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Résumé

Au cours des dernieres années, s’est développé un intérét tout particulier pour 'optimisa-
tion sans dérivée. Ce domaine de recherche se divise en deux catégories: une déterministe
et lautre stochastique. Bien qu’il s’agisse du méme domaine, peu de liens ont déja été
établis entre ces deux branches. Cette these a pour objectif de combler cette lacune, en
montrant comment les techniques issues de 'optimisation déterministe peuvent améliorer
la performance des stratégies évolutionnaires, qui font partie des meilleures méthodes

en optimisation stochastique.

Sous certaines hypotheses, les modifications réalisées assurent une forme de conver-
gence globale, c’est-a-dire une convergence vers un point stationnaire de premier ordre
indépendamment du point de départ choisi. On propose ensuite d’adapter notre algo-
rithme afin qu’il puisse traiter des problemes avec des contraintes générales. On montrera
également comment améliorer les performances numériques des stratégies évolutionnaires
en incorporant un pas de recherche au début de chaque itération, dans laquelle on con-

struira alors un modele quadratique utilisant les points ou la fonction coiit a déja été

évaluée.

Grace aux récents progres techniques dans le domaine du calcul parallele, et a la nature
parallélisable des stratégies évolutionnaires, on propose d’appliquer notre algorithme
pour résoudre un probleme inverse d’imagerie sismique. Les résultats obtenus ont permis

d’améliorer la résolution de ce probleme.

Mots-clés: Optimisation numérique, stratégies évolutionnaires, convergence globale,
décroissance suffisante, problemes inverses, imagerie du sous-sol, inversion des formes

d’ondes acoustiques, calcul parallele (HPC).






Abstract

In recent years, there has been significant and growing interest in Derivative-Free Opti-
mization (DFO). This field can be divided into two categories: deterministic and stochas-
tic. Despite addressing the same problem domain, only few interactions between the two
DFO categories were established in the existing literature. In this thesis, we attempt to
bridge this gap by showing how ideas from deterministic DFO can improve the efficiency
and the rigorousness of one of the most successful class of stochastic algorithms, known

as Evolution Strategies (ES’s).

We propose to equip a class of ES’s with known techniques from deterministic DFO.
The modified ES’s achieve rigorously a form of global convergence under reasonable as-
sumptions. By global convergence, we mean convergence to first-order stationary points
independently of the starting point. The modified ES’s are extended to handle general
constrained optimization problems. Furthermore, we show how to significantly improve
the numerical performance of ES’s by incorporating a search step at the beginning of
each iteration. In this step, we build a quadratic model using the points where the

objective function has been previously evaluated.

Motivated by the recent growth of high performance computing resources and the parallel
nature of ES’s, an application of our modified ES’s to Earth imaging geophysics problem
is proposed. The obtained results provide a great improvement to known solutions of

this problem.

Keywords: Numerical optimization, evolution strategies, global convergence, sufficient
decrease,inverse problems, Earth imaging, acoustic full-waveform inversion, high perfor-

mance computing (HPC).
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Chapter 1

Introduction

Nowadays, many practical optimization problems have become often noisy, complex,
and not sufficiently explicitly defined to give reliable derivatives. In this thesis, we are
interested in optimization problems where derivative information is unavailable or hard
to obtain in practice. For instance, optimizing large and complex systems often requires
the tuning of many parameters. These parameters are typically set to values that may
have some mathematical meaning or that have been found to perform well. The choice
of parameters can be done automatically using training data of simulations. In such
case, not only it is hard to find the derivatives with respect to the parameters, but also
numerical noise and probably non-differentiability issues may appear. As consequence,

we have seen a resurgence of interest in Derivative-Free Optimization (DFO) [52].

Derivative-based methods are more adapted to solve large scale optimization problems,
typically around 10® unknowns or more. These methods can be very efficient when the
starting point is accurate enough, but otherwise they suffer from stalled convergence
to spurious local minima for non-convex optimization problems. Thus the holy grail of
these problems is to warmstart the local optimization procedures by efficiently finding a
good initial guess without the need of sophisticated a priori knowledge on the objective
function (such as the problem structure, its background, ...). When the number of
unknowns included in the optimization can be reduced, it is possible to use a type of
DFO methods that are known for their ability to handle hard problems and to find
a good initial guess (a starting point leading to a better minimum). Once a starting
point is found, derivative-based methods can be applied to refine the problem solution.
In the scope of this thesis, we deal with a very large scale seismic imaging inversion
problem [167] where we show that some DFO methods can improve the optimization
procedure by finding an accurate initial guess from which one can initiate derivative-

