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A b s t r a c t  - -  This paper presents an an,dysis of stability and convergence for a special case of 
differential semblance optimization (DSO). This approach to model estimation for reflection seis- 
mology is a variant of the output least squares in~eraion of seismograms, enjoying analytical and 
numerical properties superior to those of more straightforward versions. We study a specialization of 
DSO appropriate to the inversion of convulutional-approxinmtion planewave seismograms over lay- 
ered constant-density acoustic media. We prove that the differential semblance variational principle 
is locally convex in suitable model classes for a range of data noise. Moreover, the structure of the 
convexity estimates suggest a family of quasi-Newton algorithmA. We describe an implementation of 
one of these algorithms, and present some numerical results. 

1. INTRODUCTION 

Algorithms for solution of the seismic reflection inverse problem ("seismic waveform inversion") 
have been discussed extensively over the past several years; see, e.g., [1-7], for a small sample. 
All of the work just cited is based on the output least-squares principle, according to which 
a subsurface model is required to generate (synthetic) data which fit given data in the least 
mean-square error sense. This approach does not require picked travel times, unlike reflection 
tomography [8,9], and, in principle, could extract an optimal distribution of seismic velocities, as 
well as reflection amplitudes, unlike linearized inversion [10-13]. In addition, any desired level 
of detail concerning the physics of seismic wave propagation may be built into the output-least- 
squares principle, and it may also incorporate non-seismic constraints [14]. 

In practice, it has proven difficult to realize the apparent promise of least-squares inversion 
even when applied to synthetic data sets. Since the problems are computationally large, only 
iterative methods are feasible, and these require for their efficient convergence a measure of 
convexity often not possessed by the mean-square seismogram error (see, e.g., [1,15,16]). 

The cause of this non-convexity is the extreme sensitivity of the synthetic seismogram to 
changes in the slowly-varying components of the velocity, as will be reviewed in Section 2. 
Thus, velocity trends emerge slowly or not at all as iteration proceeds, and the reflectivities 
are correspondingly degraded. For layered medium problems, Kolb and others have developed 
a number of continuation and reparameterization strategies which render the optimization more 
tractable [5,17]. Only limited tests of these devices (and no theoretical justification) have been 
reported, however, and it is difficult to understand how lateral heterogeneity might be accommo- 
dated by these techniques. Straightforward least-squares inversion of two-dimensional acoustic 
and elastic models has appeared to require a priori information of the gross model (velocity) 
features of very high quality and, when such information is provided, the results closely resemble 
those of carefully designed amplitude-preserving migration--unsurprisingly, as these are essen- 
tially equivalent [2,18,19]. In fact, the principal tangible result of the work on least-squares 
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inversion so far has been to provide a version of migration which may conceivably yield esti- 
mates of elastic reflection amplitudes [19-21], hence, a rational basis for amplitude versus offset 
analysis. While this is an important step, it appears that least-squares inversion has not so far 
advanced the estimation of velocities in regions of complex structure, and without such velocity 
information its depth-migration function is disabled as well [16,22]. 

It is important to understand that the difficulty is not due to inadequate modeling of seismic 
wave propagation, or to the features of field data (beyond specifying the general character of 
any useful model). That is, least-squares inversion fails for essentially mathematical, rather than 
(geo-)physical, reasons. These reasons are explored in depth in the monograph [16]. 

The purpose of this paper is to analyse another approach to full-waveform seismic reflection 
inversion, in which the coherence of multiple reflectivity estimates is optimized. We have called 
this approach differential semblance optimization (DSO), and have presented theoretical and 
numerical evidence of its efficacy in a number of recent papers. While the basic ideas behind 
this approach are quite old, our use of them in designing an optimization algorithm for inversion 
seems new. Moreover, DSO appears to avoid the mathematical pitfalls which often prove fatal 
to output-least-squares inversion while producing the same type of subsurface estimate. 

Minimal requirements for a useful model-based inversion algorithm might be stated as follows: 

(a) Stability: at least for data which are nearly model-consistent, the estimates of subsurface 
properties should "degrade gracefully" in the presence of data noise; 

(b) Computability: for iterative methods, this means that convergence should occur at a rea- 
sonable rate, and for "poor" initial estimates, i.e., convergence should not require knowing 
the answer beforehand; 

(c) Completeness: the algorithm should extract "most" of the information about the model 
implicit in the data, and the user should be able to have confidence that it has done so. 

Of course, an algorithm which meets these conditions may still fail: besides these mathemati- 
cal requirements, one must also impose the (geo-)physical requirement that the underlying model 
faithfully reflect the physics of the reflection seismology experiment, at least at the level of detail 
desired in the subsurface estimate. While this physical consistency is the ultimate limiting factor 
in the utility of any inversion algorithm, our focus in this paper will be limited to the necessary 
preconditions (a)-(c) above. 

The differential semblance approach to seismic reflection inversion was introduced in [23,24]. 
Theoretical and numerical studies verifying the properties (a)-(c) were presented in [25-27]. The 
approach was successfully applied to field data in [28,29]. All of these works concern the layered 
problem discussed here, for which DSO provides the only method known to the author capable of 
reliable estimation of layered velocities from poor iniftial estimates. An extension to nonlayered 
problems is explained in [24,28] and preliminary numerical results given in [26]. 

In the remainder of this introduction, we shall outline the coherency optimization algorithm 
in general terms. In succeeding sections we shall: 

Section 2: formulate differential semblance principle precisely for the simplest interesting model: 
layered, constant-density acoustics; 

Section 3: analyse the variational principle of Section 2 in some detail, demonstrate its smooth- 
ness and local convexity; 

Section 4: show, by numerical examples, that a suitable quasi-Newton algorithm will converge to 
the global optimum for nearly model-consistent data without detailed a priori knowledge; 
thus supporting the contention that (a)-(c) above hold for DSO. 

In the concluding Section 5 we recapitulate the properties of DSO and its comparison with 
other approaches, and offer a few more observations concerning the range of models to which the 
technique might be applied. 

DSO is easiest to describe in the context of the linearized seismogram, in which the model is 
regarded as the sum of smooth background model and a highly oscillatory ("rough") perturbation 
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(reflectivity section). Note that the smooth background velocities are still regarded as part of the 
model, so it is still nonlinear. With some high-frequency approximations ("WKBJ Seismogram") 
the inversion of each common-source (or common-receiver or common offset) gather for a given 
background velocity may be accomplished semi-analytically (perhaps the best reference is [13]), 
by what amounts to an amplitude-preserving before-stack migration. If the background model 
is correct, presumably the images from the various inverted gathers will line up. If not, the 
discrepancy indicates that the background ("migration") velocity ought to be changed. 

So far, this is hardly novel: a process called "iterative before-stack migration" is described 
in just this way in [30], for instance. The refinement leading to a feasible algorithm is the 
introduction of a well-behaved cost function, which we dub the differential semblance, which 
both measures the discrepancy between the various common gather inversions and indicates how 
the velocity fields should be changed to line them up (through its gradient). A natural choice 
is stack power or semblance [31], for example), but this leads directly back to the nonconvexity 
difficulties of output-least-squares: the two are very closely related [16, Appendix A]. Instead, 
we depend on the accurate inversion of amplitudes, and take the mean-square of the differences 
between successive inverted gathers. These differences should all vanish at the "correct" velocity 
estimate. Most important, as the background velocity is changed, this "differential semblance" 
(DS) changes smoothly, rather than abruptly, as is the case with stack power. 

