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Abstract

Purpose: The performance of an optimistic parallel discrete event simulator (PDES) in
terms of the total simulation execution time of an experiment depends on a large set
of variables. Many of them have a complex and generally unknown relationship with
the simulation execution time. In this paper, we describe an agent-based performance
model of a PDES kernel that is typically used to simulate large-sized complex networks
on multiple processors or machines. The agent-based paradigm greatly simplifies the
modeling of system dynamics by representing a component logical process (LP) as an
autonomous agent that interacts with other LPs through event queues and also
interacts with its environment which comprises the processor it resides on.

Method: We model the agents representing the LPs using a “base” class of an LP agent
that allows us to use a generic behavioral model of an agent that can be extended
further to model more details of LP behavior. The base class focuses only on the details
that most likely influence the overall simulation execution time of the experiment.

Results: We apply this framework to study a local incentive based partitioning
algorithm where each LP makes an informed local decision about its assignment to a
processor, resulting in a system akin to a self organizing network. The agent-based
model allows us to study the overall effect of the local incentive-based cost function on
the simulation execution time of the experiment which we consider to be the global
performance metric.

Conclusion: This work demonstrates the utility of agent-based approach in modeling
a PDES kernel in order to evaluate the effects of a large number of variable factors such
as the LP graph properties, load balancing criteria and others on the total simulation
execution time of an experiment.

Keywords: Agent-based modeling, Parallel simulation, Self organizing system, Game
theory, Load balancing

Background

Parallel and distributed simulation techniques allow us to create and run large scale mod-
els that also allow fine grained modeling of the simulated entities. For example, the rapid
growth of large-scale communication networks, particularly the Internet and the on-line
social networks it supports, has brought an increased emphasis on the need to model and
simulate them in order to understand their macroscopic behavior and to design and test
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defenses against network attacks e.g., denial-of-service and Border Gateway Routing Pro-
tocol (BGP) attacks (Sriram et al. 2006). It has been observed largely that in many cases
the results of such experiments are affected significantly by the level of abstraction that
is chosen. For example, (Chertov and Fahmy 2011) studied the need to model forward-
ing devices such as switches or routers and the sensitivity of the experimental results to
their level of detail in the model. Parallel and distributed simulation distributes the simu-
lation tasks across multiple machines and, in this way, exploits their combined resources.
A challenge here is to maintain synchronization among collaborating machines in order
to preserve the causality of processed events and at the same time attain a significant
speed up.

Most parallel simulation mechanisms use the concept of a logical process (LP) which
is a software component that runs in parallel with other LPs via processor time sharing
or by running simultaneously on different processors in the case of multiprocessor sys-
tems. Each LP has a set of local variables that define its state. The state of the simulation
at a given time is defined by the combined state of all LPs at that time. LPs commu-
nicate with each other using inter-process communication mechanisms such as shared
memory or pipes. For the specific case of network simulation, a simulator kernel creates
a distinct LP as a computational unit for each element of the simulated network model
(Nicol and Fujimoto 1994). For example, all the properties and methods associated with
a simulated router are executed and maintained locally in a distinct LP that represents
it. This aids in the distribution of computation load across machines and also restricts
the communication of an LP with only its “neighboring” set of LPs (i.e., neighbours in
the network topology under simulation). In this way, we can represent the LPs and their
interdependencies with a graphical model.

Extensive studies have been conducted to optimize the performance of parallel sim-
ulations by focusing on different aspects such as methods of synchronization, effect of
roll-backs, LP-to-machine assignment methods and so on. New methods that promise to
speed up parallel simulations are evaluated directly on hardware platforms such as cluster
computers. Although the performance of any proposed method should be benchmarked
ultimately using a hardware platform, this work-flow also presents its own share of short-
comings. For instance, limitations posed due to available hardware and the simulated
scenario in the experiment makes the method susceptible to fine-tuning to the hardware
and the simulated experiment. An alternative is to create a computational or numerical
model of the parallel simulator that factors in known dependencies (both deterministic
and probabilistic) and then evaluate the proposed methods using this computational or
numerical testbed. This allows us the additional luxury of testing the proposed methods
under varying system environment variables since they are represented in software. The
parameters that affect the total simulation time can be abstracted by choosing appro-
priate methods of representation. For instance, the particular scenario that is simulated
can be represented as a graph of logical processes or LPs, and each LP is represented
with its behavioral model of event generation and processing as shown in Figure (1).
Note that other details can be ignored since they do not have consequence on the total
simulation execution time of the experiment. The Discrete Event System Specification
formalism (Zeigler et al. 2000) describes a hierarchical and modular method of sys-
tem modeling where model of the specific scenario to be simulated is separated from
the simulation engine using formal means of representing the simulated model as an
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Figure 1 Network simulation illustration: Mapping to an agent-based model of PDES simulator.

input to the simulator. However since we are interested only in the simulation execution
time of the experiment, we use a much simpler technique of representing the simulated
scenario. One can extend the functionality of the LP agent class to include additional
details.

In this work, we use an agent-based framework to simulate the behavior of a PDES
(Parallel Discrete Event based Simulator) kernel wherein each LP is represented by an
autonomous agent with its own set of distinct local variables. The agent-based modeling
paradigm of LPs is novel and appropriate especially in the context of optimistic synchro-
nization among LPs that requires each LP to maintain a local simulation state and use
messages or events to communicate and synchronize with other LPs. Agent-based mod-
eling allows us to study the resulting global performance metrics of the simulator kernel.
The total time required for simulation is a non trivial and a complex (in many cases
nondeterministic) function of various system parameters. The dynamics of an optimistic
PDES kernel are easier to describe at the level of an LP in terms of the event generation
and processing behavior. These local dynamics, their causal effects and the effect of state
rollbacks have a direct consequence on the global performance metrics of the system,
which in this case happens to be the total simulation wall-clock time of the experiment.
We use this framework to evaluate an LP assignment scheme where each LP makes its
own informed choice of a processor based on a novel incentive based cost criterion. The
agent based modeling framework also makes it convenient to implement our assignment
scheme since it is based on a local cost criterion at the level of LPs which are agents in our
model. This is akin to a self organizing network of LP agents that form clusters across the
machines.