based methods [126], without any physical knowledge.
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DFO methods do not use derivatives information of the objective function or constraints,
nor an approximation to the derivatives. Actually, derivatives approximation is often
very expensive and can produce misleading results due to the presence of noise. DFO
area can be divided into two categories, depending on the methods used to explore the
search space. The first category is deterministic DFO algorithms such as model-based
methods [49, 130] or direct-search methods [52, 108]. The major drawback of these
methods is that they can get easily stuck in a local optimum. The second category
is stochastic derivative-free optimization [122, 158], which has been employed to miti-
gate the defect of the local deterministic methods in the solution of difficult objective
functions (e.g. non-smooth and multi-modal). Stochastic derivative-free optimization
algorithms aim to be robust when dealing with multi-modal objective functions. Some
of these methods are generally inspired by nature, in the same way that random pro-
cesses are often associated with natural systems (e.g. mutations of genetic information,
annealing process of metal, molecular dynamics, or swarm behaviors of birds). Well-
known representatives of stochastic methods are simulated annealing [107], particle

swarm optimization [103] and evolutionary algorithms [26, 32, 91, 92, 142, 150).

Over the past, stochastic DFO was regarded by the deterministic DFO community as
another discipline, and only few interactions between the two DFO categories were
established. Meanwhile, stochastic optimization algorithms have been growing rapidly
in popularity thanks to some methods that became “industry standard” approaches
for solving challenging optimization problems. Such growth led the deterministic DFO
community to reconsider their position and it has started recently to include stochastic

frameworks in their research topics [27, 73, 115, 129].

Evolution strategies (ES’s) are one of these successful stochastic algorithms, seen as a
class of evolutionary algorithms that are naturally parallelizable, appropriate for con-
tinuous optimization, and that lead to interesting results [23, 37, 145]. Motivated by
the industrial demand, we propose in this thesis to equip a class of ES’s with known
techniques from the deterministic DFO community based on the step size control. The
incorporated techniques are inspired by the recent development in direct search meth-
ods [18, 52, 53, 74, 166]. Our modifications enhance the performance of the original
algorithm particularly for expensive objective function evaluation. The proposed ES’s
achieve rigorously a form of global convergence under reasonable assumptions. By global
convergence, we mean the ability of the algorithm to generate a sequence of points con-

verging to a stationary point regardless the starting point.
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The problem under consideration, in this thesis, is of the form

min  f(x)
st. €,

(1.1)

where f is a real-value objective function assumed to be bounded by bellow. The fea-
sible region 2 C R”™ of this problem can be defined by relaxable and/or non-relaxable
constraints. Relaxable constraints need only to be satisfied approximately or asymptot-
ically. No violation is allowed when the constraints are non-relaxable (typically, they

are bounds or linear constraints).

In Chapter 2, we give a short overview of existing deterministic derivative-free optimiza-
tion methods and their classification. We present the general framework of model-based
methods inside their derivative free context. We emphasize multivariate polynomial
interpolation techniques used to build different types of local polynomial interpolation
and regression models. We also address (directional) direct-search methods where the
sampling is guided by a set of directions with specific features. Key concepts particu-
larly related to the sampling set are also outlined (i.e. positive spanning set, a descent
direction and the cosine measure). We end up the chapter by reviewing some of the

existing global convergence results regarding the presented direct-search methods.

As our main motivation is to equip a class of ES’s with some direct search techniques,
Chapter 3 gives an overview of stochastic derivative-free optimization algorithms and
in particular ES’s, their appearance and history, their basic ideas and principles. We
present also some theoretical aspects of ES’s,in particular, the main existing global
convergence properties of ES algorithms. The chapter closes with a detailed description

of CMA-ES [85, 86] regarded as state of the art in stochastic derivative-free optimization.

In Chapter 4, we introduce our first contribution where we show how to modify a large
class of ES’s for unconstrained optimization in order to rigorously achieve global conver-
gence. The type of ES’s under consideration recombines the parent points by means of
a weighted sum, around which the offspring points are computed by random generation.
The modifications consist essentially in the reduction of the size of the steps whenever
a sufficient decrease condition on the function values is not verified. When the latter
condition is fulfilled, the step size can be reset to the one maintained by the ES’s them-
selves, as long as it is sufficiently large. We propose ways of imposing sufficient decrease
for which global convergence holds under reasonable assumptions (e.g. density of cer-
tain limit directions in the unit sphere). Given a limited budget of function evaluations,
our numerical experiments have shown that the modified CMA-ES is capable of further

progress in function values. Moreover, we have observed that such an improvement
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in efficiency comes without significantly weakening the performance of the underlying

method in the presence of several local minimizers.