Two technical refinements are necessary to turn this idea into an algorithm. First, data noise 
which is uncorrelated from gather to gather will yield a very large contribution to the differences of 
the inverted gathers, completely distorting the DS and masking the correct choice of velocity. To 
avoid this oversensitivity to data noise, partly decouple the inverted gathers from the data: lump 
these reflectivities (one per gather) together with the background velocity field as the "model" 
to be determined, and redefine the cost to be the sum of: 

(a) all of the mean-square data errors, i.e., differences between data seismogram and predicted 
seismogram based on the corresponding reflectivity section, and 

(b) the mean-square sum of pairwise differences of reflectivity sections (DS). 

Incoherent noise in the data gathers will be accounted for mostly in error-of-fit (i.e., (a)), as 
it should be, since it causes a much smaller increase in cost that way than when forced into the 
DS (i.e., (b)). 

The second technical modification is required by the nature of the model-to-seismogram re- 
lation: as pointed out above, this relation is extremely sensitive to the background velocity 
component, when the model is defined in terms of depth (and offset). This oversensitivity is 
due to the time shift accompanying a change in background velocity, which causes the temporal 
location of a high-frequency reflection from a (depth-) fixed reflector to change. For a discussion 
of this "time-shift" disaster in the one-dimensional context see [32]. The remedy is clear: the 
reflectivity sections should be defined as time sections rather than as depth sections. 

For the layered acoustic problem of this paper, it is rather trivial to accomplish this trans- 
formation. It is particularly convenient to work with plane wave sources, since the gather cor- 
responding to a planewave source at definite slowness has only one independent trace. Thus 
a single reflectivity time trace at each slowness, together with the (single) background velocity 
depth profile, specifies the model. The reflectivity time traces are converted to depth traces 
through the (background) vertical travel-time-to-depth transformation appropriate to each slow- 
ness. The high-frequency approximation to the (p-tau) seismogram is simply the convolution of 
the time-trace refiectivities with the source wavelet, whereas the DS is essentially the derivative 
of the corresponding depth-trace reflectivities with respect to slowness. 

For laterally heterogeneous models, the transformation from time to depth is less obvious. As 
explained in [25,29], the analogue of the travel-time-to-depth change of variables appropriate to 
plane waves in layered media is, in general, a before-stack Kirchhoff migration appropriate to the 
acquisition geometry being simulated, and the reflectivity gather is simply a time section. The 
differential semblance is a difference (or derivative) with respect to the shot location (for shot 
gathers) of the migrated refiectivity depth sections. 
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Two points remain to be emphasized. First, there is nothing to "cohere" unless reflectors are 
present, i.e., unless the reflectivity gathers are rich in high-frequency energy. As is the case with 
semblance, the differential semblance is a measurement of the portion of move-out in reflection 
phase not accounted for by the current velocity model. Therefore, the density of reflectors is 
a limiting factor in the recovery of accurate velocity models, as is the data aperture. These 
observations are quantified in Section 3. 

Second, both DS and data misfit are summed in the cost functional for DSO. Thus both are 
minimized simultaneously. The major theoretical result of the paper (Section 3) is that, with 
appropriate weights on the two components, sufficiently dense reflectors and enough aperture, 
the cost functional is smooth and convex for near-consistent data. It also appears that due 
to the structure of these estimates, the selection of weights can be arranged to cause suitable 
quasi-Newton iterations to converge to the global optimum without accurate a priori knowledge. 
Numerical evidence for this assertion is given in Section 4; a corresponding theorem will be proved 
in another publication. 

2. O U T P U T  LEAST-SQUARES VS. 
D I F F E R E N T I A L  S E M B L A N C E  OPTIMIZATION 

Denote the plane-wave ("p-r") seismogram corresponding to a velocity profile c(z) by S[c]. 
The arguments in this paper are based on the well-known convolutional approximation, which is 
reasonably accurate when c may be re-written as a sum 

c ~, cs "l- Cr , 

where 

cs(z) is a slowly varying background velocity model 
cr(z) is a rapidly varying "reflector sequence," having locally zero mean on the 
length scale of significant change in the background velocity. 

Thus the (two-way) travel-time to depth z of a precritical plane-wave at (horizontal) slowness p 
is determined with a small error by the background velocity c, (z), according to 

= 2 dz' c o . , ,  p2 = 2  
Vs 

where v is the vertical (plane-wave) velocity at slowness p: 

1 _ p2 
v, Cz,p) = c2(z) = c,(z)A(z,p), 

A(z,p) = (1-c2,(z)p~) -112. 

The convolutional approximation with (isotropic) source wavelet / ( t )  is then 

S[cs,cr](t,p) = v(O,p)-i ( f  . ~ - t ) ( t , p )  
(1) 1 ~ t  Or. , 

- v(O,p).u d t ' f ( t - t ' ) - ~ ( t , p ) ,  

where the "reflectivity" r(t,p) is given by 

r(t, p) = p), p) vs(¢(t,p),p)' (2) 

by means of the inverse two-way travebtime function (, defined implicitly by 

/ ~(t,p) 1 
t - 2  - ,  

,Io v 
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and the vertical velocity perturbation 

vr -" Cr • A 3. 

Note that reflectivity conventionally means Or/Ot; we shall confuse r and its t-derivative, calling 
both "reflectivity" as convenient. 

Now S is clearly linear in Cr, but quite nonlinear in ca. In fact, a change in c, will typically 
result in a change in the "phase" ¢, and thus in a shift in the high-frequency components of S, 
which in turn derive from the high-frequency components in cr. Since such a phase-shift may 
have a drastic effect on components of the appropriate (high) frequency, and since cr must have 
a great deal of high-frequency content in order to model the dense distribution of reflectors in the 
typical sedimentary column, one expects S to be extremely sensitive to changes in the background 
velocity c,. 

This oversensitivity to background errors shows quite clearly in the expression derived for 
the perturbation 6S in the seismogram, due to a perturbation 6c° in the background velocity 
(holding c~ fixed, and assuming 6c,(0) - 0): 

6s(t,pl=v,(O,p)-~l, N - ~ 6 ~ , + ~  V, e (~(t, p), p), 

where 

~0 ~ ~ ( z , p )  := ~((~(z,v),p) = v,(z,p) dz',,,(z',p)c'i3(z')6e,(z ') 

is the phase perturbation corresponding to or, referred to depth/slowness coordinates. 
Thus, the z-derivative of cr (or, of r) appears in the perturbations 6S associated with a 

background velocity perturbation 6c8. On the other hand, a perturbation 6er in Cr simply results 
in 

6s ~ S[c,, 6cr], 
as S is linear in cr--thus, no derivative of cr is involved. 

Again, cr must be highly oscillatory to model the typical reflector distribution, so the deriva- 
tive of cr is typically much bigger, in any reasonable sense, than is Cr itself. Thus, a perturbation 
of the background velocity cs has a much larger effect on S than does a perturbation of cr: in 
the language of linear algebra, the linear perturbation map ("Jacobian") 

~Co, ~c~ ~ ~S 

is ill-conditioned. 
Even worse, a straighforward extension of this reasoning shows that the difference between 

the perturbed section 
Sic, + ~c°, c~ + ~e~] 

and its linear prediction 
S[e,, c,] + 6S 

can easily be on the order of S itself, even for quite small 6c. 
To summarize: under realistic assumptions on co and cr, 

(i) the Jacobian 6S is ill-conditioned; 

(ii) S is poorly approximated by its linearization. 

Consequently, the output least-squares objective function 

J[cs, er; Sdata] :-- / / dp dt [S[cs, er] - Sdata[ 2 

is highly non-convex, with rapidly changing gradient, and the optimization problem 

n~n g[~,, c,; Sd.,.] (3) 
CjtCr 
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is extremely difficult to solve by means of any variant of Newton's method. For extensive discus- 
sion and illustration of these points, consult [16]. 

The crux of the difficulty is the interaction between the background cs and the reflectivity r 
through the definition (2). Accordingly, it is tempting to deconple co and r by treating r, rather 
than cr, as the "other" component of the model: thus define 

0 r . ,  . 
SIc,, r](t,p) = v,(O,p) -1 S * -~(  ,p). 