Background
In the following subsections we detail some important background ideas and then develop
our agent-based model of the simulator in the sections thereafter.
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Need for parallel and distributed simulation

Networks in the form of social connections, information-carrying links, collaborative
associations and reputation systems are ubiquitous. Large and complex networks result
from the association of entities distinct in character, preferences, and inherent design.
Network modeling is essential for understanding the behavior of a combined system
of heterogeneous individual nodes that interact with each other. It is used, e.g, to test
routing and forwarding protocols, defenses against network attacks and to study commu-
nity structures in social networks. A typical communication network may contain tens
of thousands of nodes with a large number of links. The nodes in reality can be whole
routers, CPUs, or switches, individual router ports, firewalls, or end systems. (Sriram et
al. 2006) studied the large scale impact of BGP peering session attacks that can cause
cascading failures, permanent route oscillations or the gradually degrading behavior of
the routers, using an Autonomous System (AS) level topology which was down-sampled
from a typical AS-level topology consisting of 23,000 ASs and 96,000 BGP peering links
(Zhang 2013). There were a fidelity/complexity tradeoff when simulating such a network.
Some methods scaled down the network under study (Psounis et al. 2003) by omitting
some intricate details and cleverly choosing the parameters that were expected to max-
imally affect the simulation results so as to minimize the loss of fidelity as much as
possible. Recent papers such as (Gupta et al. 2008) introduced new methods to represent
groups of nodes by a single node while (Carl and Kesidis 2008) studied path-preserving
scaled-down topologies for large scale testing of routing protocols. Dimitropoulos et al.
(2009) suggested use of annotations to a simple unweighted, undirected graph to repre-
sent the original network. However, the reliability of scaled-down methodologies depends
largely on the assumption of low sensitivity of the outcome of the experiment to certain
microscopic factors which may be at best crudely modeled by scale-down. An important
macroscopic behavior of a network might be due (in an a priori unknown way) to a micro-
scopic behavior ignored in the simulated model, thus resulting in inaccurate simulation

results.

Parallel and distributed simulation: synchronization for causality
With the advancement of distributed processing systems, computing power was increased
and one could thus feasibly represent networks using more refined models. Simultane-
ously, the theory of distributed simulation developed along with practical implementation
of simulators such as PARSEC (Bagrodia et al. 1998). In the case of network simulation,
one can represent each node in a network by a logical process (LP). An LP is an object
that consists of a set of variables known as its “state” along with functions specific to the
type of node being modeled. It normally has an event list containing time-stamped events
to be executed. The local variables of an LP change when an event is processed. The value
of these variables at any given time defines the state of the LP at that time. An LP main-
tains a local (simulation) time variable that contains the time stamp of the event currently
being processed (if busy) or the most recent event processed (if idle). Events are stamped
with their time of execution (in simulation time). Each LP maintains a list of events to be
processed.

The methods to synchronize event execution between LPs running in parallel can
be classified into two major types: conservative (Chandy KM, Misra 1981) and opti-
mistic, e.g. Time Warp (Jefferson 1985). In the conservative methods, LPs strictly follow
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time-causality, i.e., all events are processed in the strict order of their time stamps. Each
LP tries to ensure, before processing an event A, that no other event, say B, with time
stamp less than that of A, will arrive at the LP subsequent to the processing of event
A. This time causality is followed by assuming that the graph topology of LPs is fixed
and known beforehand. LPs communicate via messages and each message-carrying link
ensures that they are sent in the order of their time stamps. Synchronizing null mes-
sages are exchanged between LPs to assure each other that no event with time stamp less
than a specified time will be sent. Optimistic synchronization allows for non-causal event
execution. An LP is allowed to process events “ahead of time” without any kind of syn-
chronization assurance. Each LP maintains its own local time and processes the event
with lowest time stamp in the event list. If an LP receives an event time-stamped which
is less than its local time, it rolls back in time to the time stamp of the event. Rolling back
means restoring a state prior to the time stamp of the event that triggered the rollback. In
order for it to rollback to a prior state, an LP should archive the past history of its states
and events. The combined system of LPs maintains a global variable called global-time
which is equal to the minimum local time across all the LPs. Hence the global time is
indicative of the overall progress of the simulation.