The modified ES is extended to handle general constrained optimization in Chapter 5.
Our methodology is built upon the globally convergent evolution strategies previously
introduced for unconstrained optimization. Two feasible approaches are encompassed
to handle the non-relaxable constraints. In the first approach, the objective function is
evaluated directly at the generated sampled points. The feasibility is enforced through an
extreme barrier function. The second approach projects the generated sampled points
onto the feasible domain before evaluating the objective function. The treatment of
relaxable constraints is inspired by the merit function approach [74], where one tries to
combine both the objective function and the constraints violation function. In the first
numerical experiments, where we consider only unrelaxable constraints, we show that our
proposed ES approaches (using the extreme barrier or projection) is competitive with the
state of the art solvers for derivative-free bound and linearly constrained optimization. In
the second part of our numerical experiments, we test our algorithms based on the merit
function approach under the presence of both relaxable and unrelaxable constraints. On
the chosen test problems, the merit approach shows promising results compared to the

progressive barrier one [19], in particular, for relatively small feasible regions.

The modified ES, proposed in Chapters 4 and 5, evaluates the objective function at a
significantly large number of points at each iteration. These evaluations can be used
in different ways to speed up the convergence and make ES algorithms more efficient
especially for small budgets. The possibility that we explore in Chapter 6 is to use the
previously evaluated points to construct surrogate quadratic models for the objective
function f. The surrogate models are computed using techniques inspired from model-
based methods for deterministic DFO. Our hybrid algorithm has been designed to satisfy
the convergence analysis of our globally convergent ES. As expected, our experiments
show that incorporating local models improves the performance of our ES in both un-
constrained and constrained optimization problems. Regression models are found to be

the most efficient quadratic ones within our ES algorithms.

Our target application is the solution of an Earth imaging problem in geophysics. In
Chapter 7, without any physical knowledge, we use our globally convergent ES’s to find
a starting point for an optimization procedure that attempts to drive high-resolution
quantitative models of the subsurface using the full information of acoustic waves, known
as acoustic full-waveform inversion [167]. The chapter starts with a detailed description
of the considered problem. We outline also one possible way to adapt our ES to the
acoustic full-waveform inversion problem setting. A subspace approach is used for the

parametrization of the problem. Motivated by the recent growth of high performance
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computing resources, we propose a highly parallel implementation of our ES adapted to
the requirements of the problem. The initial results, obtained in this direction, show that

great improvement can be expected in the automation of the full-waveform inversion.

Finally, we draw some conclusions and outline perspectives in Chapter 8.



Chapter 2

Deterministic Derivative-Free

Optimization

Deterministic derivative-free optimization (DFO) methods either try to build models of
the objective function based on sample function values, i.e. model-based methods [49,
52], or directly exploit a sample set of function evaluations without building an explicit
model, i.e. direct-search methods [52, 108]. Motivated by the large number of DFO
applications, researchers and practitioners made a significant progress on algorithmic
and theoretical aspects of the DFO methods over the past two decades. The most
important progress concerns the recent algorithms and proofs of global convergence [17,
49, 52, 108, 149, 166]. By global convergence, we mean the ability of a method to
generate a sequence of points converging to a stationary point regardless the starting
point. A point is said to be stationary if it satisfies the first order necessary conditions,
in the sense that the gradient is equal to zero if the objective function is differentiable or,
in the non-smooth case, non-negativity following all directional derivatives of the Clarke
generalized derivatives [43]. The book by Conn, Scheinberg and Vicente [52] gives a good
review of the state of the art of deterministic DFO with a detailed description of the
theoretical background to ensure convergence. The main classes of globally convergent

algorithms for derivative-free optimization are:

1. Trust-region methods [49, 52, 130], where one minimizes accurate models in-
side a region of prespecified size. The models are for example built either using

interpolation and regression techniques [50] or radial-basis functions [168].

2. Directional direct-search methods [52, 108], where sampling is guided by sets
of directions with appropriate properties, i.e. sets of directions generating R"

with non-negative coefficients. Popular algorithms under this class are coordinate
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search, pattern search, generalized patern search (GPS) [17], generating set search
(GSS) [108], and mesh adaptive direct-search (MADS) [18]. We will often refer to

this class of methods simply as direct-search methods.

