16 research outputs found

    Unscented transform framework for quantization modeling in data conversion systems

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2017.Esta tese apresenta uma abordagem para o projeto de quantizadores para sinais específicos baseada na Transformada da Incerteza — Unscented Transform (UT) — visando o projeto de conversores de dados. É apresentada uma definição formal da UT em termos da quadratura interpolatória, é demonstrada que a quadratura Gaussiana representa a escolha ótima para maximizar a ordem da transformada e é apresentado um algoritmo para o cálculo eficiente da UT. A UT é apresentada como uma alternativa a métodos de Monte Carlo e é introduzida a Transformada da Incerteza Extendida no contexto do problema de estimação de funções de probabilidade. É apresentado um método para abstrair sinais definidos no tempo em funções de probabilidade e como utilizar a UT para o projeto de quantizadores para sinais específicos.This thesis presents a framework for the design of signal specific quantizers based on the Unscented Transform — UT — for the design of data converters. We formally define the UT in terms of the interpolatory quadrature and we choose the Gaussian quadrature as the optimal scheme for maximizing the order of the transformation. We present an efficient method for computing the UT. The UT is presented as an alternative to Monte Carlo methods in which we introduce an Extended UT for the probability function estimation problem. We show how to abstract a time signal into a probability function and use the UT to design signal specific quantizers

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Control of chaos in nonlinear circuits and systems

    Get PDF
    Nonlinear circuits and systems, such as electronic circuits (Chapter 5), power converters (Chapter 6), human brains (Chapter 7), phase lock loops (Chapter 8), sigma delta modulators (Chapter 9), etc, are found almost everywhere. Understanding nonlinear behaviours as well as control of these circuits and systems are important for real practical engineering applications. Control theories for linear circuits and systems are well developed and almost complete. However, different nonlinear circuits and systems could exhibit very different behaviours. Hence, it is difficult to unify a general control theory for general nonlinear circuits and systems. Up to now, control theories for nonlinear circuits and systems are still very limited. The objective of this book is to review the state of the art chaos control methods for some common nonlinear circuits and systems, such as those listed in the above, and stimulate further research and development in chaos control for nonlinear circuits and systems. This book consists of three parts. The first part of the book consists of reviews on general chaos control methods. In particular, a time-delayed approach written by H. Huang and G. Feng is reviewed in Chapter 1. A master slave synchronization problem for chaotic Lur’e systems is considered. A delay independent and delay dependent synchronization criteria are derived based on the H performance. The design of the time delayed feedback controller can be accomplished by means of the feasibility of linear matrix inequalities. In Chapter 2, a fuzzy model based approach written by H.K. Lam and F.H.F. Leung is reviewed. The synchronization of chaotic systems subject to parameter uncertainties is considered. A chaotic system is first represented by the fuzzy model. A switching controller is then employed to synchronize the systems. The stability conditions in terms of linear matrix inequalities are derived based on the Lyapunov stability theory. The tracking performance and parameter design of the controller are formulated as a generalized eigenvalue minimization problem which is solved numerically via some convex programming techniques. In Chapter 3, a sliding mode control approach written by Y. Feng and X. Yu is reviewed. Three kinds of sliding mode control methods, traditional sliding mode control, terminal sliding mode control and non-singular terminal sliding mode control, are employed for the control of a chaotic system to realize two different control objectives, namely to force the system states to converge to zero or to track desired trajectories. Observer based chaos synchronizations for chaotic systems with single nonlinearity and multi-nonlinearities are also presented. In Chapter 4, an optimal control approach written by C.Z. Wu, C.M. Liu, K.L. Teo and Q.X. Shao is reviewed. Systems with nonparametric regression with jump points are considered. The rough locations of all the possible jump points are identified using existing kernel methods. A smooth spline function is used to approximate each segment of the regression function. A time scaling transformation is derived so as to map the undecided jump points to fixed points. The approximation problem is formulated as an optimization problem and solved via existing optimization tools. The second part of the book consists of reviews on general chaos controls for continuous-time systems. In particular, chaos controls for Chua’s circuits written by L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes are discussed in Chapter 5. An inductorless Chua’s circuit realization is presented, as well as some practical issues, such as data analysis, mathematical modelling and dynamical characterization, are discussed. The tradeoff among the control objective, the control energy and the model complexity is derived. In Chapter 6, chaos controls for pulse width modulation current mode single phase H-bridge inverters written by B. Robert, M. Feki and H.H.C. Iu are discussed. A time delayed feedback controller is used in conjunction with the proportional controller in its simple form as well as in its extended form to stabilize the desired periodic orbit for larger values of the proportional controller gain. This method is very robust and easy to implement. In Chapter 7, chaos controls for epileptiform bursting in the brain written by M.W. Slutzky, P. Cvitanovic and D.J. Mogul are discussed. Chaos analysis and chaos control algorithms for manipulating the seizure like behaviour in a brain slice model are discussed. The techniques provide a nonlinear control pathway for terminating or potentially preventing epileptic seizures in the whole brain. The third part of the book consists of reviews on general chaos controls for discrete-time systems. In particular, chaos controls for phase lock loops written by A.M. Harb and B.A. Harb are discussed in Chapter 8. A nonlinear controller based on the theory of backstepping is designed so that the phase lock loops will not be out of lock. Also, the phase lock loops will not exhibit Hopf bifurcation and chaotic behaviours. In Chapter 9, chaos controls for sigma delta modulators written by B.W.K. Ling, C.Y.F. Ho and J.D. Reiss are discussed. A fuzzy impulsive control approach is employed for the control of the sigma delta modulators. The local stability criterion and the condition for the occurrence of limit cycle behaviours are derived. Based on the derived conditions, a fuzzy impulsive control law is formulated so that the occurrence of the limit cycle behaviours, the effect of the audio clicks and the distance between the state vectors and an invariant set are minimized supposing that the invariant set is nonempty. The state vectors can be bounded within any arbitrary nonempty region no matter what the input step size, the initial condition and the filter parameters are. The editors are much indebted to the editor of the World Scientific Series on Nonlinear Science, Prof. Leon Chua, and to Senior Editor Miss Lakshmi Narayan for their help and congenial processing of the edition