Using agent-based framework for performance modeling of a PDES kernel

The system modeled using an agent-based framework is characterized or described in
terms of the actions, behavior, beliefs, etc. of an individual autonomous agent in a group
of large number of such autonomous agents. To a large extent, the paradigm of agent-
based modeling can be said to use the bottom-up approach to characterize, represent,
predict or recreate a system or a phenomenon. However, agents have been used to drive
large scale software systems (Jennings 2001) where the architecture is specified using the
top-down approach. A common underlying theme motivating agent based modeling is
that most complex phenomena observed in the physical world are the consequence of
a much simpler set of rules that govern the dynamics of a large number of constituent
entities that it is comprised of. For example, the Axelrod’s model of social dissemina-
tion (Axelrod 1997) tries to explain the consensus towards cultures and the simultaneous
existence of different cultures in the society using a simple set of rules of interaction
between individuals or behavioral models that explain the flocking of birds (Reynolds
1987) or ant colony optimization (Dorigo et al. 2006). Agent-based modeling has received
a large amount of interest in the last decade even from the non-computing research com-
munities in areas such as social sciences and ecology (Niazi and Hussain 2011). It is a
comparatively new method of modeling and a large number of existing models can be
extended under this paradigm. Borschev and Filippov (2004) illustrates how the classic
predator-prey model can be enriched by an agent-based model that makes more realistic
assumptions without any significant addition to the model complexity. A large num-
ber of agent-based modeling toolkits such as NetLogo Tissue and Wilensky (2004) and
Repast (North et al. 2007) have been designed in the last decade. A useful comparative
evaluation of the existing toolkits has been provided in (2007). A high-level approach to
performance prediction of simulators has been done previously using probabilistic mod-
els for event thread generation. These statistical methods use analytical means instead
of simulations to predict the performance or speed up of synchronized iterative algo-
rithms on multiprocessors. For instance, Agrawal and Chakradhar (1992) uses maximum
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order statistics on random variables that affect the speed-up on parallel machines. Xu
and Chung (2004) proposes similar analytical methods for performance prediction of syn-
chronous simulation. Agent-based modeling has always been explored as an alternative
to equation-based modeling (Agent-based modeling vs. equation-based modeling). We
argue that in the case of optimistic synchronization, analytical models are not feasible due
to the complex and time-varying inter-dependencies of various parameters and hence we
resort to agent-based approach. In the following sections we will demonstrate the appli-
cation of agent-based modeling to performance modeling of an optimistic PDES kernel.
The model is used to compute the simulation wall-clock time of the kernel for an exper-
iment described by an event initialization list based on the dynamics and interactions at
the level of LPs. The agent-based model can be used to evaluate and compare different
cost criteria for LP assignment. In this work we focus on the additive cost framework
described in (Kurve et al. 2011a) (See Appendix B) and the alternative cost framework
(See Appendix C). This model can serve as a testbed to evaluate other cost criteria that can
be more complex than the simple additive relationship in modeling effects of computation
load imbalance and communication delays on the number of roll backs and consequently
the simulation execution time.

LP assignment and simulation time

The total simulation time of the experiment is sensitive to the assignment of LPs
to machines. In our model we focus on two aspects that are direct consequence
of the LP assignment: the resulting load imbalance across the machines and the
inter-processor communication®. We study the effect of optimization of these param-
eters on the total simulation time of the experiment. Our bi-criteria optimization
algorithm assumes an additive relationship, i.e., the total simulation time is repre-
sented mathematically as the addition of the load balancing cost and weighted inter-
process communication cost. In the case of an optimistic PDES, both the parameters
induce synchronization overheads in the form of rollback events that slows down
the advance of the global simulation time. The graph partitioning problem is a well-
known NP-complete problem that considers both these aspects. It is formally defined as
follows.

Let G = (V,E) be an undirected graph where V is the set of nodes and E is
the set of edges. Suppose the nodes and the edges are weighted. Let w; represent
the weight of the i™ node and let c;j represent the weight of the undirected edge
{i,j}. Then the K-way graph partitioning problem aims to find K subsets Vi, V>, .., Vi
such that ViN'V; = @V ijand UL, Vi = V, Liepwy = 2Ly i and with
the sum of the weights of edges whose incident vertices belong to different subsets

minimized.

Heuristics to solve the graph partitioning problem primarily make use of spectral
bisection methods (Pothen et al. 1990) or multilevel coarsening and refinement tech-
niques (Karapis and Kumar 1996). Spectral bisection methods calculate the second
smallest eigenvector, known as Fiedler vector, of the modified adjacency matrix of the
graph. These methods by far give the best results. However, finding the Fiedler vector is
computationally very expensive. For “geometric” graphs in which coordinates are asso-
ciated with the vertices, geometric methods are available which are randomized and are
quicker than spectral bisection methods. Multilevel partitioning algorithms are by far
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the most popular techniques. All of these discussed methods use centralized computa-
tional implementations involving access to global state information. A periodic refresh
of partition is needed in most cases because of the highly time varying nature of the
load generated across different LPs. The exchange of a chunk of nodes that are identi-
fied using a sparse cut metric was studied in Kurve et al. (2011b). In our work (Kurve et
al. 2011a), we present an alternative to this, where decisions are made at the LP or node
level. We model a game theoretic framework where the local cost for each LP incentivizes
the LP to choose a processor so as to minimize the total simulation time of the experi-
ment (represented by the “social welfare”). LPs can make distributed decisions eliminating
the need for a separate software or hardware resource to refresh the partition across the
machines. We are particularly interested in the class of games known as “potential games”
(Monderer and Shapley 1996) which guarantee a descent in a global cost function (indica-
tive of the system performance) with each decision made at the local (machine or node)
level. The global state required to make an accurate choice of LP is independent of the
total number of LPs and scales linearly with the number of neighbors of an LP. Please refer
to Appendix A and B for more details on the local cost criteria. Note that the local incen-
tive based criteria can be applied in other scenarios which involves the two competing
incentives for load balancing and clustering. For instance, Kurve et al. (2013) has stud-
ied the application of the local incentive criteria in super-peer based peer-to-peer (P2P)

networks.

Method

We designed the model using Netlogo (Tissue and Wilensky 2004). Our model is based on
simulating the LPs as agents with individual characteristics and then observing the system
level performance of the combined graph of nodes in terms of the simulation execution
time. Some of the key features of the model are listed below:

1. We do not consider any specific simulation scenario and both the LP agent class
and the class of events are generic to accommodate different particularities. The
LPs can represent a router or a switch in the case of network simulation or logic
gates in gate-level simulation of VLSI circuits. We describe the LP agent and event
classes in detail in the following subsections.

2. One of the inputs to the model is a list of events to which event lists of the LPs is
initialized before the simulation begins.

3. We abstract the simulation model across different scenarios using a graph of LPs
and an event generation model defined by the initial event list and the cause-effect
relationships between different events resulting in the event execution thread
across LPs during simulation.