3. Simplicial direct-search methods [52, 128], where optimization is ensured
through simplex operations like reflection, expansion, or contraction. A popular
example is the Nelder-Mead method [128], which is regarded as the most popular

derivative-free method.

4. Line-search methods [52, 102], where one tries to optimize the objective function
using a simplex gradient. The latter is typically chosen as a gradient of linear
interpolation or regression polynomial model. A popular example is the implicit-
filtering method of Kelley et al [102].

Only trust-region methods and direct-search methods are going to be explored further
in this thesis. The remainder of this chapter is organized as follows: we begin by a short
overview about model-based methods, where we present the general framework of trust-
region methods including their relationship with regression and quadratic models. The
second section is devoted to direct-search methods where we present a class of globally
convergent directional direct-search methods. The convergence results on this chapter
are announced without proofs. For the proofs we refer the reader to [17, 49, 52, 108, 166]

and the references given there.

2.1 Model based methods

Model based methods can be seen as a combination of the trust-region framework with
interpolation models of the objective function. Basically in these methods, we construct
a local model of the objective function and estimate the new step by minimizing the
model inside a region. The model is constructed using points evaluated on a specific
point subset. Such point subset must verify some appropriate features so that the models
can be well-defined. In this section, we briefly describe the essence of this approach. For

more detailed analysis, the reader is referred to [49, 51, 52, 130].

2.1.1 Trust-region framework

The trust-region framework is usually used when derivative information of the objective

function is available or at least some estimates to the derivatives can be computed
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accurately. A typical trust-region method is as follows: at the k-th iteration, given the

current iterate z, a model of the form
T, 1T
mg(xp +8) = f(xk)—i—gks—l—is Hy s (2.1)

(where g and Hj, correspond to estimates of the gradient and the Hessian, respectively)
is minimized in a neighborhood around the current iterate defined by the ball (or the

trust-region)
Bz, Ar) = {r € R"||lz —ax| < Ax}. (2.2)

centered on xp and with the radius Ag; the norm |.|| could be an iteration depen-
dent norm, but is usually fixed. Different norm choices can be used depending on the
minimization problem, for instance in the unconstrained case, the standard Euclidean
norm is more adapted [49, 52]. The infinity norm was shown to be more suited when

considering bound constraints [49, 72].

The minimization of the model inside the trust-region leads to a new trial point xj +
sk. To determine if the computed point is successful or not, we evaluate the objective
function at the new point zp + s and compare the true reduction in the value of the

objective function with the predicted reduction by the model. If the ratio

fxk) — f(on + s)

my(xr) — mp(xr + si)

Pr = (2.3)
is larger than a constant vy > 0, the step is then accepted, so the model is updated. The
trust-region radius is possibly increased if the success is really significant. When the
step is unsuccessful (meaning pi < v4), the trial point is rejected and the trust-region

radius Ay is reduced.

The approximation model (2.1) is generally constructed using second-order Taylor series
expansion. However, in the derivative-free context, one uses alternative approximation
techniques that are not based upon the derivatives of the objective function f. Quadratic
interpolation is one of these techniques that can be combined with the trust-region
algorithms. For guaranteeing convergence, one needs to impose on the approximation
model to be locally accurate enough. The interpolation set as well as the mechanism
of maintaining it good enough inside the trust-region are described in the next section.
The upcoming results are general interpolation and regression results that have been
proven useful while dealing model-based optimization. The subscript k£ is dropped in
the following description for clarity reasons; without loss of information since we make

a focus on a given iteration of the trust-region algorithm.
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2.1.2 Polynomial interpolation and regression models

In this section, we consider the problem of interpolating known objective function values
at a given set Y of interpolation points, Y = {y*,¢y%,...,9?} C R”. We aim to find a

model m for which the interpolation condition

my’) = fG/) j=1....p (2.4)

holds. We say that a set of points can be interpolated by a polynomial of a certain
degree, if for the function f there exists a polynomial m such that (2.4) holds for all the

points in the interpolation set Y.

2.1.2.1 Polynomial bases

Let P? be the space of polynomials of degree < d in R™, and ¢ the dimension of this
space. Let {¢;}{_, be a given basis of P?, which is a set of ¢ polynomials of degree < d.