    Outils d'analyse, de modélisation et de commande pour les radiocommunications Application aux amplificateurs de puissance

    Get PDF
    L'évolution croissante des télécommunications résulte de la combinaison de plusieurs facteurs comme les progrès de l'électronique, de la micro-électronique, de la radiofréquence mais aussi des avancées des techniques de communications numériques. Dans ce contexte, les études s'orientent de plus en plus vers l'amélioration de la couverture et de la qualité de service offertes aux usagers. C'est dans ce contexte que s'inscrivent les travaux exposés dans le cadre de cette Habilitation à Diriger des Recherches. Les problématiques soulevées concernent : - la connaissance et la maîtrise du comportement des composants en présence de signaux large bande, multiporteuses, - l'amélioration de la qualité des transmissions en tenant compte des aspects énergétiques, - la reconfigurabilité et l'adaptation des nouveaux systèmes à la multiplication des normes et des standards de communications. Pour chaque problématique, nous avons proposé des solutions théoriques et pratiques avec comme fil conducteur l'utilisation et la mise en \oe uvre d'outils issus de l'Automatique comme l'estimation paramétrique, la commande et la linéarisation, l'optimisation, etc. Concernant la modélisation des fonctions électroniques RF, je présente mes travaux concernant la prise en compte des effets statiques et dynamiques en temps continu et discret. Pour les circuits hautes fréquences qui se caractérisent par des constantes de temps avec des ordres de grandeurs divers, nous avons montré qu'il est important d'envisager la modélisation selon l'application visée et en déployant des outils d'estimation paramétrique adaptés. Des problématiques telles que la normalisation de l'espace paramétrique, l'initialisation, la convergence sont étudiées pour répondre aux caractéristiques des systèmes de radiocommunications.Dans le chapitre consacré à l'amélioration de la linéarité et du rendement, nous avons présenté des techniques de correction des imperfections des amplificateurs de puissances ainsi que des méthodes de traitement du signal qui permettent de réduire leurs impacts sur la transmission. Concernant la linéarisation, nous avons commencé par une comparaison d'une technique Feedback et d'un linéariseur à base d'une prédistorsion polynomiale sans mémoire. Cette étude a mis en évidence l'intérêt d'adjoindre de la mémoire sous forme de retards dans le linéariseur. Les fortes fluctuations des signaux multiporteuses, mesurées par le PAPR pour Peak-to-Average Power Ratio, contribuent aussi à dégrader le bilan énergétique de l'émetteur. La majorité des travaux sur la réduction du PAPR se limite à l'étude des performances en termes de gain de réduction, sans aborder la qualité de transmission en présence d'imperfections réalistes des éléments non-linéaires. C'est dans ce contexte que nous avons analysé cette problématique pour un système MIMO-OFDM en boucle fermée avec prise en compte du canal, des non-linéarités, des effets mémoires et des critères visuels permettant d'évaluer la qualité des transmissions de données multimédias.Le développement d'architectures entièrement numérique, reconfigurables est traité en dernière partie de ce cette HDR. Pour cette large thématique, nous proposons des améliorations pour des coefficients des modulateurs afin d'obtenir une fonction de transfert du bruit respectant un gabarit fréquentiel donné. La correction des erreurs de calcul dus aux coefficients du type 1/2L2^L. Cette correction est basée sur la ré-injection de l'erreur au sein de la boucle directe à travers un filtre numérique

