130 research outputs found

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    Three-dimensional modelling and inversion of controlled source electromagnetic data

    No full text
    The marine Controlled Source Electromagnetic (CSEM) method is an important and almost self-contained discipline in the toolkit of methods used by geophysicists for probing the earth. It has increasingly attracted attention from industry during the past decade due to its potential in detecting valuable natural resources such as oil and gas. A method for three-dimensional CSEM modelling in the frequency domain is presented. The electric field is decomposed in primary and secondary components, as this leads to a more stable solution near the source position. The primary field is computed using a resistivity model for which a closed form of solution exists, for example a homogeneous or layered resistivity model. The secondary electric field is computed by discretizing a second order partial differential equation for the electric field, also referred in the literature as the vector Helmholtz equation, using the edge finite element method. A range of methods for the solution of the linear system derived from the edge finite element discretization are investigated. The magnetic field is computed subsequently, from the solution for the electric field, using a local finite difference approximation of Faraday’s law and an interpolation method. Tests, that compare the solution obtained using the presented method with the solution computed using alternative codes for 1D and 3D synthetic models, show that the implemented approach is suitable for CSEM forward modelling and is an alternative to existing codes. An algorithm for 3D inversion of CSEM data in the frequency domain was developed and implemented. The inverse problem is solved using the L-BFGS method and is regularized with a smoothing constraint. The inversion algorithm uses the presented forward modelling scheme for the computation of the field responses and the adjoint field for the computation of the gradient of the misfit function. The presented algorithm was tested for a synthetic example, showing that it is capable of reconstructing a resistivity model which fits the synthetic data and is close to the original resistivity model in the least-squares sense. Inversion of CSEM data is known to lead to images with low spatial resolution. It is well known that integration with complementary data sets mitigates this problem. It is presented an algorithm for the integration of an acoustic velocity model, which is known a priori, in the inversion scheme. The algorithm was tested in a synthetic example and the results demonstrate that the presented methodology is promising for the improvement of resistivity models obtained from CSEM data

    Interior-point methods for PDE-constrained optimization

    Get PDF
    In applied sciences PDEs model an extensive variety of phenomena. Typically the final goal of simulations is a system which is optimal in a certain sense. For instance optimal control problems identify a control to steer a system towards a desired state. Inverse problems seek PDE parameters which are most consistent with measurements. In these optimization problems PDEs appear as equality constraints. PDE-constrained optimization problems are large-scale and often nonconvex. Their numerical solution leads to large ill-conditioned linear systems. In many practical problems inequality constraints implement technical limitations or prior knowledge. In this thesis interior-point (IP) methods are considered to solve nonconvex large-scale PDE-constrained optimization problems with inequality constraints. To cope with enormous fill-in of direct linear solvers, inexact search directions are allowed in an inexact interior-point (IIP) method. This thesis builds upon the IIP method proposed in [Curtis, Schenk, Wächter, SIAM Journal on Scientific Computing, 2010]. SMART tests cope with the lack of inertia information to control Hessian modification and also specify termination tests for the iterative linear solver. The original IIP method needs to solve two sparse large-scale linear systems in each optimization step. This is improved to only a single linear system solution in most optimization steps. Within this improved IIP framework, two iterative linear solvers are evaluated: A general purpose algebraic multilevel incomplete L D L^T preconditioned SQMR method is applied to PDE-constrained optimization problems for optimal server room cooling in three space dimensions and to compute an ambient temperature for optimal cooling. The results show robustness and efficiency of the IIP method when compared with the exact IP method. These advantages are even more evident for a reduced-space preconditioned (RSP) GMRES solver which takes advantage of the linear system's structure. This RSP-IIP method is studied on the basis of distributed and boundary control problems originating from superconductivity and from two-dimensional and three-dimensional parameter estimation problems in groundwater modeling. The numerical results exhibit the improved efficiency especially for multiple PDE constraints. An inverse medium problem for the Helmholtz equation with pointwise box constraints is solved by IP methods. The ill-posedness of the problem is explored numerically and different regularization strategies are compared. The impact of box constraints and the importance of Hessian modification on the optimization algorithm is demonstrated. A real world seismic imaging problem is solved successfully by the RSP-IIP method

    Globally convergent evolution strategies with application to Earth imaging problem in geophysics