Thus, any polynomial m € P;f can be written uniquely as
q
m(z) = Y a;¢;(), (2.5)
j=1

where ay = (aq,... ,ozq)T € R?. Different polynomial bases ¢ can be considered, the
simplest and the most used polynomial basis is the basis of monomials, known as the

natural basis ¢. Such basis is defined using multi-indices in the following way [52]:

Let a vector o' = (al,...,a’) € N® be called a multi-index, and, for any = € R", we

'3
define % as

Let also

lof| = Zaé and o'l = H(aé!).
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The natural basis can then be written as follows:

1 1 1
¢ = {1,x1,m2,...,mn,21"%,1112,... ' -1 xd}. (2.6)

Consequently, for uni-variate interpolation (i.e. d = 1) we have ¢ = n + 1, and that

_ (n+1)(n+2)
- 2

q for a full quadratic interpolation (i.e, d = 2).

2.1.2.2 Polynomial interpolation

Using (2.5) and (2.4), the coefficients ay = (a1,...,a4)" can be found by solving the

following equation:
q . .
> sy = fy')  i=1,...,p,
=1
which can be written as a linear system of the form:

where the coefficient matrix M (¢,Y") and right hand side f(Y) of this system are

o1(yh) da(yt) - Byt fyh)
o1(y?) b2y - e(y?) ) ,

) ) ) ) and : , respectively.
d1(yP)  d2(yP) -+ g(yP) fP)

If the coefficient matrix M (¢,Y") is square and nonsingular, then the set of points Y is
poised with respect to the subspace spanned by ¢. This means that Y can be interpolated
by a unique polynomial from this subspace. When the interpolation set remains poised
for small perturbations, the set is called well-poised. If the set Y is poised, then one
can solve the linear system and find an interpolation polynomial. However, numerically
the coeflicient matrix M(¢,Y) may be ill-conditioned depending on the basis choice
{¢:}1_,. Thus, in general, the condition number of the matrix M(¢,Y") is a bad measure
of poisedness of Y. However, if one chooses the interpolation basis ¢ as the natural basis
of monomials ¢ and Y as a shifted and scaled version of Y such as ¥ C B(0;1), the
condition number of M (¢, Y) can be used to monitor the poisedness of the points set [52,
Theorem 3.14].

To incorporate models in the trust-region framework, one has to adapt the model con-
struction to different degrees of freedom (which depend on both the cardinality of the

interpolation set and the variable size). For instance, during the first iterations one has
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only few points and so can not always construct an interpolation model. When p =n+1
points are available, we can build a linear model which is known to be sufficient to make
some progress. As far as the number of function evaluations p exceeds n + 1 but not
more than %(n + 1)(n + 2), the coefficient matrix M(¢,Y’) contains more columns than
rows, and thus the interpolation polynomials defined by (2.4) are no longer unique for
quadratic interpolation. To overcome this problem, one uses under-determined mod-
els which have been widely used in many practical DFO implementations (see Section
2.1.2.3). Complete quadratic model can be built once the number of function evaluations
is equal to %(n + 1)(n + 2), such models being expected to lead to faster progress. As
far as the number of function evaluations p exceeds %(n + 1)(n 4 2), regression models
can be used (see Section 2.1.2.4). Regression models have been shown to be often better
than if we just select the "best’ subset of 2(n+1)(n+2) points and use the chosen subset

to build complete quadratic models [50].

2.1.2.3 Under-determined interpolation models

The interpolation polynomials defined by (2.4) are not unique in this case; different

approaches can be used [50, 52]:

Sub-basis models: A simple way to impose the uniqueness of the interpolation poly-
nomials can be ensured by restricting the linear system (2.7) to have a unique solution
(by removing ¢ — p columns of M (¢,Y), their corresponding elements of the solution
o are set to zero). This approach is in general not very successful, except if we have a
priori knowledge on the sparsity structure of the gradient and the Hessian of the objec-
tive function. Such information can be exploited by deleting the corresponding columns
in the linear system (2.7). Choosing p columns in M(¢,Y) corresponds to removing
polynomials from the basis ¢ to obtain a new one QNS As a consequence, the points set

Y has to be well poised with respect to the sub-space generated by gg

Minimum norm models: The second approach to get a unique polynomial solution
for the under-determined system (2.7) is to compute the minimum using ly-norm of the

solution ay. In this case, the problem to solve is defined as follows :

1
min L o3 s
st. M(¢,Y)ag = f(Y)
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Assuming that the coefficient matrix M(¢,Y") has full row rank, the solution of the
problem (2.8) is given by

ag = M(¢,Y)'f(Y), (2.9)

where M(¢,Y )" denotes the Moore-Penrose pseudo-inverse of M(¢,Y). The latter one
can be computed using a QR factorization or a singular value decomposition of the
coefficient matrix. The polynomial solution found in (2.9) depends on the choice of the
basis ¢. In practice, it has been observed that it is worthy to consider the minimum

lo-norm when one is working with the natural polynomial basis ¢ [52, Section 5.1].