Certainly, if r and cr are related by (2), then 

s[c, ,  c,] = ~[~,, r]. 

In fact, apart from the surface normalization, the background velocity c0 enters the definition 
of S only implicitly, through the condition (2). If we are to use r as one of the independent 
variables, instead of or, we must develop a condition, phrased only in terms of c, and r, which 
guarantees that  (2) holds. Fortunately, this is rather easy: from the useful identity 

Vr ~ Cr 

v, a - 4 '  (4) 

it follows that,  if (2) is satisfied, then 

c73(~) ~r O) = v72( z, p) r(~(~, p), p). (5) 

The notable quality of (5) is that  the left-hand side is independent of p. Thus, differentiation 
with respect to p eliminates cr altogether: 

o = ~p[vTffz,p) rC~O,p),p)]. (6) 

It is easy to reverse this reasoning. Thus: 

A section r(t,p) is the reflectivity corresponding to or(z) if and only if (6) is satis- 
fied, in which case cr is given in terms of r(t,p) and c,(z) by (5). 

In formulating the constraint given by (6), it is advantageous to return to (*,p) coordinates 
(the reason will become apparent below). Thus define the quantity W[c,,r] (the differential 
semblance) by 

{ ° ) w[c.,rl(t,p) = N [v72(z'P) r(~(z'P)'P)] .=. , ,~) .  

Then 

if and only if 

S i c , ,  ~.] = Sd:<:, 

$[c, ,  r] = Sdat~, and 
w[c,,r] - 0, 

with Cr and r related by (2) or (5). 
Since the problem is clearly overdetermined, it is commonplace to replace the exact fit of 

predicted to measured seismograms by a best-fit condition. We shall follow the lead of most 
authors on this subject (e.g., [33]) and use the mean-square error measure, i.e., L 2 norms. Since 
derivatives are also involved in the definitions of important quantities, we also introduce some 
norms from the Sobolev scale, which measure the size of derivatives. Some notation for this is 
desirable: for a single z- or *-trace, e.g., f ( t ) ,  we write 

,,,,, = ( i , ,< '>,O 
k 

I I S l I I -   lls<,l:, 
j=O 

1/2 
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whereas for a (t,p) or (z,p) section, e.g., F(t,p), we write 

IIIFIII ( /  dt / dpp \112 = IF(t,p)l 2) , 

- lll lll +lll lll 
Integrations in all cases are over appropriate sets. 

The weight p in the integral defining Ill III is a residue of polar coordinates, and is used to 
make the norm Ill III as close as possible to equivalent to the ordinary mean-square of an z-t 
section. See [16, Appendix nl; aiso [341. 

In view of the equivalence noted above, it is natural to pose the constrained least-squares 
problem: 

minimize IIl [c,, r] - s, t,,lll =, 
c, , r  (7a) 

subject to W[cs, r] =_ O. 

This problem is closely related to the output least-squares problem (3). In fact, the relation 
is too close. The two problems have the same solution, and, in fact, are mathematically quite 
similar as well, so that (7a) is also poorly suited to computation. (For a detailed analysis of a 
simpler situation with similar features, see [25].) To obtain a problem which is not too "stiff," 
we "relax" (7a) by making the constraint W = 0 soft: 

minimize J[c,, r, Sdata], (7b) 
cs,r 

where 

Y[c,, r, S,:t,,t,,] = r] - S t,,lll 2 +  '2111w[ ,, r] III 2. 

We shall call (7b) the differential semblance optimization problem. 
From the equivalence above, we see that if Sdat- is consistent, i.e., Sdata = SIc,, or], then the 

problem (7b) has [es, r] amongst its solutions, for which r and er are related by (5). That is, for 
consistent data, (7b) has "the same solutions" as the output least-squares problem (3). We shall 
show, however, that (7b) is far better suited to numerical computation by Newton's method and 
its relatives. We shall also show that the solution of (7b) is stable, i.e., "degrades gracefully" in 
the presence of data error, for reasonable choices of the penalty parameter tr. 

These conclusions are true, provided that Sdata is near (in the mean-square sense) to some 
"exact" or consistent data Sits, Cr], and provided that es, cr satisfy certain conditions. "Physical," 
or poetic, statements of these conditions are: 

(i) c, should be "rough," i.e., contain significant variation (reflectors), on a length scale 
dictated both by the wavelet (.f) passband and by the smoothness (characteristic length) 
ore,; 

(ii) The range of slownesses p available in the data ("aperture",) should be su~ciently large 
relative to both the degree of roughness mentioned in (i) and the amount of data error, 
so that the move-out of reflections clearly discriminates the velocities. 

It is also necessary that the penalty parameter ~ be chosen appropriately. "Appropriate" 
means, so that the desired properties are obtained, i.e., so that Newton's method works (from a 
poor initial guess) and so that the solution obtained is relatively insensitive to data error. Note 
that in the limit cr --~ oo, (7b) becomes (?a), i.e, the constraint becomes hard. Previous remarks 
have indicated that (7a) is not susceptible to numerical solution through Newton's method or 
its relatives. Thus the possibility of choosing ~ "not too large" is crucial to the construction of 
algorithms which converge from a poor initial guess. 

In the following section we will carefully quantify (i) and (ii) and justify these conclusions 
through an analysis of (7b). 
C&MWA 22:415-I (  
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3. LOCAL CONVEXITY OF DSO 

The local analysis of optimization problems amounts to the verification of several conditions 
concerning the first and second derivatives of the objective function. These conditions are imposed 
near a particular solution (i.e., local minimum) and guarantee that this solution is stable under 
data perturbations. The same conditions ensure rapid local convergence of Newton's method. 
We state the verbal description of these conditions here, together with the interpretation in terms 
of the quantities introduced in the last section: 

(i) (Regularity) The objective function should be twice differentiable near the solution. 

This is completely obvious for the seismogram error term IIl~[c,,r] -Sd~t~lll  ~ as it is inde- 
pendent of cs and quadratic in r. For the DS, the regularity is suggested by the identity 

a (vs(z,p)_ 2 r(v(z,p),p))lz=~(t,p) W[c,,r](t,p) = ap 

{or o~t [,.... } (8) 
= -2pr( t ,p)+vT2(¢( t ,p) ,p)  -~pp( t , p ) -p~(  'P)Jo v, . 

Clearly, varying ca will have the effect of differentiating v , - -but  c,, hence v,, is presumed 
sufficiently smooth that its derivative is not significantly larger than ca itself (we make this 
assumption precise below). On the other hand, no additional derivatives of r (the locus of high- 
frequency energy) result from varying c,. Thus W may be regarded as regular. Note that the 
perturbation of W would involve further derivatives of r if we had left off the final referral back 
to time/slowness coordinates. 

(ii) (Second-order suITiciency) The objective Hessian is positive-definite. 

Most of this section is devoted to verifying this last condition; it is the source of the require- 
ments mentioned at the end of the last section. 

The Hessian is the second-order coefficient 89-J in the power series expansion 

c 2 
][c,  + e ~c., r + ,  6r, s~ t~ ]  = ] [c , ,  r, Sd~t~] + ,  6 ]  + ~ 6 ~ ]  + . . .  

In view of the goal, enunciated at the end of the last section, to examine the perturbation of 
a consistent solution due to perturbing the data, we shall assume that 

That is, that 

][c,, r, Sd~t~] = 0. 

Sic,, r] = Sdata and W[c,, r] = O. (9) 

Let us state very carefully the meaning of the condition (ii) in terms of 62]: i.e., 82J is 
positive. Condition (ii) actually requires that 6~j  be "positive relative to" ~c,,Sr: for some 
L > 0 ,  

I]162J]11 >_ L (I]~c, II 2 + HI~rlH~). (10) 

Indeed, as follows from the proof of the implicit function theorem, as L ~ 0 in (10), the size of 
the region of convexity of J goes to zero, and the possible ratio of solution error to data error goes 
to infinity. Thus, we need not only L > 0, but some positive control over L, to ensure stability 
(and computability) of the solution. 