    Get PDF
    Au cours des dernières années, s’est développé un intérêt tout particulier pour l’optimisation sans dérivée. Ce domaine de recherche se divise en deux catégories: une déterministe et l’autre stochastique. Bien qu’il s’agisse du même domaine, peu de liens ont déjà été établis entre ces deux branches. Cette thèse a pour objectif de combler cette lacune, en montrant comment les techniques issues de l’optimisation déterministe peuvent améliorer la performance des stratégies évolutionnaires, qui font partie des meilleures méthodes en optimisation stochastique. Sous certaines hypothèses, les modifications réalisées assurent une forme de convergence globale, c’est-à-dire une convergence vers un point stationnaire de premier ordre indépendamment du point de départ choisi. On propose ensuite d’adapter notre algorithme afin qu’il puisse traiter des problèmes avec des contraintes générales. On montrera également comment améliorer les performances numériques des stratégies évolutionnaires en incorporant un pas de recherche au début de chaque itération, dans laquelle on construira alors un modèle quadratique utilisant les points où la fonction coût a déjà été évaluée. Grâce aux récents progrès techniques dans le domaine du calcul parallèle, et à la nature parallélisable des stratégies évolutionnaires, on propose d’appliquer notre algorithme pour résoudre un problème inverse d’imagerie sismique. Les résultats obtenus ont permis d’améliorer la résolution de ce problème. ABSTRACT : In recent years, there has been significant and growing interest in Derivative-Free Optimization (DFO). This field can be divided into two categories: deterministic and stochastic. Despite addressing the same problem domain, only few interactions between the two DFO categories were established in the existing literature. In this thesis, we attempt to bridge this gap by showing how ideas from deterministic DFO can improve the efficiency and the rigorousness of one of the most successful class of stochastic algorithms, known as Evolution Strategies (ES’s). We propose to equip a class of ES’s with known techniques from deterministic DFO. The modified ES’s achieve rigorously a form of global convergence under reasonable assumptions. By global convergence, we mean convergence to first-order stationary points independently of the starting point. The modified ES’s are extended to handle general constrained optimization problems. Furthermore, we show how to significantly improve the numerical performance of ES’s by incorporating a search step at the beginning of each iteration. In this step, we build a quadratic model using the points where the objective function has been previously evaluated. Motivated by the recent growth of high performance computing resources and the parallel nature of ES’s, an application of our modified ES’s to Earth imaging Geophysics problem is proposed. The obtained results provide a great improvement for the problem resolution

    Inner product preconditioned trust-region methods for frequency-domain full waveform inversion

    Full text link
    Full waveform inversion is a seismic imaging method which requires to solve a large-scale minimization problem, typically through local optimization techniques. Most local optimization methods can basically be built up from two choices: the update direction and the strategy to control its length. In the context of full waveform inversion, this strategy is very often a line search. We here propose to use instead a trust-region method, in combination with non-standard inner products which act as preconditioners. More specifically, a line search and several trust-region variants of the steepest descent, the limited memory BFGS algorithm and the inexact Newton method are presented and compared. A strong emphasis is given to the inner product choice. For example, its link with preconditioning the update direction and its implication in the trust-region constraint are highlighted. A first numerical test is performed on a 2D synthetic model then a second configuration, containing two close reflectors, is studied. The latter configuration is known to be challenging because of multiple reflections. Based on these two case studies, the importance of an appropriate inner product choice is highlighted and the best trust-region method is selected and compared to the line search method. In particular we were able to demonstrate that using an appropriate inner product greatly improves the convergence of all the presented methods and that inexact Newton methods should be combined with trust-region methods to increase their convergence speed

    Latent variable regression and applications to planetary seismic instrumentation

    Get PDF
    The work presented in this thesis is framed by the concept of latent variables, a modern data analytics approach. A latent variable represents an extracted component from a dataset which is not directly measured. The concept is first applied to combat the problem of ill-posed regression through the promising method of partial least squares (PLS). In this context the latent variables within a data matrix are extracted through an iterative algorithm based on cross-covariance as an optimisation criterion. This work first extends the PLS algorithm, using adaptive and recursive techniques, for online, non-stationary data applications. The standard PLS algorithm is further generalised for complex-, quaternion- and tensor-valued data. In doing so it is shown that the multidimensional algebras facilitate physically meaningful representations, demonstrated through smart-grid frequency estimation and image-classification tasks. The second part of the thesis uses this knowledge to inform a performance analysis of the MEMS microseismometer implemented for the InSight mission to Mars. This is given in terms of the sensor's intrinsic self-noise, the estimation of which is achieved from experimental data with a colocated instrument. The standard coherence and proposed delta noise estimators are analysed with respect to practical issues. The implementation of algorithms for the alignment, calibration and post-processing of the data then enabled a definitive self-noise estimate, validated from data acquired in ultra-quiet, deep-space environment. A method for the decorrelation of the microseismometer's output from its thermal response is proposed. To do so a novel sensor fusion approach based on the Kalman filter is developed for a full-band transfer-function correction, in contrast to the traditional ill-posed frequency division method. This algorithm was applied to experimental data which determined the thermal model coefficients while validating the sensor's performance at tidal frequencies 1E-5Hz and in extreme environments at -65C. This thesis, therefore, provides a definitive view of the latent variables perspective. This is achieved through the general algorithms developed for regression with multidimensional data and the bespoke application to seismic instrumentation.Open Acces

    A differential semblance algorithm for the inverse problem of reflection seismology

    Get PDF
    AbstractThis paper presents an analysis of stability and convergence for a special case of differential semblance optimization (DSO). This approach to model estimation for reflection seismology is a variant of the output least squares inversion of seismograms, enjoying analytical and numerical properties superior to those of more straightforward versions. We study a specialization of DSO appropriate to the inversion of convolutional-approximation planewave seismograms over layered constant-density acoustic media. We prove that the differential semblance variational principle is locally convex in suitable model classes for a range of data noise. Moreover, the structure of the convexity estimates suggest a family of quasi-Newton algorithms. We describe an implementation of one of these algorithms, and present some numerical results
    corecore