4.  The parallel processing hardware is modeled as simulated artifact in terms of the
number of processors, relative speed of each processor and the mean intra and
inter processor communication delays.

5. We focus our attention on the total simulation time and the synchronization
overhead in terms of the number of rollbacks, which depends largely on the event
generation and processing model rather than an actual specification of the
simulation scenario.
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To illustrate the abstraction mechanism, consider an oversimplified scenario of N peers
sharing content using a peer-to-peer (P2P) system such as Gnutella. We would like to sim-
ulate the query generation and resolution mechanism in the system. Suppose the queries
are resolved using random walk over the overlay network graph. Using our method of
abstraction, we can represent this using a graph of LPs which is similar to the graph of
the overlay network. Each peer is represented by a unique LP in the graph. The events
for each LP correspond to queries generated by the LP itself and those forwarded by its
neighbors. In this case the event list for an LP is initialized based on the query genera-
tion rate of each peer. The query forwarding mechanism is represented using limited hop
event forwarding and time to process each event. Note that our abstraction is agnostic
about the actual changes that happen to a local state of an LP (representing a peer) in the
simulation, because this does not directly affect the total simulation time.

As shown in Figure 2, the inputs to the model are the graph of LPs, the initial event list
for each LP and the LP assignment algorithm and the output is the simulation execution

time.

The LP agent class
We now describe some important properties and methods that define the base class of
an LP agent. The LP agent base class is based on optimistic synchronization and uses
rollback to synchronize its event execution sequence. It supports two basic event types:
regular and rollback. One can easily derive more specific classes of LP agents that support
a richer class of events. An LP has a set of local variables which are specific to the sce-
nario under simulation. We do not factor in these scenario-specific local variables in the
total simulation time and hence in our base LP agent class, this is an empty set. It has an
event-list that holds the list of pending events that it needs to process. Each event has an
associated time stamp and the agent processes each event in the order of the time stamps
starting with the least. The variable local-time is equal to the time stamp of event being
processed currently if the agent is busy or the time stamp of last processed event if not
busy. When busy? is true, the agent performs no operation and simply decrements the
busy-tick timer until it becomes zero. It also contains a list of event history with the local
state of the LP archived before processing each event. In the case of a rollback event or a
non-causal event (event whose time stamp is less than the local simulation time), the state
of the LP is restored back to the time stamp of the non-causal event using the archived
states from the event-list-history. Tables 1 and 2 shows a list of some important properties
and member functions of the LP agent base class.

The process_causal_event() member function in the base class simply loads the busy-
tick counter and sets the busy? bit true and possibly generates events in the neighboring
LPs when busy-tick becomes zero. This is because we are simply interested in the time

GRAPH OF LPs
Agent based model SIMULATION EXECUTION
EVENTINITIALIZATION,; 5 TIME
e " CODES kernel g

LP ASSIGNMENT —
ALGORITHM

Figure 2 Software based model of a simulator.
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Table 1 Properties of an LP agent base class

local-time Contains time stamp of event being processed
state Local variables of the LP
event-list List containing pending events
event-list-history List containing the archived local state of LP before each processed event in the past
busy-tick The time remaining in wall-clock units to finish processing the current event
busy? A boolean variable indicating if the LP is busy processing an event or idle.
my-machine Current machine assigned to the LP
sim-time Time in wall-clock ticks needed for processing the current event

of execution of the events. As shown in algorithms 1 and 2 the difference between the
two member functions that process non-causal and rollback events is that in the case of
former, the LP state restoration is followed by the execution of the current event. When-
ever an LP rolls back in simulation time, it sends rollback events to all its neighboring LPs
that it had sent events in the past until the time of rollback. If both the regular event and
its corresponding rollback event are present in the event-list of an LP then they nullify
each other and both are deleted. Algorithm 3 shows the pseudo code for the simulate()
member function which is called for every tick of wall-clock time.

Event generation and processing model
The properties of the base event class are listed in Table 3.

In our model, each thread of events has a unique number denoted by event-thread-
number. We define thread as a sequence of events where one event is generated by a
previous event in the sequence. Each event in the event initialization list starts its own
thread of events across LPs. This helps us track the spread of events in a limited-scope
flooded packet-flows scenario. The time stamp of the events are stored in the event-time
variable. The time stamp is the simulation time when the event is supposed to occur. The
event-type variable tells the LP what its reaction to the event should be. Generally, there
is a specified procedure call for every type of event. A rollback event is one of the types by
default. In order to model delay in communication (in wall-clock time) between two LPs,
we use the variable event-tick, which is programmed to a value by the LP that generates
the event. At every tick of wall-clock time, event-tick is decremented by one unit until it
reaches zero. An event can be processed by an LP only if its corresponding event-tick vari-
able is zero. The variables event-list-history are the lists containing the information the

Table 2 Member functions of an LP agent base class

process_causal_event() Member function to process causal event
process_noncausal_event() Member function to process noncausal event

process_rollback_event() Member function to process rollback event
generate_event(agent-list) Generate new events for the thread of currently processing event in each of the

agents in agent-list
create_neighbor_list () Returns a agent-list which is a subset of neighbors
simulate() Member function called at every tick of wall-clock time
get_busy_time() Returns the time needed to process the current event. Depends on the type of

event, current processor load and processor speed

compute_node_weight() Computes node weight

compute_edge_weight() Computes the weight of edges with all its neighbors
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Algorithm 1: process_noncausal_event()

for each event in event-list-history
{
if event-time > time of current-event then
Restore event data event-list, event-time, event-type, event-tick, event-count.
Delete event data from event history lists
for each neighboring node
{
if current-event exists in event-list of neighbor
Delete the event
else if current-event exists in event-list-history of neighbor
Send rollback event to the neighbor
end if
}
end if
}
Put all data of current-event in event history lists