An easy calculation gives 

69 2 

Ill,.  ' 111 • 
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Thus as a first requirement, we must have (for each p) 

for some constant Kt > 0. Unless Kt is to be uselessly tiny, this means, in effect, that each trace 
~r (p -- const.) (hence, eventually, ,)  must have most of its energy in the passband of the source 
f ,  or else, that the out-of-band components must be constrained a priori. We adopt the first 
option: i.e., that we shall estimate only passband reflectivities. In quantitative terms, Kz should 
be at least some substantial fraction, say one-half, of the absolute moment of the wavelet (this 
choice is justified by the theory of convolution operators, and is essentially optimal): 

K1 ~ . 5 f  I]1. 
Inequality (11) only shows that 62f majorizes 111(86r)/(Ot)lll ~. Reference to (10) shows that 

this is inadequate unsurprisingly, since we have not made full use of the hypotheses of (ii). To go 
further, we must introduce the linearized constraints (since otherwise 6e is unconstrained). As we 
have assumed ca, r, Sdata consistent, i.e., the system of equations (9), this simplifies considerably. 
The calculation is displayed in the Appendix: with cr given by (11), we obtain the identities 

6W =$cW + brW, (12a) 

Here the quantity O 6c is defined by 

q 6 c : = [ 6 ( v o ¢ ) ] o ~ = A  3 6 c + c ' ,  ~ . 

(We shall suppress the subscript "s" on ca whenever no confusion is possible.) Also, we have 
used the useful notation 

g o ~ ( z , p )  = g C ~ C z , v ) , p )  

for (any) function g(t,p) and, similarly, for the symbol o ~. 
The further analysis of this condition in general is a little involved. We consider in detail only 

the special case 
e (hence v) constant for z >_ z0 (13) 
8c (hence 6v) _= 0 for z _< z0. 

A few remarks about the general case appear near the end of this section. See Figure 1. 
Under this restriction, 5cW simplifies considerably: Q 6c = A a 6c, and 

Now 

0~A u = 2pcUA 4. 

Thus what remains of (12a) is an exact derivative in p, so we integrate in p from Pl to p~ to 
obtain 

o•pP2 = v-2(6,o~)1~: + ep(6oWo ~) 
l f" 

- -  ~-'A-'(6,o,-)l; ~ + dp(~oWo,-). 
1 

(14) 
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O N E  WAY T I M E  
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Equation (14) will be the "hook" to get 62j  into an explicit relation with gc. This is accom- 
plished in three steps. First, we make use of an important by-product of the assumed bandlimited 
feature of f :  

Since f ,  hence r, 6r, has its energy concentrated away from 0 Hertz, the t-derivative 
of 6r is at least as big as (probably much larger than) 6r itself: for each p, 

I o. 
K2116rll 2_< 0t ' 

for a constant K9 depending on the lowest passband frequency. 

Together with (11), this gives 

K2 K~ 1116rill 2 _< a2j .  (15) 

The second step is to manipulate (14) into an inequality with Ill,rill 2 on the right-hand side. 
This is accomplished with the aid of several identities relating time and depth, which are massively 
simplified by assuming that e --- coast., where 6c # 0, as we have done. 

According to the hypothesis (13), for z > zo, 

c(z) = cl, f o r z > z o ,  

2(z - z0) 
~ (z ,p)  = ~0(p) + 

C l A l ( p  ) ' 

where 

and 

~0(p) = ~(z0,p) ,  

A1Cp) = (1 - c~ p ~ ) - 1 / 2  



! 6 C~ 

~ ' ~  1.4 

E 
~ I  1.2 

I.---4 

0 1.8 

> 8 

6 
< 

< 

0 i l i l l l  
8 1 2 3 

' I ' I ' I ' I ' I I " I  " I ' I l I ' 

I gll l  ' I ' I 

t~ 
-X- qo 

C )  7w 

> 

4 .5 b 7 8 9 

11 "1 "1 NOI~MALIZI~D SLOWNESS 

Figure 2. The coefficient ), (display (18)), normalized to remove velocity de- 
pendence. 

~ se 

4e 

< 
3e 

I 2 3 4 5 b 7 

. | w I I | I l z I ' l ! I 

8 9 

Differential semblance algorithm 157 

NORMALIZED SLOWNESS 

Figure 3. The coef~cient Az (display (19)), normalized to remove velocity 
dependence. 
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Thus (since (14) implies 6r o r = 0, z < z0): 

/ IClAI(p)f dt'6r(t'p)'2 116r°rll2 = dz l6r(r(z 'P) 'p)12 = ~ (16) 

= ~ Cl At(p)ll~rll 2. 

Now set Pl = P, P2 = ~Pmax +P, and integrate V~ times the first summand on the r.h.s, of (14), 
from p : 0 to p -- lpmax, (for fixed z) neglecting the factor of c-2: 

½p.. lP+½ P-" / ½ p - -  :h / dpv~(A'~26ror)] <_ dPv~lA-{216r°rll,+½,..+A;216r°rl,} 
JO P JO 

< f o P ' " d p v ~  At216~ o rl 

<_ (ff'"dpA'~a) ½ (fo'"fdppA'~',6rorl 2) ½. 
(17) 

Applying the same step to the absolute value of the l.h.s, of (14) gives 

~(Cl, Pmax), \ a z / .  
(18) 

to get: 

{26CCr+(foZ6C) (Scr~Sz)j < ,,~(c1,Pmax)-2c21[(j~oPm'=dpA13)j~oPmlXdppA1116r°T12 
Cl Pmax +_ 2 s dp p ]6W o r[ 2 

integrate both sides in z. and make use of (16): 

ll2~cAc+ (~z~c) (~gc)ll2 ~1(cl,Pmax)]r~r[]12 +,~2(Cl,Pmax)[]]~CHl2 , (19) 

where ~z is given by 

1 3 fo p~x ~dCl,Pm.=) = ~ Cl A(Cl,Pmix) -2 A~ "s, 

and 
I 5 ~P=" 

~2(CI, Pmax) = ~ Cl ~(Cl, Pmax) -2 A13. 

A plot of ~1 appears as Figure 3. Evidently: 

In order that Ax be small, it is necessary that cx pmax be relatively large (near 1). 

This is still not quite what is required, as we have an estimate on the left-hand side of (18), not 
on 6c itself. The third step amounts to the observation that, if 6c is smooth enough, and cr rough 
enough, then this quantity cannot be small without 6c itself being small. 

where 

A(Cl,pm,x) dpV/'P V+ ~ " 
The modulus A(Cl,Pmax) satisfies A(0) = 0 and ~(Cl,pmax) ~ OO aS Pmax "-* 1/cl (since the 
integrand has a nonintegrable singularity at pmax = 1/Cl). Otherwise, ~ is best investigated 
numerically; a plot of ~ vs. cl ,pm~ appears as Figure 2. Clearly, in order that A ~ 0, it is 
necessary that cl pmx be relatively close to 1. 

Since (17) is valid with either sign, we can square both sides of the inequality we have just 
derived from (14), (17), (18), and make an obvious estimate of the second term on the r.h.sSf (14) 
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This observation is the most physically-meaningful, and the most difficult to quantify, of 
the points presented in this paper. As illustrated thoroughly in [16], the local behaviour of the 
seismogram function near a. rough model is quite different from that near a smooth model, and 
it is this property that is being used implicitly at this point. 