Minimum Frobenius norm models: The error bounds on both the objective func-
tion and its gradient, for under-determined interpolation models, depend on the norm of
the Hessian of the model [52, Theorem 5.4]. Therefore, the motivation of this approach
is to build models with a minimum value of the norm of the model Hessian. In the
quadratic interpolation case, such minimization is equivalent to minimizing the coefhi-
cients oy related to the quadratic monomials. By splitting the natural basis ¢ into two
parts: a linear ¢r, = {1,21,22,...,7,} and a quadratic ¢g = {%m%,mmg, e %m%}, the

interpolation model can be written as follows:
m(z) = ajdL+ aLeo;
where a, and ag are the solution of the following optimization problem

min aQ

st. M(or,Y)ar +M(dg,Y)ag = f(Y)

The corresponding solution ag = [ar, ag] is called minimum Frobenius norm solution.
In fact, due to the choice of the natural basis, solving the problem (2.10) is equivalent
to minimizing the Frobenius norm' of the Hessian of m(x). The solution of (2.10) exists

and is uniquely defined if the following matrix is nonsingular:

FG,Y) = (M(a‘sQ,nM(q‘sQ,Y)T M(q‘sL,m)

M(quvY)T 0

The matrix F(¢,Y) is nonsingular if and only if the coefficient matrix M (¢r,Y") has full
column rank and M (¢q,Y )M (dg,Y )T is positive definite in the null space of M (¢r,,Y)
(the last condition can be ensured if the matrix M(¢r,Y) has full row rank). In this

!The Frobenius matrix norm ||.||r is defined for a square matrix A by the Z az;.
\/ 1<ij<n
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case, the sample set Y is called poised in the minimum Frobenius norm sense. The

coefficients oy, and ag are computed by solving first

o) = (V)

to find ay, and p the Lagrange multiplier of the problem (2.10), then by computing

ag = M(¢1,Y)" n we complete the model construction.

A variant of the Frobenius norm model is the least Frobenius norm updating of quadratic

models [137]. Instead of minimizing the Frobenius norm of the model Hessian, one tries

to optimize its change from the current iteration to the previously computed Hessian.

The new optimization problem can be formulated as follows:
: 1 old |2

min 3 fag = ag"llz _ (2.11)

s.t. Al(éL,)/ylL +7A4(¢M9,}7ﬁ1Q = {f(Yj

This optimization problem is solved through a shifted problem on ag;; = ag — oz"Qld of

the type given in (2.10).

Minimum Frobenius norm models and its variant have shown to be the most efficient and
successful to build quadratic models and are implemented in many software implementa-
tions [52, 138]. The minimization of the change in the Hessian of the model from one iter-

ation to the next works very well in some cases, in particular, when p = 2n+1 [137, 138].

Sparse quadratic interpolation: When the structure of the Hessian is sparse, it is
possible by using the /; norm to recover the sparsity of the constructed model in the
under-determined case [28]. In fact, instead of solving (2.10) we construct the following

optimization problem

minfag:

~ _ . (2.12)
s.t. A4(¢L,)/MIL'+'Al(¢Q,)/ﬁ1Q = f(Y)

where ag, ar, ¢r, and ¢¢ are defined as in (2.10). Solving (2.12) is doable, since it us a
linear program (LP). The sparse quadratic approach is shown to be more advantageous

when the Hessian of f has zero entries [28].
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2.1.2.4 Regression models

This section is devoted to the case where the number of the points p is more than q,
meaning that in the quadratic interpolation case, p exceeds 3(n + 1)(n + 2). Under
such consideration, the linear system (2.7) is overdetermined and has in general no
solution. The regression models key idea is to find the best solution that minimizes the
gap between the M (¢,Y)ay and f(Y). In other words, the coefficients g will be the

solution of the following linear least-squares problem :

min [[24(6,¥)ais = £(V)]: (2.13)

When the coefficient matrix has full column rank, the minimization problem (2.13) above

has a unique solution given by solving the normal equations
M(¢,Y) M(¢,Y)ay = M(¢,Y)" f(Y).

To solve this linear system, singular value decomposition or QR factorization of the co-
efficient matrix can be used. Regression models are very recommended to use, especially

when the objective function is noisy [50, 52].