Call process_causal_event() for the current-event

events already processed by the LP along with the contemporary state of the LP before
the event was processed. In the case of a rollback, the LP restores its prior state from
these variables. The LP regularly flushes out the data of events from the history with time
stamps less than the global time. This is because the LP will never have to rollback to a
state prior to the global time. Note that in such a model of the simulator, the functions
that actually process events are generic. All that is needed is the time in wall-clock ticks
stored in the variable sim-time, required for processing the event and the neighboring
nodes where new events will be created as a result of processing this event. The sim-time
is a function of the speed of the machine on which the LP resides given by my-machine,
which in turn depends on the number of LPs that reside on that machine. We use a sim-
ple limited scope event forwarding using the generic framework of the simulator model.
In this model, events are generated at random times by randomly chosen LPs and these
events traverse the network for a limited number of hops, i.e., each node that receives
such a packet forwards it to a randomly chosen neighbor, provided the hop count given
by event-hop-count is not zero. In our experiments, we randomly initialize the event-list
of each LP that generate such a thread of events in such a way that the load generated

Table 3 Properties of an event base class

event-thread-number Thread number of the event
event-time Time stamp of the event
event-type Type of event: regular or rollback
event-tick Waiting time in wall-clock units the event is ready to be processed. This is used

to model communication delays between LPs

event-hop-count The maximum hop count of the event thread. Event threads survive for limited
hops equal to this value
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across the LPs becomes highly dynamic during the course of simulation. More specifi-
cally, we generate “hot spots” of traffic or a cluster of LPs that generate large amounts of
traffic over a short period of (simulation) time. The locations of these hot spots change
regularly.

LP assignment algorithm

Initial static LP-to-Machine assignment

We argue that due to initial uncertainty of computation and communication costs and
their dynamic nature, an optimum partition is not possible & priori. As a result, we employ
a simple initial partitioning method in which each machine chooses an initial “focal node”
from among the nodes of the graph and then expands hop-by-hop to include neighboring
nodes. The idea is to have connected sub-graphs within each partition so as to minimize
inter-process communication. To avoid contention between partitions, we require that
each machine wait a random amount of time after every hop and check for a semaphore
before claiming ownership of new nodes. Unit edge and node weights are assumed during
initial partitioning. The choice of the focal nodes is important to ensure a high probability
of a good initial partition. As will be described later, the iterative partition refinement
algorithm converges to a local minimum. Hence, a good initial partition might improve
the chances of converging to the global minimum or a good local minimum. Refer to
Appendix A for additional details.

Iterative partition refinement

The partition refinement algorithm utilizes the cost framework developed in the game
theoretic study. During the course of the simulation, each LP can decide to switch pro-
cessors either synchronously or asynchronously. In synchronous transfers which we refer
to as a refinement step, LPs take turns to evaluate their costs and the prospective new
machine based on the cost framework. In asynchronous transfers, LPs decide to switch
without a global synchronization scheme. However, asynchronous transfers might lead to

Algorithm 2: process_rollback_event()

for each event in event-list-history
{
if event-time > time of current-event then
Restore event data event-list, event-time, event-type, event-tick, event-count.
Delete event data from event history lists
for each neighboring node
{
if current-event exists in event-list of neighbor
Delete the event
else if current-event exists in event-list-history of neighbor
Send rollback event to the neighbor
end if

}
end if
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Algorithm 3: Simulate()
Remove events from event-list-history with event-time < global-time

Remove rollback events from event-list-history if event-time > local-time
if busy? = idle then
current-event = event in event-list with lowest time stamp and event-tick = 0
if current-event # rollback and time stamp of current-event > local-time then
busy? = true
busy-time = get_busy_time()
Put all data of current-event in event history lists
else if current-event # rollback and time stamp of current-event < local-time
process_noncausal_event()
else if current-event = rollback then
process_rollback_event()
end if
else
busy-time = busy-time - 1
if busy-time = 0
busy? = false
if event-count of current-event # 0 then
generate_event(create_neighbor_list ())

end if
end if
end if
for each event in event-list

{
if event-tick # 0 then
event-tick = event-tick - 1
end if

}

inconsistent decisions due to the likelihood of simultaneous transfers of more than one
LPs. Note that the inconsistencies can be eliminated if the transfers occur between two
different pairs of machines. We thus assume the use of a processor mutex in the case of
asynchronous transfers that allows only single transfer for every processor. The trans-
fer rates in our model are controlled by the global parameter partition-refine-freq which
determines the frequency when the the node weights corresponding to the computation
cost of each LP and the edge weights corresponding to the communication cost between
LPs are recomputed and the LPs are triggered to evaluate processor transfers.

In the case of synchronous transfers, LPs are triggered to compute their “destination
processor” based on the current state of the system. Then the “most dissatisfied” LP in
the system is allowed to make transfer to its destination machine. The “most dissatisfied”
node is the one which would benefit the most in terms of its cost by changing its machine.
The cost function used here can be either of the two defined in (3) or (6). In our exper-
iments we make comparative evaluation between the two cost frameworks. Hence C;(k)
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Algorithm 4: Simulator engine pseudocode for limited scope flooded packet flow

Initialize global variables.
ask nodes
{
Initialize local variables
Initialize the event-list
initial-partition()
}
wall-clock-time = 0
while event-list of all nodes not empty do
wall-clock-time = wall-clock-time + 1
ask nodes

{

simulate()
}
global-time = minimum local-time and time stamps of events in event-list across all
nodes
if remainder sim-time/partition-refine-freq= 0
ask nodes
{
compute_node_weight()
compute_edge_weight()
}
refine_partition
end if
end while

represents the cost of the i node if it were to be assigned to the k™M machine and C;(r;)
represents the current cost of the /" node. We define the dissatisfaction of the i" node as

(i) = Ci(r;) — mkin C;(k) (1)

Hence the most dissatisfied node is the one with maximum value of J. The most dissat-
isfied nodes in the system having I = 0 indicates that the algorithm has converged to
a local minimum. We can prove that this algorithm converges to a local optimum of the
social welfare function (Kurve et al. 2011a).