A rigorous semiquantitative treatment of roughness is found in [27], and the present problem 
can be treated along the same lines. Such rigorous argument is neither particularly enlightening, 
however, nor very precise. For the present, a numerical illustration of this property will suffice. 
The smoothness of the velocity model c and its perturbation are guaranteed, for example, by 
insisting that 

c(~) = coexp x~¢~(~) , 

N 

6c(~) = ~ 6~s cs(~). ~(~), 
j= l  

where {¢j } is a finite, smooth set of basis functions. In the tests reported in Section 4, cubic 
b-spline integrals are selected for the {¢j }: these have associated with them a definite length 
scale ("width"); see Figure 4. Then in vector notation, 

where 

ll6ce, ll 2 = 6,T R o ~ 

is the N x N symmetric positive-semidefinite "roughness matrix" associated with Cr and the basis 
{¢~}. 

Similarly, 
116C]} 2 "- 6 z T  M 6z 

and 

where 

I oc,, ' 
o~ II = 8~TR( ' )  ,5~, 

and M is the symmetric positive-definite "mass matrix" 

Mi.~ = / dz ¢i(z) ¢s(z) C2(Z). 

It follows that 
p(o~ 116cll 2 > 116cc~11 ~, (2Oa) 

where p(m ° )  >_ 0 is the largest eigenvalue of the N-dimensional generalized eigenvalue problem 

R (°) y = p M y. (20b) 

Likewise, 

- az II ' 

where P~n is the least eigenvalue of the generalized eigenvalue problem 

(2oc) 

R (z) y = p M y. (20d) 
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Finally, 

Oz ' (20e) 

where/4mi n is the least eigenvalue of the generalized eigenvalue problem 

R y  := (2R (°) + R  (')) y =  p M y .  (20f) 

Combining (19), (20a), (20c) and (20d) we get 

 mi. Ilacll 2 < A (c ,pm  )1116 111 + . 2(Cl,Pmsx)1116Will 2 (21a) 

and 

Obviously, inequality (21b) has force only ifP(ml~n >> p(m °), that is, Ocr/Oz is much bigger than cr, 
whence cr must be rough. In fact, Cr must be uniformly rough on the length scale of significant 
variation in c. To see this, note that the worst possible situation is when R (°) and R (t) have a 
common null vector, since then the left-hand side of (19) constrains the corresponding component 
not at all. This can indeed occur. Note that the integrated spline basis {¢1 } is so constructed that 
Cj - ¢j+I vanishes outside an inteval lj, encompassing five spline nodes: see Figure 5. Suppose 
that for some j, Cr = 0 in the interval lj: that is, there are no reflectors in 1 i. Set 6x I = I, 
~Zjq-1 - -  -1 ,  5zi -- 0 for i ¢ j ,  j + 1. Then R c/) 6z = 0, j = 0, 1, so p = 0 with eigenvector 6z 
for both matrices. Thus: 

In order that • (z) A. (o) /'~min > "Xl"max ~> O, significant reflectors must be present .in every 
depth interval of the characteristic length scale of the smooth model class. 

In fact, it turns out that this condition is also necessary in order that the "combined" eigenvalue 
flrnin be reasonably large, as we shall see below. 

Note also the connection with the wavelet passband. In order for the convolutional model to 
be accurate, e must have almost all of its energy concentrated below the passband (or rather its 
spatial analogue): that is, e must be smooth on the spatial wavelength scale. Suppose that c is 
chosen to attain, roughly, the maximum degrees of freedom permitted by this constraint. Thus, 
the length scale associated with the background model is roughly the largest spatial wavelength 
in the data, and we can re-phrase the above conclusion as: 

In order that (19) above constrains 6e, significant reflectors must be present in every 
depth interval longer than the longest spatial wavelength in the data. 

This necessary condition is actually also sufficient, when made appropriately precise ([27]; 
see also [16]). We illustrate the sufficiency by introducing the reflector sequence cr figuring in 
the experiments of Section 4. See Figure 6. We have computed the extreme eigenvalues of the 
problems, (20b), (20d), (20e). For an N-dimensional integrated spline space, the characteristic 

length scale (i.e., the length of Ij) is proportional to 1IN. In Figure 7, we tabulate p(m ° ) ,  

P~n and Pmin against N, along with the characteristic length scale; for the background velocity 
profile we have taken the profile in Figure 6 also. We have not restricted the non-zeros of 6e to 
the c = const, segment, so this is a more severe test than warranted by the present discussion. 
Evidently, the criterion above is indeed sufficient to guarantee p(mX]n -4p(m°)ax > O in this case and 
appears necessary to have #Mrnin ~>~ 0. 

We now combine the conclusions of three steps: (13), (19), (20e), to get 

A1 A2 
Umi,7 116c112 - </ i2J '  7 = Ks K----~ + a 2' 

and, using (15) again, 

1 Pmin (116cll 2 + 1116rill _ 62j ,  mm 2"r ) (22) 
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Nodes 

5 0.8465e-02 

6 0.1305e-01 
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0.3068e-01 

0.1111e+Ol 

0.5741e+00 

0.3872e+00 

0.2192e+00 

0.8287e-01 

0.4868e-01 

Figure 7. Eigenvalues ~(m°)x, .(ml)n, and ~min as in displays (20) and (21). 

which gives an explicit estimate for the constant L in (10), as required. Note that this constant of 
proportionality is neatly separated into ~min, which depends only on the roughness of cr, relative 
to c,, and 7, which depends on aperture and passband amplitude, and on the penalty parameter 
ft. 

Note the role of ~ in (22): it is only the quotient A2/a 2 which influences the lower bound. 
The aperture-dependent Ax and As are of roughly the same size, so the requirement that the 
lower bound be reasonable imposes a (rather loose) relation between the aperture, the passband 
amplitudes (K1, Ks), and a: in effect, a (soft) floor is placed under or. On the other hand, the 
upper limit of the spectrum of 6sJ clearly grows with a s. Thus for "moderate" values of ~, the 
6~J is as well-conditioned as possible. Several possibilities exist for pinning down this range: 
guessing (the option pursued in numerical work reported here), rigorous theoretical estimation 
(far too conservative), or adaptive estimation during iterative solution of the linear stage of 
Newton's method (a project for the future). 

Recall that the argument leading to this conclusion was based on the restriction (13). Without 
this restriction, the argument becomes more involved, but the conclusion is qualitatively the same: 
for sufficiently rough cr, an inequality like (22) holds. It is evident from the form of the expression 
Q6c, that d, ¢ 0 will degrade the contribution of large-p traces to the lower bound, and this is 
indeed the main quantitative effect. A rigorous argument of this nature, in the context of the 
fully nonlinear problem, can be found in [27]. 

4. NUMERICAL EXPERIMENTS 

In this section, we report an implementation of the algorithm suggested in Section 2, and the 
results of some numerical experiments which establish its feasibility. More extensive tests of the 
method will be reported elsewhere. 

The implementation requires (1) a choice of discretization of the parameter space and op- 
erators; (2) a choice of optimization strategy. We give sufficient detail in both areas that the 
interested reader should be able to reproduce our results. 

J.1. Discretization 

Both to maintain the applicability of the convolutional model, and for the more subtle reasons 
given in Section 3, it is necessary that the background velocity c be quite smooth--much smoother 
than the reflectivity, for example. A simple explicit way (though certainly not the only way) to 
ensure a given degree of smoothness is to choose c from a finite-dimensional function space 
spanned by smooth functions. 

For the space velocity profiles, we took a manifold of exponentiated integrated b-splines (see 
Figure 4): 

{/0z } c ° ( z )  = co e x p  dz'  ¢ i ( z ' )  , 
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where ¢i(z) = ~ (nspl. (z - zi+l)/zsp O, @ is a standard b-spline, and zi = (i /nspl).  zspl, i = 
0 , . . . ,  nspl are nspl+ 1 evenly spaced nodes. We set nmod = nspl -3 ,  so that all summands vanish 
at z = 0 and z = zspl. See Figure 4. The surface velocity e0 was regarded as a fixed parameter. 