    Active Perception for Autonomous Systems : In a Deep Space Navigation Scenario

    Get PDF
    Autonomous systems typically pursue certain goals for an extended amount of time in a self-sustainable fashion. To this end, they are equipped with a set of sensors and actuators to perceive certain aspects of the world and thereupon manipulate it in accordance with some given goals. This kind of interaction can be thought of as a closed loop in which a perceive-reason-act process takes place. The bi-directional interface between an autonomous system and the outer world is then given by a sequence of imperfect observations of the world and corresponding controls which are as well imperfectly actuated. To be able to reason in such a setting, it is customary for an autonomous system to maintain a probabilistic state estimate. The quality of the estimate -- or its uncertainty -- is, in turn, dependent on the information acquired within the perceive-reason-act loop described above. Hence, this thesis strives to investigate the question of how to actively steer such a process in order to maximize the quality of the state estimate. The question will be approached by introducing different probabilistic state estimation schemes jointly working on a manifold-based encapsuled state representation. On top of the resultant state estimate different active perception approaches are introduced, which determine optimal actions with respect to uncertainty minimization. The informational value of the particular actions is given by the expected impact of measurements on the uncertainty. The latter can be obtained by different direct and indirect measures, which will be introduced and discussed. The active perception schemes for autonomous systems will be investigated with a focus on two specific deep space navigation scenarios deduced from a potential mining mission to the main asteroid belt. In the first scenario, active perception strategies are proposed, which foster the correctional value of the sensor information acquired within a heliocentric navigation approach. Here, the expected impact of measurements is directly estimated, thus omitting counterfactual updates of the state based on hypothetical actions. Numerical evaluations of this scenario show that active perception is beneficial, i.e., the quality of the state estimate is increased. In addition, it is shown that the more uncertain a state estimate is, the more the value of active perception increases. In the second scenario, active autonomous deep space navigation in the vicinity of asteroids is investigated. A trajectory and a map are jointly estimated by a Graph SLAM algorithm based on measurements of a 3D Flash-LiDAR. The active perception strategy seeks to trade-off the exploration of the asteroid against the localization performance. To this end, trajectories are generated as well as evaluated in a novel twofold approach specifically tailored to the scenario. Finally, the position uncertainty can be extracted from the graph structure and subsequently be used to dynamically control the trade-off between localization and exploration. In a numerical evaluation, it is shown that the localization performance of the Graph SLAM approach to navigation in the vicinity of asteroids is generally high. Furthermore, the active perception strategy is able to trade-off between localization performance and the degree of exploration of the asteroid. Finally, when the latter process is dynamically controlled, based on the current localization uncertainty, a joint improvement of localization as well as exploration performance can be achieved. In addition, this thesis comprises an excursion into active sensorimotor object recognition. A sensorimotor feature is derived from biological principles of the human perceptual system. This feature is then employed in different probabilistic classification schemes. Furthermore, it enables the implementation of an active perception strategy, which can be thought of as a feature selection process in a classification scheme. It is shown that those strategies might be driven by top-down factors, i.e., based on previously learned information, or by bottom-up factors, i.e., based on saliency detected in the currently considered data. Evaluations are conducted based on real data acquired by a camera mounted on a robotic arm as well as on datasets. It is shown that the integrated representation of perception and action fosters classification performance and that the application of an active perception strategy accelerates the classification process

    Applications of Power Electronics:Volume 2

    Get PDF

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    2018 Faculty Excellence Showcase, AFIT Graduate School of Engineering & Management

    Get PDF
    Excerpt: As an academic institution, we strive to meet and exceed the expectations for graduate programs and laud our values and contributions to the academic community. At the same time, we must recognize, appreciate, and promote the unique non-academic values and accomplishments that our faculty team brings to the national defense, which is a priority of the Federal Government. In this respect, through our diverse and multi-faceted contributions, our faculty, as a whole, excel, not only along the metrics of civilian academic expectations, but also along the metrics of military requirements, and national priorities
    corecore