Simulation engine

Finally, the pseudocode for the entire simulation engine of the agent-based model is
shown in algorithm 4. It begins with the initialization of the global and local variables
including the event-list of all the LP agents. At each tick of wall-clock-time, simulate()
member function for all the LP-agents is invoked exactly once. The simulation is con-
tinued and the sim-time is incremented until all the LP agents have an empty event-list.
partition-refine-freq defines how frequently the LP assignment algorithm is invoked. Par-
ticularly, it is the interval between two invocations of the LP assignment algorithm.
Before every invocation of the LP assignment algorithm, the node and edge weights are
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recomputed. compute_node_weight() and compute_edge_weight() are used to estimate the
computation cost of an LP and the communication cost over the edge with its neighboring
LPs. There can be many different ways of defining these functions. In our experiments,
we use the length of the event-list as being indicative of the computation cost that the
LP will generate in the near future. Hence, node weight is calculated as the length of a
weighted event-list where each event in event-list is weighed by event-weight, i.e., with a
weight which is the number of machine cycles needed to process the event. Communi-
cation cost should quantify the amount of “event traffic” between two LPs. We estimate
edge weight from the history of event traffic across the edge. Specifically, we calculate
the number of events generated across the edge during a fixed interval of time given by
estimation-window. We then multiply it by 100 to make its magnitude comparable to the
computation cost and then assign it to the weight of the link.

Results and discussion
We evaluated the iterative LP assignment algorithms on the agent based model described
above to compare the speed up in the simulation of an experiment. We also observed the
performance under different settings of system such as synchronous and asynchronous
LP transfers and for two different models of random graph generation. As described
previously, one of the inputs to the model was a graph of LPs. The first model of
random graphs that we used to generate an instance of the LP graph was the preferential-
attachment model which is scale-free and, according to some studies, can be used to
model the Internet topology at the level of Autonomous System (AS) (Bu and Towsley
2002). The second model incorporates geometric information along with the degree of a
node, i.e., each node has associated coordinates in two dimensions: while forming links,
each node randomly chooses another from among a set of 15 closest nodes (in terms of
distance with respect to the coordinate axes). Our NetLogo based model of LP graph con-
sisted of 300 LP nodes generated from one of the models above each of which was an
instance of the LP agent class described in Section 3.1. The event initialization list was
created keeping in mind the highly dynamic nature of the load generated during a net-
work simulation, i.e., we created two genres of event threads: one that was uniformly
distributed across all nodes with a relatively large value of event-hop-count and second
one that had shorter hop count and was localized to a closely connected set of nodes. The
former created a wider scope of event interdependencies between nodes that were far
apart in geodesic distance while the later generated hot spots of traffic that were localized
in space and time.

get_busy_time() as listed in Table 2 gave the total time in wall-clock units needed to
process the current-event. We used the following relationship to compute the busy-time.

weight of current — event x Number of LPs sharing same processor x 100

busy—time =
processor — speed

Note that the processor-speed is the normalized speed of the processor that the LP
resides on. We set the inter processor communication delay as 10000 wall-clock ticks uni-
formly across all the links between processors, i.e., any event that is created by an LP in
another LP that resides in a different processor other than its own processor would expe-
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rience a delay of 10000 wall-clock ticks. We set the value of estimation-window described
in the previous section to 10000 clock ticks.

In our first set of experiments, we tuned the value of i (relative weight given to inter-
machine potential rollback-delay cost), i.e., we tried to optimize the total simulation
execution time of the experiment over different values of u. The search space for u is
unbounded and hence we exponentially increased 1 by powers of 10. For each setting, we
kept all other parameters of the model constant, i.e., the LP graph, initial partition before
the simulation and sources of randomness such as event weights. We repeated this for ten
different realizations of the LP graph and event thread initialization, and computed the
average simulation time. As seen in Figure 3, the optimum values of i for the two cost
frameworks are different: about 100 for the first method and about 1000 for the second
method. We can also observe that increasing the value of © beyond a certain limit does
not change the total simulation execution time.

The above experiment was performed for the geometric model of LP graph. In our
next set of experiments, we further fine tune the value of 1 to optimize the simulation
execution time. In this case we varied u from 0.1 to 1000 with an exponent of 2 and
observed the optimal value of u for the first method to be between 6.4 to 25.6, whereas for
the second method it was between 400 and 800. However, as seen in Figure 4, the curves
are not monotonous suggesting the presence of a large number of locally optimum points.

We also plotted similar curves using preferential attachment model to realize the ran-
dom LP graph. Considering Figure 5, we observe quite a few differences from the graph
in Figure 3. Most notable among them is the fact that the optimum values of u for the
two methods are different. This suggests that the additive rule that we used in both the
cost frameworks, and the technique to estimate the node and edge weights, renders the
efficacy of the partitioning algorithm sensitive to the properties of the LP graph. This is
an important observation in the context of assigning the value of . Secondly we observe
that the simulation execution-time rapidly increases as we increase p beyond its opti-
mum value unlike in the case of geometric model where it tends to stagnate after some
value of p. Similar to Figure 4, we plotted curves for the preferential attachment model
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Figure 3 Finding optimum balance between computation and communication costs: For geometric
model of random graph.