The perturbations/Se have the form 

/ nmod  z ) 

\ i= l  

When values z > zspl are needed, both c and 6c are regarded as constant and equal to their 
values at zspl. 

The depth functions occurring in the various formulae are sampled on a fixed grid {j dz : 
0 < j <_ nz}, where nz • dz =: zmax > zspl ('%he z-grid"). Routines were written which convert 
sampled z-grid functions (c,, 6c,) into spline coefficients (z, 6z) and vice versa, and which satisfy 
certain adjointness conditions detailed below. 

The time-slowness sections are regarded from the outset, as sampled on a fixed grid of size 
(at + 1) x np, at given sample intervals dt and dp. We used one-way time as the time parameter 
throughout. 

4.2. Operators 

The formulas for the ineoherency C and its perturbation 6C from the Appendix and Sec- 
tion 2 require the travel-time change-of-variable and its inverse. These were accomplished via 
interpolation. For example, the integral 

fo z dz~ 
= v.(z,,p) 

is approximated using the trapezoidal rule on the z-grid, yielding an unequally spaced set {ri} of 
travel-times. The time-function to be converted to a depth function must then be evaluated at 
the ri, which is done via piecewise-linear interpolation. The total process has a truncation error 
on the order of dz ~. 

The derivatives with respect to z, t and p are replaced by simple 3-point centered difference 
formulas, maintaining the truncation order. Discretization of W and 6W was accomplished by 
means of the formulas indicated in the Appendix. 

The synthetic p-tau seismogram SIc, r] was computed using a centered 3-point t-difference 
and the trapezoidal rule approximation of the convolution integral. 

4.8. Norms 

The definition of the cost function J involves the L2-norm. As noted in Section 2, this should 
really include a factor of p, to most closely maintain the relation with mean-square error in (z, t) 
domain. To simplify our calculations, however, we ignored this point and defined the section L 2 
norms by 

n~ np 

IIIFlll 2 = dp w,(j)  w,(k)IF kl 2, 
j--0 k--1 

where 

= 

wp( ) = 

1/2, if j = 0 ,  nt, 

1, else, 

1/2, if k = l ,  np, 

1, else, 

i.e., the trapezoidal rule. With this choice, j is completely defined. 
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The importance of choice of norms in the model space It,, r] cannot be overemphasized. Even 
though the definition of ] is independent of this choice, it is the main factor affecting the e1~iciency 
of the optimization. This is principally because of the role of the model norm in the definition of 
the gradient. We examine this point for the summand ~r 2 IIIW[c, 1"] III z of ] ,  since it involves both 
c and r. By definition, the gradient of this term is the (unique) model vector [~, ÷] for which for 
any [8c, dfr], 

lim I (~2 I I I W [ ~ , , + ~ , ,  ~ + ea~]lll2 - ~2111w[~,, r]ll12 ) -- ((~,, ÷),(so,, 6r))M, (23) 
~--*0 

where ( , ) M  is the scalar product in model space corresponding to the norm: 

II [6c,, 6~] ll~ = ([6~o, a~], [6~,, a~])~. 

(We assume that the model space is a Hilbert space, since all efficient smooth optimization 
methods are predicated on this assumption.) 

A principal requirement ((i) in Section 3) is that the function It,, r] ~ III W[e, r] III ~ is regular, 
i.e., differentiable. Examining (A.2), we see that derivatives of 6r are involved in dfW. Since r, 6r 
are to be allowed to be arbitrary (grid-representable) functions, ~W can ony be continuously 
dependent on 8r, as is required by regularity, if the model norm includes explicit control over 
derivatives of Er. The obvious choice for the section part of the model norm is 

n t  np  

116rl[~ -- ~ ~ dtdpwt(j)wp(k) { 16rjkl z + ID, 6rSkl 2 + IDp 6 r~klz}, 
j----0 k = l  

where Dt and Dp are 2-point one-sided difference approximations for ~/~t  and dg/~gp. The sub- 
script "1" stands for "first derivatives"; this is the discrete version of the first in the Sobolev scale 
of norms, a basic tool in modern analysis of partial differential equations. 

For the velocity profile part, i.e., 6e, we can make use of the fact that c is required to belong 
to a space of smooth splines. 

We enforce the membership of c in the spline manifold by parameterizing the model in terms 
of the spline coefficients zi themselves, rather than the z-grid values of c. Also, we tacitly 
use logc, and its perturbation, 6c, /c , ,  as fundamental quantities, rather than c, and 6c,; this 
nondimensionalizes that part of the model (note that r is already non-dimensional, by definition). 
Thus, we need to express the norm of 5c,/c,  in terms of the dfxi; this is easily accomplished via 
the mass matrix 

Mi~ = ] dz ¢i ¢i. 

This is computed via the trapezoidal rule, of course. Then 

L 6Cs 12 -- 6xT M dfx. {laz e, L~ 

Note that we are measuring (O/•z)(6c,/c,) rather than (6c, /c,)  itself. Since 6c,(0) -- 0, a 
bound on the former implies a bound on the latter, but the choice we have made here weights 
the more oscillatory velocity perturbations more highly, and, thus, tends to rotate the gradient 
in the direction of smoother 6c,'s, with favorable computational consequences. 

Now regarding the model as the pair [z, r] (rather than [e, r]), the model norm is taken to be 

II [6x, dfr] 112M -- Pc 5z T M 6x + Pr 116rll~. 

Adjustment of the weights Pc, Pr allows the gradient to be rotated in the z- or r-directions; this 
scaling-preconditioning turns out to be important in achieving rapid convergence. 
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4.4. Gradients, Hessians 

First examine the incoherency component of ] ,  as before. To write the result in a revealing 
way, recall that 6W is linear in [6z, 6r], and write 6W.  [6z, 6r] for the value. Then the limit on 
the 1.h.s. of (23) can be carried out to give 

2~ 2 {6W . [6x, 6r1, W[x, rl) L~ -" ([6x, 6rl, 2a 2 6W" . W[z,  r]) M , (24) 

where the adjoint operator 6W* is defined by the condition 

(6W[6z, 6r], F) L 2 = {[6z, 6r], 6W* . F) M , (25) 

which is to hold for arbitrary model perturbations [6x, 6r] and (t, p)-sections F. 
Comparison of (23) and (24) reveals that 

grad(   IIIWIII2) = [i' ÷] (26a) 
= 2a 2 6W* • W. 

Likewise, the Gauss-Newton approximate Hessian operator [35, Section 10.2] is given by 

Hess(a 2 IIIWHI2) • [6x, 6r] = 2a 2 6W*.  6 W .  [~z, 6r]. (26b) 

Similar formulas hold for the term IHS-  Sdata]ll 2. 
The calculations (26) are the principal parts of the quasi-Newton methods to be introduced 

below. Thus efficient and accurate calculation of the adjoints 8W*, 6S* are essential to a suc- 
cessful optimization. 

4.5. Adjoints 

The definition (25) of 6W* must be taken absolutely seriously. That is, even though 6W is 
given (in principle) by an enormous matrix, 6W* is not simply the operator defined by the matrix 
transpose of 6W. In fact, 6W* is related to the matrix transpose and this relation provides a 
convenient avenue for computing 6W*. 

The scalar products involved in (25) may be written symbolically in the form 

( X , Y ) a  = X T GY,  

where X and Y are parameter vectors and G is the Gram matrix of ( , )a. Thus, G is a 
positive-definite symmetric matrix of size equal to the dimension of the parameter space. 

