 3D architec- systematic
tures city plan
and visu-
alization
buildings
Extra Evacuation | Circle, Program Combine UI control,
Features | under a | group swap, | runs in | PMF- applicabili-
truck bomb | crossing real-time serv with | ty, stampede
attack model MACES into | simulation
one model

54

4. IMPLEMENTATIONS

computer performances differences. Also, almost every crowd simulation model is
established under different system configurations and development platforms. Thus
the performances on population capability or density-level cannot become a standard

criterion for the evaluation.

The Population Capability and 3D Model Quality Comparison with HiDAC

100

population W 2000

1000 2000 3000 4000 5000 6000 7000 8000 9000

o

=HiDAC & our model

Fig. 27: The comparison with HIDAC model on population capability and graphics
quality

As we listed in Table.4, our program has more comprehensive features than all
other methods we have reviewed. With the visually diverse crowd generating method
DAGM, the agent behaviour method MCS, and environment system BCGS. Our
model can instantly produce an animated crowd with specified quantity, high-realism
rendered and dynamic function applied agents. We additionally provide a gaming
control environment for the simulation process, thus, our model has better accessibil-
ity than any other reviewed models. At the last, the entire system can be packed as

an independent software that can be executed on Microsoft Windows or MacOS.

95

CHAPTER 5

Conclusions

In this thesis, we proposed a new realtime Agent-based crowd simulation system
which improves the rendering realism by applying our Distinguishable Agents Gener-
ating Method (DAGM). Unlike other agent-based models which usually build agents
with same and simple appearances; our DAGM offers: (a) high-quality male and
female 3D models under the Separating Components Modelling Rule (SCMR), (b)
auto-generating agents with different colour, size, and hairstyle choices, and (c) the
flexibility on controlling the crowd density and the gender ratio during simulation
time. Thus, We can generate a graphically distinctive crowd for our crowd simulation
study.

Besides the works on the visual rendering aspect, our model also contributes on
the dynamic method for ACS study. First, the Multi-layer Collision System (MC-
S), which computes and records the realtime information of surrounding densities
and collision detections for every agent. Second, the priority rule-based navigation
and pathfinding system can solve the popular ‘deadlock’ problem in many decision-
making models. Thus, based on the support from our collision and navigation system,
all walkers have a high-level automatic dynamic system to use in a complicated e-
vacuation scenario. Our model can bring out unsystematic evacuation results, in
other words, the simulation is unpredictable on agent’s movement at all; each single
simulation is a unique study case.

Moreover, we designed the Building & City planning Generating System (BCGS)
to create city-schemes and obstacles. We tested our crowd’s dynamic model in a

cross street scenario, which provides obstacles to block agents’ movements in the

56

5. CONCLUSIONS

simulation. Agents who are interfered by buildings can alter their navigation path to
arrive at the desired destination.

We evaluated our proposed methods’ performances by recording the simulation
frame rate under two different system configurations. Also, we compare our model
with several up-to-date agent-based models. By comparing the inclusive results, our
ACS model has a massive combination of different body and uniform styles to build
the 3D crowd; more flexibility in controlling the crowd parameters: density, scale
and number of agents. The entire process is in a semi-automatic process where users
only need to define several key-parameters at the beginning. The simulation is ready
for experiment with lots of diversity on crowd moving paths and the possibility of
accidents, etc.

Crowd simulation by computer graphics is usually a complex system with lots
of elements need to be defined and controlled. However, our program makes this
simulation procedure direct and easy to handle. Handful settings required to complete
a customized simulation process. Technically, our program has the export-ability to
embedded into other programs such as video games or 3D applications to extend the

practical application of our program.

5.1 Future Work

We summarize several aspects that can be improved in the future works.

1. Making enhancement on the navigation method efficiency. Our current navi-
gation function solves the ‘deadlock’ problem among agents’ moving, but the
navigation procedure spent significantly much time while the population was

increased.

2. Optimization on the MCS, our collision system has a multi-factorial evaluating
criterion to control the agent’s status. Currently, we assign the density factor
as one system parameter. However, more individualized factors, for example,

gender, body type and personalities should be expected. Additionally, with the

o7

5. CONCLUSIONS

multi-factorial evaluating system’s help, our stampede simulation could become

more reliable and accurate.

. Design more city scenario templates, for example, an indoor environment map
that can support to simulate an evacuation situation inside a building. we
also plan to apply more behaviour and interaction models (talking and moving
together when acquaintances met) into our agents to achieve an even higher

realism-level.

58

REFERENCES

[1] Abe, K., Abrahams, J., Ando, K., Ota, H., Oki, T., Aoki, T., Ashe, B., Shields,
T., Aubé, F., Shield, R., et al. (1986). The science of human panic. Brain Publ.
Co., Tokyo.