Average wall-clock time (# of ticks)

Page 15 of 24



Kurve et al. Complex Adaptive Systems Modeling 2013, 1:12 Page 16 of 24
http://www.casmodeling.com/content/1/1/12

---Second Method

. 4350000

2 — First Method

Q

S 3850000

U

5]

3350000

N

)

E 2850000

b

3

O 2350000

Q

=| ’

© 1850000

2 74l

[} P

S 1350000 vt

o i I B iaeil _'1

> - P L, P

& 850000

0001 001 01 1 10 100 1000 10000 100000 1000000 0000000

Figure 4 Resolving u further: For geometric model of random graph.

in Figure 6. We can see that at this scale of resolution of y, it is difficult to find the exact
value of optimal & due to the presence of large number of local minimum points in the
curve. In all these cases it was observed that the first method generally performed better
than the second.

In Figures 7 and 8, we plot the effect of the partition refinement interval on the sim-
ulation execution time. We observed that there is no significant gain in reducing the
refinement interval below 5000 wall-clock ticks for both the LP graph generation models.
However, this value depends on several different factors such as the dynamics associated
with the events generated and the processing time of an event by the LP. These graphs fur-
ther reiterate the need for partition refreshing in the case of a dynamic network simulation
and that a static partitioning scheme is highly sub-optimal in this case.

From Figures 9 and 10, we can observe the effect of partition refinement interval on
the distribution of rollback counts. We plotted the number of rollback events across
five processors with the progress of simulation execution. We can observe that partition
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Figure 5 Finding optimum balance between computation and communication costs: For preferential
attachment model of random graph.
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Figure 6 Resolving u further: For preferential attachment model of random graph.

refinement reduces the variance of the number of rollback events across the processors as
seen from Figure 10 when the interval is 20000 clock ticks as compared to Figure 9 when
the interval is 100000 clock ticks.

In order to study the scalability of our results to variations in the LP graph size, we also
plotted curves similar to Figure 5 in Figures 11 and 12 wherein the number of LP nodes
in the graph were 100 and 500, respectively . We observed similar trends as in Figure 5 in
both cases.

Conclusion

We presented a method of agent-Obased modeling of an optimistic parallel discrete-
event simulator. The agent-based modeling paradigm is novel to the study of a PDES
performance and greatly expedites the evaluation of performance optimization tech-
niques with different system settings. The model was used to evaluate and compare two
LP-to-Machine assignment algorithms. In this process, we got several insights into the
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Figure 7 Effect of partition refinement frequency on simulation time: For geometric model of random
graph.
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Figure 8 Effect of partition refinement frequency on simulation time: For preferential attachment
model of random graph.

complex relationship between the LP agents and the simulation time. We observed that
the comparative weight given to computation and communication delay cost in the LP
assignment scheme depends on the properties of the LP graph. We studied the sensitivity
of the simulator performance to other parameters such as partition refinement frequency,
and the graphical properties of the network under simulation. The need for dynamic
load balancing was further emphasized from the results of our experiments by studying
the distribution of the rollback count curves with the advance of simulation execution
time. One can use the proposed agent based modeling framework to study different LP
to machine assignment techniques that characterize system performance using differ-
ent objective functions. This framework can also be extended to study different rollback
strategies and methods to estimate LP load and communication patterns based on the

knowledge of current and past events.

1400

1200

U 1000 //
m
= y 4
S 800 " i
[V
o
600
)
E
S 400
=

200

0
0 50000 100000 150000 200000 250000 300000

Simulation Execution Time (Wall clock units)

Figure 9 Rollback event distribution across processors with refresh interval of 100000.
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Appendix

Appendix A: initial partitioning algorithm

In this appendix, we describe the initial partitioning algorithm. As mentioned previ-
ously, the choice of focal nodes is important to get a good initial partition. The focal
nodes are chosen so that they are at maximum geodesic distance from each other. Ide-
ally we should find focal nodes such that each one of them is at least 2N v geodesic

distance away from the others, where Nv| is the mean number of hops that cover |1<L‘
K
nodes. In this case, we should know the properties of the underlying graph for cal-
culating N|v|. We find this value for the example of an Erdos-Renyi random graph
K
model.

Theorem 1. For an Erdos-Renyi random graph G = (V, E) with p as the probability of
existence of an edge between any two nodes, if Ny and Ni_1 are the expected number of
nodes collected into a cluster at the k™ hop and (k—1)™ hop respectively, then the expected
number of nodes in the cluster by the (k + 1)™ hop is:

Nip1 = N+ (IV] = N (1 — (1 — p)NeNe-tyfork > 0,
Ni41 = Lfork = 0.

Proof. Suppose after the k™ hop, the graph is divided into two sets of nodes: the set
A of nodes obtained by the k" hop and set A’ of nodes not yet obtained. Let |A| = Nj
and |A'| = |V| — N. Denote the set of newly acquired nodes in the K hop by B, where
|B| = Ni — Ng—1.

For any nodea € A"

P(a is not connected to any node in B)= (1 — p)Ne=Ni-1 and

P(a is connected to at least one node in B) = 1 — (1 — p)Nk—Nk-1,

The number of nodes acquired during the (k + 1)th hop is binomial, with (|V| — Ng)
trials and the probability of success being 1 — (1 — p)N«~Ni-1, Hence the expected number

of nodes acquired during (k + D™ hopis (|V] — Np) (1 — (1 — p)Ne—Ni—1) O

More practically, we would like to have the focal nodes as far as possible (in geodesic
distance) from each other. This will ensure that the partitions formed after hop-by-
hop expansion are somewhat equal in number of nodes per partition. Suppose F =
{f1,f2, - fx} is the set of focal nodes. Hence we would like to have

F = arg max min dg(h, 1), (2)

HCV s.t. |H|=K MleH:I#h

where dg is the geodesic distance between the two nodes. We can attempt to find such
nodes using heuristics. For example, start by assigning an arbitrary set of distinct nodes to
each machine. In round-robin fashion, each machine takes a turn at finding a node from
the set of nodes that are neighbors of its current focal node that increases the minimum
of its geodesic distance with focal nodes of other machines. This becomes the new focal
node for that machine. This process is iterated until there is no further improvement
possible. We iterate this process over multiple initializations of the focal node set and
the best set of focal nodes is identified. In the next phase, starting at the focal nodes, the
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partitions try to collect-in nodes in their neighborhood, thus expanding their clusters. We
can use random waiting time between two successive hops and semaphores to deal with
contention issues, i.e., when two or more machines try to claim ownership of the same
node.