2.1.3 An interpolation based trust-region approach

Different interpolation-based trust-region methods are available in the literature. The
existing methods can be divided into two categories, the first one being the methods that
work well for practical problems but are not supported by a convergence theory. The
second category includes the methods for which global convergence was shown, but that
are practically less competitive than the first category. The algorithm framework which
will be described in this section requires the usage of fully linear models, meaning models
with accuracy properties similar to those of first-order expansion Taylor model. A rig-
orous definition of a fully linear model can be found in [51, Definition 3.1] (see also [52,
Definition 10.3]). Algorithm 2.1 a derivative-free interpolation based trust-region algo-

rithm for which global convergence to first-order stationary points is proved [51, 52].

The algorithm as presented is simple, we check if the norm of the model gradient is
too small. If it is, we start the criticality step with the purpose of verifying if the
gradient of the objective function f is also small. At each iteration, many situations
can occur: an iteration is successful whenever p; > vq; the trial point is then accepted

and the trust-region radius is increased by a factor ~;n,. > 1 or kept the same. When



Chapter 2. Deterministic Derivative-Free Optimization 15

Algorithm 2.1: A DFO trust-region algorithm.

Initialization: Let an initial point z¢ and the value f(zg) be given. Choose an initial
trust-region radius Ag > 0. Select an initial model mg. Set k = 0 and the
parameters €, > 0; 0 <7 <1 < ipe, 0 <19 <4 <1, > 5> 0.

1. Criticality step : Apply some procedure when ||[Vmy(z)|| < €4 to find a new
model my, and a new trust region radius Ay such that Ay < u||Vmg(xr)| and my,
is fully linear on B(zy; Ag), and such that, if Ay is reduced, one has
BlIVmu(zg)|| < Ay

2. Compute the step : Compute a step s such as
s = argmingepa,) Mk(Tk + 8). (2.14)

2. Accept the trial point :
Compute f(zy + si) and

fxr) — f(ar + sp)

my () — mp(xr + sp)

Pk =

If py > 1y or if both py > vy and the model is fully linear on B(xy; Ag), then
Tr+1 = Tk + Sk and the model is updated to take into consideration the new
iterate, resulting in a new model my1; otherwise my 1 = my and x4 = .

4. Improve the model :
If pr < v1 use a model-improvement algorithm to certify that the model my, is

fully linear on B(xy, Ag). Let mygiq the new possibly improved model.

5. Update the trust-region radius: Set

[AIm min{’)/chk, Amax}] if Pk = V1,

YA if pr <11 and my is fully linear,
Apy1 = . .

Ay if pp <wv; and my is not

certifiably fully linear.

Increment k by one and return to Step 1.

vg < pr < v1 and the model is fully linear (see Algorithm 2.1), the trial point is again
accepted but the trust-region is decreased; such iteration is called acceptable. The third
situation occurs when py < 1 and the model my, is not certifiably fully linear (see [51,
Definition 3.1]). In this case, the geometry should be improved; the trial point may be
included in the sample set but it will not accepted as the new iterate; such iteration is
called model-improving. The last situation occurs when p; < 1y and my, is fully linear,
in this case only the trust-region radius is reduced, the other parameters (including
the current iterate) are kept the same; such iteration is declared unsuccessful. The

model-improvement cycle in Step 4 can be launched for an infinite number of iterations.
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However, when the models are assumed to be fully linear and uniformly bounded, one
can ensure that only finite improvement steps will take place [52]. The criticality step is
not invoked in detail (see [51, 52] for more details), but mainly in such a step one keeps
reducing the trust-region radius Ay and computes a fully linear model in B(zy; Ag)
until Ap < pl|[Vmg(zi)| is obtained. At the exit of the criticality step one also has
Ay = B[ Vmg(zg)| (with g > B).

2.1.3.1 The trust-region subproblem

In Step 2 of Algorithm 2.1, one needs to approximate a minimizer s; of the following

optimization problem (called trust-region subproblem):

min  mg(xg + S), 2.15
min (g3 (2.15)
where my, is the model for the objective function and B(0, Ag) is the trust-region. The
computation of such step s is crucial for the convergence theory of the trust-region
methods. In general, it is not necessary to find an exact minimizer of this optimization
problem as far as the computed step ensures some form of sufficient decrease condition,

meaning that the new step s; has to fulfill

mg(xk + sk) < mg(xk) — g,

where v, is a positive value satisfying suitable conditions [52]. The key point is to make
sure that the total decrease is at least a fraction of that obtained with the Cauchy step
skc [52, Chapter 10], for all iterations k:

m(zy) — mi(zp +sk) > Kpealm(ar) — my(zy, + 5§, (2.16)

where kf.q € (0,1]. The Cauchy step sg can be computed by backtracking a line
search along the steepest descent direction given by the gradient of the model. As a

consequence, the Cauchy step is defined by
st = —t§ gr, (2.17)
where tkc is given by
el