[2] Aguilar, W. G., Luna, M. A., Moya, J. F., Luna, M. P., Abad, V., Ruiz, H., and
Parra, H. (2017). Real-time detection and simulation of abnormal crowd behavior.
In International Conference on Augmented Reality, Virtual Reality and Computer

Graphics, pages 420-428. Springer.

[3] Algadhi, S. A. and Mahmassani, H. S. (1990). Modelling crowd behavior and
movement: application to makkah pilgrimage. Transportation and traffic theory,

1990:59-78.

[4] Ali, S., Nishino, K., Manocha, D., and Shah, M. (2013). Modeling, simulation and
visual analysis of crowds: a multidisciplinary perspective. In Modeling, Simulation

and Visual Analysis of Crowds, pages 1-19. Springer.

[5] Dadova, R. J. B. (2014). Cellular automata and particle systems for crowd simu-

lation in selected environments. Master’s thesis, Comenius University.

[6] Duives, D. C., Daamen, W., and Hoogendoorn, S. P. (2013). State-of-the-art
crowd motion simulation models. Transportation research part C: emerging tech-

nologies, 37:193-209.

[7] Dutra, T. B., Marques, R., Cavalcante-Neto, J. B., Vidal, C. A., and Pettré, J.

59

REFERENCES

(2017). Gradient-based steering for vision-based crowd simulation algorithms. In

Computer Graphics Forum, volume 36, pages 337-348. Wiley Online Library.

[8] Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the application
of theorem proving to problem solving. Artificial intelligence, 2(3-4):189-208.

9] Fromm, J. E. and Harlow, F. H. (1963). Numerical solution of the problem of
vortex street development. The Physics of Fluids, 6(7):975-982.

[10] Getchell, A. (2008). Agent-based modeling. Physics, 22(6):757-767.

[11] Glynn, C. J., Herbst, S., Lindeman, M., O’Keefe, G. J., and Shapiro, R. Y.
(2015). Public opinion. Westview Press.

[12] Guy, S. J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., and Dubey,
P. (2009). Clearpath: highly parallel collision avoidance for multi-agent simula-
tion. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 177-187. ACM.

[13] Helbing, D. and Molnar, P. (1995). Social force model for pedestrian dynamics.
Physical review E, 51(5):4282.

[14] Tgarashi, T., Matsuoka, S., and Tanaka, H. (2007). Teddy: a sketching interface
for 3d freeform design. In Acm siggraph 2007 courses, page 21. ACM.

[15] Joseph, A. P., Lagerstedt, I., Patwardhan, A., Topf, M., and Winn, M. (2017).
Improved metrics for comparing structures of macromolecular assemblies deter-

mined by 3d electron-microscopy. Journal of Structural Biology, 199(1):12-26.

[16] Knapp, A. (1938). An introduction to clinical perimetry. Archives of Ophthal-
mology, 20(6):4-5.

[17] Kullu, K., Giidiikbay, U., and Manocha, D. (2017). Acmics: an agent commu-
nication model for interacting crowd simulation. Autonomous Agents and Multi-

Agent Systems, pages 1-21.

60

REFERENCES

[18] Kurve, A., Kotobi, K., and Kesidis, G. (2013). An agent-based framework for
performance modeling of an optimistic parallel discrete event simulator. Complex

Adaptive Systems Modeling, 1(1):12.

[19] Lamarche, F. and Donikian, S. (2004). Crowd of virtual humans: a new approach
for real time navigation in complex and structured environments. In Computer

graphics forum, volume 23, pages 509-518. Wiley Online Library.

[20] Larsson, A. (2017). Real-time persistent mesh painting with gpu particle systems.
Master’s thesis, Liknoping University.

[21] Li, B., Lee-Urban, S., and Riedl, M. O. (2012). Toward autonomous crowd-
powered creation of interactive narratives. In 5th Workshop on Intelligent Narrative

Technologies, Palo Alto, C'A, volume 8, pages 25-52.

[22] Lu, G., Chen, L., and Luo, W. (2016). Real-time crowd simulation integrating
potential fields and agent method. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 26(4):28.

[23] Mahmood, I., Haris, M., and Sarjoughian, H. (2017). Analyzing emergency evac-
uation strategies for mass gatherings using crowd simulation and analysis frame-
work: Hajj scenario. In Proceedings of the 2017 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, pages 231-240. ACM.

[24] Mourino, G., Evans, M., Edzenga, K., Cavaleri, S., Adams, M., and Bisceglio,
J. (2017). Populating the crowds in ferdinand. In ACM SIGGRAPH 2017 Talks,
page 68. ACM.

[25] Moussaid, M., Kapadia, M., Thrash, T., Sumner, R. W., Gross, M., Helbing,
D., and Hélscher, C. (2016). Crowd behaviour during high-stress evacuations in an

immersive virtual environment. Journal of The Royal Society Interface, 13(122):4—

14.