In the cost of the functional ] ,  two essentially different inner products are involved, on two 
different parameter spaces (models [6x, 6r], sections F), as well as a linear transformation (~W) 
mapping one parameter space into the other. Accordingly, consider two inner products of the 
form given above, with Gram matrices Gv, v = 1, 2, and a linear transformation A, given by a 
matrix of appropriate dimensions, mapping one parameter space into the other. The adjoint of 
A is defined by: 

(A X1, X2)a ,  = (X1, A* X2)a2 

for arbitrary Xv in the v th parameter space, v -- 1,2. Written in matrix form, 

(A X l )  T G1 X2 = X T G2 A ° X2, 

from which it is clear that, as matrices, 

A* = G~IATG1.  (27) 

To see what (27) implies for (25), write 6C in components: 

6 w  = [6 w, 
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This is the correct matrix representation if the model perturbation is written as a column vector: 

6W. = 6=W.6z + ~,W.6r .  
6r 

Thus, 

where 

and 

(6=W. 6z, F) L2 = 6zT M (6=W* • F)  (28a) 

(6rW. 6r, F)t.2 = (6r, 6rW*. F)t .  (28b) 

Identify a section F with a vector in any convenient fashion, e.g., by listing the traces (columns) 
sequentially. Then the L2-inner product, discretized by the trapezoidal rule, is realized by the 
scaling matrix S (which scales the edge entries by 1/2, the corner entries by 1/4, and everything 
else by 1): 

for any sections F1, F2. 
Thus (27) applied to (28a) gives 

(F1,F2)~ = fr~ S F2 

6=W ° = M -1 6=W T S. (29a) 

For (28b), it is necessary to write the "Sobolev" inner product ( , ) 1  in the canonical form given 
above; its Gram matrix turns out to be exactly the matrix of the discrete Neumasn problem for 
the usual five-point discretization of the Laplace operator, which we shall denote by N. Thus 

6r W* = N -  1 ~ W T S. (29b) 

In principle, this completes the calculation of the adjoints, hence of the gradient and Hessian. 
In practice, inspection of (26a,b) shows that we need only routines which apply 6W* to a vector 
[6z, 6r], not the entire matrix of 6W*. This extremely important observation saves much compu- 
tational effort and storage. In fact, application of the trapezoidal scaling operation represented 
by S is trivial, and the transpose operations 6=W T, ~rW T are relatively easy to work out, as 
the same sort of recurrence rules that form the '~forward" calculations of 8=W, 8rW. Thus we 
represent (29a,b) in the alternate forms: for an arbitrary section F, 

6 c W * . F  = ~, (30a) 
M z  = 6 = W T S F ,  

6 r W * ' F  = ÷, (30b) 
Ni" = 6 r W T S F .  

We have just described how to compute the right-hand sides of the second equations in each of 
these pairs. To solve the linear system with the spline mass matrix M, we used a standard linear 
equation solver (LINPACK: SPOFA, SPOSL), as the spline space is small-dimensional--i.e., the 
background model has few degrees of freedom, <_ 20 in all of our experiments. To solve the 
discrete Neumann problem, which is quite large (nt = 300, n p =  40 in some experiments), we 
took advantage of explicit knowledge of the discrete Neumann eigenfunctions (tensor-product 
cosines) to design an FFT-based discrete Neumann solver, which solves the second member 
of (30b) very efficiently. 

This step would have been more difficult if the factor p had been included in the integral 
defining ( , ) z ,  as it should be. Then N would include a p-difference approximation to the Bessel 
operator of order zero, with Neumann condition at p - Pmax (a residue of the cylindrical geometry 
implicit in the proper definition of the Radon transform). Thus, fast Bessel transform software 
would be required. 
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4.6. Interface with the Optimizer 

Since the optimizer described below accepts standardized n-vector arguments, it was necessary 
to "bundle" the computations just described into procedures with standard calling sequences. We 
used a pack/unpack routine, which collapses the spline/section pair [6x, 6r] into a vector of length 
nspl + (nt + 1) * np, and vice versa. 

4.7. Choice of Optimizer 

The tests reported below were made using a so-called truncated Newton code. This code is 
based on the model trust region principle [35, Section 6.4] and on the extensions to it introduced 
by Steihang in his Yale thesis [36]. Essentially, the Gauss-Newton linear step 

Hess J .  [6z, 6r] = -grad  ff 

is solved by a conjugate residual iteration [37, Chapter 10], which is terminated when the step 
estimate exits a ball about the current solution estimate, the radius of which is determined by a 
simple and robust updating strategy. This expedient avoids expensive conjugate residual steps 
taken outside the region in which the linearized model can be "trusted," hence the name. A 
more lengthy description of the code can be found in [16, Chapter 9], where the same codes 
were used in solving the nonlinear output least-squares problem, using finite difference synthetic 
seismograms instead of the convolutional model. 

An important amendment of the trust region idea is natural in this problem. All models in 
the iteration are supposed to have a fixed rectangle [0, tmax] × [0, Pmax] as a precritical set. This 
may cease to be true during an update step, if the velocity is increased by too much at some 
depth. The computation of the gradient simply flags this occurence, and the algorithm attempts 
a smaller step in the same direction. Thus the trust region, for problems like the present one, 
may involve in a natural way constraints on the validity of the model itself. 

4.8. Numerical Experiments 

We performed a number of numerical experiments using the velocity profile e (upper curve) 
and perturbation cr (lower curve) exhibited in Figure 6 to generate the p-tan convolutional 
model data of Figure 8, by convolving with a Ricker wavelet with center frequency 20 Hz. A 
target background velocity with a lower velocity zone was chosen because the structure of such 
a zone is impossible to determine from refraction arrival times, and intrinsically more difficult 
for least-squares methods--see [16]. The velocity, hence the slowness, were normalized against 
the surface velocity, by changing the measure of depth to normal-incidence time, for a constant 
background velocity equal to the surface velocity. This step also normalizes the slowness to the 
range 0 < p < 1. A happy side-effect of this normalization was to reduce substantially the 
numerical imprecision resulting from mis-scaling inherent in the use of physical units. 

The algorithm explained in the preceding subsections was used to extract estimates of es and 
r from the data of Figure 8. Parameters common to all experiments were 

or= 1, /~e = 10 -4 , Pr = 1. 

We found the small value of Pe necessary to rotate the gradient of J toward the "es-"direction. 
In all cases, we observed the same pattern. We began with the simple estimate Cinitial " "  

const. (-- 1), rinitial = 0. The first Newton step did not change the estimate of e0, since the 
incoherence of r = 0 vanishes for any velocity model. Otherwise put, since there are initially no 
reflectors, there is initially no move-out information in the reflectivity with which to update the 
velocity model. The first iteration is thus devoted entirely to minimizing 

Or 2 

which amounts to deconvolving the data in a le~t-squares sense to find an initial (nentrivial) 
estimate for r. Unless otherwise noted, each Newton step (including the first) is approximated 
by five conjugate-residual iterations. 
CAMWA 22: 4 / 5 - L  
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In the second and subsequent iterations, the velocity model is improved, and data-noise- 
generated incoherency in the reflectivity is reduced. 

Figure 9 shows the velocity-estimate results of five and ten Newton steps from both the 
constant velocity model (curve 0) and five Newton steps from the velocity model identified as 
the curve 1. The results are labeled as curves 2, 3 and 4, respectively. In all cases we used 8 
spline nodes (thus the velocity is determined by 5 parameters). This result is evidence for the 
independence of initial estimate of the final estimates. In particular, the results of ten iterations 
from a constant initial model, and five iterations from the "incorrect trend" initial model (curve 1) 
are virtually identical. The error is quite stable and is due to the fact that the target is not a 
member of the space of velocities defined by the eight-node spline basis--i.e., we get the "closest" 
eight-node velocity estimate. 