Appendix B: a local cost function

We will now describe our iterative local incentive for the partitioning algorithm (Kurve
et al. 2011a) in detail. Consider an undirected weighted, graph G = (V, E) representing
the network model to be simulated. As described previously, the graph can be interpreted
as a model of a network of LPs as vertices or nodes, with weights assigned to the nodes
and edges of G. Thus, we want to first estimate the computational load generated by each
node and the amount of communication between the logical processes associated with
each node to assign node weights and edge weights, respectively, to the graph. Second, we
wish to find a distributed technique to equitably load-balance among the machines while
also taking into consideration the amount of inter-machine communication, the latter
reflecting the risk of rollback. We will address the first problem in our following sections
and focus on the second problem now.

- Let K be the number of machines (K < |V|). The graph G is partitioned among K
machines or less, since in some cases where the cost of inter-processor
communication is high, partitioning the workload among less than K machines
might be optimal, i.e,, some machines may be not be assigned any LPs.

- Let b; represent the computational load of it LP.

- Let ¢;; denote the cost of communicating over the edge {i, j}, representing the average
amount of traffic between node i and /" LP .

- Letr; € {1,2,..K} be the partition chosen by the ith Lp.

- Let the normalized capacity or speed of the kK machine be:

Sk
Wi = ’

K
215

where s; is the speed of the j machine.

Then according to (Kurve et al. 2011a) the cost function at the i LP is given by.

b; "
Ci(rir—) = " Z bj + 5 Z Cijy 3)
b jirj=ri Jiri#r
J#L

where r_; denotes the vector of assignment of all the nodes in r except that of the i" node
and u denotes the relative weight given to the inter-machine potential rollback-delay cost.
This can vary across simulation platforms. For example, if the participating machines are
remotely connected, then this cost will be higher than if locally connected. In the function
above, the computational cost of a node intuitively depends on two factors: the existing
load on the machine assigned to the /" LP, i.e.,
2 b
Jrj=rij#i

and the computational load that the it LP will bring to the machine, i.e., b;. If the com-
putational load generated by the node is zero (b; = 0), then the computational part of the
cost should be zero, thus motivate multiplication by b;. This cost incentivizes the node to
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choose a machine that has relatively less existing load, thus encouraging load balancing
at the system level. For example, if © = 0 then a node i which is currently assigned to
machine r; would choose to relocate to machine 7} only if

Wir,, Z 'bj>wiﬁ'2 bj. (4)
=i i jrj=rf
In this way the load balancing mechanism is implicitly manifested in the local cost func-
tion. The second term in the sum represents the weight of edges that connect the i node
with nodes in other partitions. This term incentivizes the node to choose a partition with
which it is well connected.
In (Kurve et al. 2011a), we also showed that this cost function allows for the existence
of a Nash equilibrium which means that there is a fixed point in the strategy space of all
the LPs. A strategy profile r = (7,73, ..., %) is a Nash equilibrium if and only if

Ci(rf,x*)) < Ci(rpx™)) Vri€{1,2,..,K}Vie V. (5)

Thus, at Nash equilibrium every node, say node i, will not be able to improve its cost by
unilaterally changing its current processor r7, i.e., provided that the decisions of all other
nodes are given by the assignment vector r* ,.

Appendix C: an alternate cost framework
Let us consider an alternate local cost function for the graph partitioning problem.

~ biz 2b; 2b; w

Cilrir_y) = W + w2 by o X}: b+ 3 ]%: cij. 6)
Jj#i

Note that this cost function also has the property of machine-to-machine level overhead

similar to the cost function described previously.

Next, we state a centralized graph partitioning problem that reasonably models the total
simulation execution time by minimizing the load variance across machines as well as the
potential inter-machine rollback-delay cost. Let X be a K x |V/| assignment matrix such
that x; = 1 if node i belongs to machine k; otherwise x; = 0. We require ) , xf; = 1
Vi=1,2,.,|V]| ie,

x; =1 whenr; = k. (7)

Let wy be the normalized capacity of the k™ machine so that >« Wk = 1. Then, the
centralized LP assignment problem is:
K (>, b
LA v *iiY%j M
min CoX) =Y | === =2 b | +3 D el —xp) (8)
= k=0 j i

subject to Zxkj =1Vjandx € {0,1} V k,j.
k
The above standard formulation of the graph partitioning problem (Van Den Bout and
Thomas Miller 1990) is a quadratic integer programming problem the convexity of which
depends on the network graph. In most cases it will not be convex. We can think of
decomposing this problem into a set of K subproblems each of which is solved by a sin-
gle partition. However, with the constraints ) ; xi; = 1, Vj € V, such a decomposition



Kurve et al. Complex Adaptive Systems Modeling 2013, 1:12 Page 23 of 24
http://www.casmodeling.com/content/1/1/12

is difficult to realize. So, instead we study the effect of sequential node-by-node trans-
fer on (8). We can prove that for the local node cost function (6), Nash equilibria exist at
the local optima (minima) of the centralized cost function (8). Thus, we can define a new
cost function for each node as given by (6). Note that at each of the locally optimal points
of (8), none of the nodes can improve their costs (6) given that the node assignments of
all other nodes remain constant. Hence, the assignment vectors at these points are the
Nash equilibria for this game. And since the node decisions always perform descent on
(8), there is convergence guaranteed to one of the equilibrium points.

Endnote
2High volume inter-LP communication is not just overhead or delays, but also indicates
the threat of rollback.
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