[26] Narain, R., Golas, A., Curtis, S., and Lin, M. C. (2009). Aggregate dynamics for

61

REFERENCES

dense crowd simulation. In ACM Tnariansactions on Graphics (TOG), volume 28,

pages 122-129. ACM.

[27] Niazi, M. and Hussain, A. (2011). Agent-based computing from multi-agent

systems to agent-based models: a visual survey. Scientometrics, 89(2):479.

(28] Ondfej, J., Pettré, J., Olivier, A.-H., and Donikian, S. (2010). A synthetic-vision
based steering approach for crowd simulation. In ACM Transactions on Graphics

(TOG), volume 29, page 123. ACM.

[29] Pauls, J. (1987). Calculating evacuation times for tall buildings. Fire Safety
Journal, 12(3):213-236.

[30] Pelechano, N., Allbeck, J. M., and Badler, N. I. (2007). Controlling individ-
ual agents in high-density crowd simulation. In Proceedings of the 2007 ACM
SIGGRAPH /Eurographics symposium on Computer animation, pages 99-108. Eu-

rographics Association.

[31] Pelechano, N. and Badler, N. I. (2006). Modeling crowd and trained leader
behavior during building evacuation. IEEE computer graphics and applications,

26(6):4-80.

[32] Pelechano, N. and Malkawi, A. (2008). Evacuation simulation models: Chal-
lenges in modeling high rise building evacuation with cellular automata approaches.

Automation in construction, 17(4):377-385.

[33] Pelechano, N., O’Brien, K., Silverman, B., and Badler, N. (2005). Crowd simula-
tion incorporating agent psychological models, roles and communication. Technical
report, Pennsylvania Univ Philadelphia Center for Human Modeling and Simula-

tion.

[34] Shendarkar, A., Vasudevan, K., Lee, S., and Son, Y.-J. (2006). Crowd simulation
for emergency response using bdi agent based on virtual reality. In Proceedings
of the 38th conference on Winter simulation, pages 545-553. Winter Simulation

Conference.

62

REFERENCES

[35] Silverman, B. G., Badler, N. I., Pelechano, N., and O’Brien, K. (2005). Crowd
simulation incorporating agent psychological models, roles and communication.

Center for Human Modeling and Simulation, page 29.

[36] Sung, M., Gleicher, M., and Chenney, S. (2004). Scalable behaviors for crowd
simulation. In Computer Graphics Forum, volume 23, pages 519-528. Wiley Online
Library.

[37] Tecchia, F., Loscos, C., and Chrysanthou, Y. (2002). Visualizing crowds in
real-time. In Computer Graphics Forum, volume 21, pages 753-765. Wiley Online
Library.

[38] Tong, W. and Cheng, L. (2013). Simulation of pedestrian flow based on multi-

agent. Procedia-Social and Behavioral Sciences, 96:17-24.

[39] van Toll, W., Cook, I., Atlas, F., van Kreveld, M., and Geraerts, R. (2016). The
explicit corridor map: Using the medial axis for real-time path planning and crowd
simulation. In LIPIcs-Leibniz International Proceedings in Informatics, volume 51.

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[40] Vermeulen, J. L., Hillebrand, A., and Geraerts, R. (2017). A comparative study
of k-nearest neighbour techniques in crowd simulation. Computer Animation and

Virtual Worlds, 28(1):3-4.

[41] Wagner, N. and Agrawal, V. (2014). An agent-based simulation system for
concert venue crowd evacuation modeling in the presence of a fire disaster. Ezpert

Systems with Applications, 41(6):2807-2815.

[42] Watts, J. M. (1987). Computer models for evacuation analysis. Fire Safety
Journal, 12(3):237-245.

[43] Weiss, T., Litteneker, A., Jiang, C., and Terzopoulos, D. (2017). Position-based
multi-agent dynamics for real-time crowd simulation. In Proceedings of the ACM

SIGGRAPH /Eurographics Symposium on Computer Animation, page 27. ACM.

63

REFERENCES

[44] Zheng, X., Zhong, T., and Liu, M. (2009). Modeling crowd evacuation of a
building based on seven methodological approaches. Building and Environment,

44(3):437-445.

[45] Zhou, S., Chen, D., Cai, W., Luo, L., Low, M. Y. H., Tian, F., Tay, V. S.-H., Ong,
D. W. S., and Hamilton, B. D. (2010). Crowd modeling and simulation technologies.
ACM Transactions on Modeling and Computer Simulation (TOMACS), 20(4):20.

64

VITA AUCTORIS

NAME: Songgiao Sun

PLACE OF BIRTH: Beijing, China

YEAR OF BIRTH: 1993

EDUCATION: Beijing University of Technology, B.Eng., School of

Software Engineering, Beijing, China, 2015

University of Windsor, M.Sc., Computer Science,
Windsor, Ontario, 2017

65

	Agent-based Crowd Simulation Modelling for a Gaming Environment
	Recommended Citation

	tmp.1519765928.pdf.hE8BT