These estimates are reasonably accurate, especially considering the computational work re- 
quired. Apparently, the incoherence resulting from the erroneous basement velocity was insuffi- 
cient to cause further corrections, or possibly, the calculation of the incoherence is substantially 
inaccurate there---see comments below. Most of the reduction in J (about an order of magnitude) 
came in the first iteration, in which the data is deconvolved. Yet another order of magnitude is 
gained in the remaining iterations, in which the incoherence is reduced. 

Two major points have emerged from the experimental work conducted thus far. The first 
concerns the number of spline nodes: the outcome is in some ways quite sensitive to this number. 
For example, the experiment of Figure 9 was repeated with 16 nodes instead. Five, ten, and thirty 
iterations of the Gauss-Newton process produced the curves labeled 1, 2, and 3 in Figure 10. These 
look quite "wild," and certainly the mean-square error is much greater than is the case with those 
in Figure 9. Recall, however, that the principal role of the background model is to supply travel- 
times. A quite different picture emerges when the travel-times are plotted against the "true" 
travel time curve (from the velocity profile of Figure 6). In Figure 11 are displayed (normal- 
incidence) travel-time curves from the "exact" velocity, curve 1 from Figure 9, and curves 1 and 
2 from Figure 10. In fact, the latter two curves are closer to the "true" travel-time than is the 
former, despite their correspondence with velocity estimates having larger L2-error. This relation 
emerges more clearly when the (normal incidence) travel-time errors are plotted: see Figure 12. 

Apparently, the result of increasing the number of degrees of freedom in the model is to Mlow 
a closer fit to the travel-time, at least at points corresponding to major reflectors, but at the cost 
of an oscillatory error which may be large in the mean-square sense. This is easy to understand: 
the errors oscillate on a length scale too short to affect the travel-times between major reflectors, 
hence correspond to small eigenvalues of the incoherence Hessian. While the effect on travel- 
times of this sort of error is a priori small, it does produce irritating ambiguities in the velocity 
estimate, and (more important) has a negative impact on the convergence of the iterative scheme. 
Several approaches to the removal of this ambiguity suggest themselves. Trial-and-error deter- 
mination of the optimal spacing for spline nodes, as has been done here, is clearly unsatisfactory. 
Systematically increasing the number of nodes until a good fit is obtained requires some notion of 
an "acceptable" level of fit, and such information may itself only be obtainable by trial-and-error. 
A more satisfactory approach might be adaptive estimation of small Hessian eigenvalues, through 
the close relation of conjugate-residual iteration with the Lanczos algorithm [37, Chapter 10], and 
penalization of the corresponding eigenvector components. For the application of such "iterative 
deflation" to linear systems, see [38] (also [39]). Since the number of small eigenvalues associated 
with velocity perturbations is small, and since their characterization is somewhat independent 
of the current velocity estimate, this deflation strategy should work rather well in combination 
with the Gauss-Newton iteration. Finally, since the culprit is the oscillatory error, penalization 
of a velocity derivative may regularize this problem satisfactorily. Computational trials are in 
progress; results will be reported elsewhere. 

A second point concerned the density of p-samples. Inspections of Figure 8 clearly show that 
for large p and t, the move-out difference in neighboring traces may be a substantial fraction of 
a wavelength. As we have based our difference approximations to the incoherency on centered 
difference approximations to the coordinate derivatives (O/Ot), (O/Op), the possibility exists of 
severe undersampling in p. In fact, when we increased Ap to .02 (from .01 as in Figure 8), the 
computation analogous to that for Figure 9 gave completely erroneous results for the deeper part 
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of the velocity profile, apparently because the part of the incoherency due to deeper reflectors 
was grossly underestimated. We suspect that the residual inaccuracy in the deeper parts of the 
curves in Figure 9 is due to a milder version of the same effect. 

Besides finer sampling, methods to overcome errors in incoherency due to undersampling 
include higher-order difference formulas and difference formulas better adapted to the move-out. 
Indeed, low-order differences along even a crude approximation to the correct move-out curve 
should produce better results at coarser sampling than the coordinate derivatives used in our 
present code. These ideas are also under investigation. 

It might be objected that, while the output includes an estimate of the travel-time reflectivity 
section r(t,p), no estimate of the corresponding velocity perturbation er(z) is provided. The 
final refleetivity is not necessarily entirely coherent, and so does not correspond to any er(Z), 
strictly speaking. Nonetheless, an estimate may be produced by stacking r(t, p) on the basis of 
equation (5), i.e., 

or(z) [p"" ,~ dp v-~2(z, p) r(r(z, p), p). 
Pmax J 0 

This output might truly be regarded as the final image produced by an iterative before-stack 
migration, specialized to constant-density acoustics. 

We have implemented this post-inversion stack of the final reflectivity estimate, and display 
the results for the reflectivity corresponding to curve 3 in Figure 9. When stacked with constant- 
velocity move-out, the estimate of cr (z) is completely erroneous in phase and wrong by a factor of 
perhaps 3 in amplitude (Figure 13). When stacked with the final velocity estimate from Figure 9 
(curve 3), the estimated cr (z) has essentially correct phases and amplitudes for the major events 
(Figure 14), as compared to the cr(z) actually used to generate the data. Of course, none of 
the subwavelength-scale variations in the true cr(z) could appear in the reflectivity r(t,p) or in 
the stacked estimate, so a more interesting comparison is the p-tau section generated using the 
velocity from Figure 9 and the stacked cr(z) from Figure 14. This is displayed in Figure 15, and 
the difference of Figure 15 and Figure 8, plotted on the same scale, in Figure 16. 
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A P P E N D I X  

Computation o.f a Derivative 

This appendix details the calculation of the derivative of the incoherency 

W[c,r] = [:---p(v-2ro,)] o ( = - 2 p r +  [v-2:---~(ro-)] o(; 

(o, o,f,o j 
= - 2 r r + ~ - ~ ° ¢  ~ - P ~ J o  

in which have been used the identities 

"-2=-2P' ~ = P ' ~ '  ~=-PJo " "  

Clearly, 
~W = 6cW + 6rW, 

with 
6,w = W[c, 6r]. 

On the other hand, an easy calculation shows that 

(A.1) 

o 6c 

So, from the second line in (A.I), 

f' r±( , .o , ) ]  o, ,., a~W = 6(u -2o:.)  Lap at Jo 
(A,2) 

[ /o ] [/o 6c 1 8c ~ v -  2 8r = -2 ~ + ~ c  ~ o( ( ,or)  o ( - p  ^~c+~ -2 ^8 o ¢ ~ .  

An alternate form of (A.2) follows from the identity 

/ o ( / . ' ) / o '  I' < ~ = ~ (v o ~)~ 8(~ o 6 = 2  (,,oOa(~oO=2 0o~. 

So, using the notation 

( I" Q8c=~(~o¢)o,=^ 3 6c+~ c3) 

the first line in (A.2) may be re-written 
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For Section 3, we require an evaluation of &W when r is coherent, i.e., (5) is satisfied. Then, for a suitable 

Ac, 

Moreover, from (A.l), 

r= 
( 1 
A2 cp o c. 

c 

$(ToT)0[=2p(POC)r, 

so (A.2’) becomes 

6,W = -2p 2[Q6c.v-‘]oC.T+ 
1 

[u-2JQ6c] oCa> 

= -2p 2(C36C)VC 
{ 

-SC,+ (JQ,sc) v-1; (e) o} 

= -2p 2(Q6c)Ac4cr+ (Jwc) (2i~cy (5) +c-~; (s))} oc 
1 

= -2p{2[(~~c)n.-1+(J~sc)p2A3c~] (~)+[(Jwc) c-l~]$(%)}e. 

(A.3) 
For our computations, we used the formulas (A.l) and (A.2’) with 

(;(--I) oc 
computed as in the second line of (A.l). 