¢ = argmin my (2 — tgr)-
t>0:xp —tgr € Bi (xk,Ak)
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The Cauchy step satisfies the condition:

1 .
mi(x) — mi (e + sf) > 2||9k|m1n{”|£]l;||l|,Ak}. (2.18)

2.1.3.2 Global convergence

To prove global convergence to first-order critical points (convergence to a stationary
point regardless the starting point), it suffices to assume in addition to the assump-
tion (2.16), that the gradient of the objective function f is Lipschitz continuous. We
suppose also that the Hessian model is bounded (see [52] for a complete and detailed

convergence analysis).

Under such assumptions it is provable that the trust-region radius in Algorithm 2.1

converges to zero [52, Lemma 10.9]:

Lemma 2.1. Consider a sequence of iterations generated by Algorithm 2.1 without any

stopping criterion. Then under the above assumptions one has

lim Ay = 0. (2.19)

k—4o00

When the sequence of iterates is bounded, one can also prove that all limit points of the
sequence of iterates are first-order stationary points. The global convergence result is
then derived as follows [52, Theorem 10.13]:

Theorem 2.2. Consider a sequence of iterations generated by Algorithm 2.1 without

any stopping criterion. Then under the above assumptions one has

lim Vf(xg) = 0. (2.20)

k—+o00

2.2 Direct-search methods

Direct-search methods correspond to DFO algorithms where sampling, at each iteration,
is guided by a finite set of directions with some appropriate features. These methods do
not use any derivative approximation or model building. In this section, by direct-search
we mean the directional type; we refer the reader to [52, 102, 128] and references therein
for more details on the other types of direct-search methods. To describe direct-search

algorithms, we first present some related basic concepts.
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2.2.1 Basic concepts

To guide the optimization process, the directions used in direct-search methods must
have some appropriate features. One essential property consists on ensuring that at
least one of the chosen directions is descent. A direction d is said to be descent at the

point z, if there exists a positive value & such that:
Va € (0,a] , flz+ad) < f(x). (2.21)

When f is continuously differentiable at z and V f(z) # 0, all the descent directions d
fulfill —V f(z)"d > 0. To ensure the existence of such directions, some notions related

to positive spanning sets and positive bases are needed [52, 56].

2.2.1.1 Positive spanning sets and positive bases

The positive span of a set (PSS) of vectors [v1,...,v,] in R™ is defined as the convex

cone which is positively generated by [v1,...,v,] (meaning the set {v € R* : v =

T
> v, a; >0, i=1,...,1}) [52, 56].
=1

Definition 2.3.

e A positive spanning set in R™ is a set of vectors whose positive span is R™.

e The set [vy,...,v,] is said to be positively dependent, if one of the vectors is in the
convex cone positively spanned by the remaining vectors, i.e, if one of the vectors

is a positive combination of the others; otherwise, the set is positively independent.

e A positive basis in R" is a positively independent set whose positive span is R™.

Unlike R™ bases where one has exactly n vectors, the cardinality of a positive basis has
at least n + 1 and at most 2n vectors [15, 56]. Positive bases with n + 1 and 2n vectors

are referred to as the minimal and the maximal positive bases, respectively.
Example 2.1. Let B = [e,ea,...,e,] be the canonical basis of R™, where e; denotes
n
the vector with a 1 in the it" coordinate and 0’s elsewhere, and let e = Z e;, then
i=1
e Dg =[B , —B]isamaximal positive basis of R™, where —B = [—e1, —ea, ..., —ey].

e B , \_77\] is a minimal positive basis.
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Dy = Dg Do

FIGURE 2.1: A graphical representation of the maximal positive basis D; (left) and
the minimal positive basis Da (right) for R2.

In Figure 2.1, we depict two positive bases for R? (maximal and minimal).

As stated in [52, Theorem 2.4], if [v1,...,v,] is a positive basis for R” and W € R™*"
is a nonsingular matrix, then [Wwy,..., Wu,] is also a positive basis for R™. In other
words, having a positive basis in R"™, one can ensure the existence of infinitely many
different ones. Attractive properties of positive bases (explaining their use in direct-

search methods) are as follows:

Theorem 2.4. Let [vy,...,v,] be a positive basis for R™ and w € R™. then
Vie{l,...,r} vjwzo}:{w—o] (2.22)
Proof. Since [vy,...,v,] spans R™ positively, the vector —w can be written as

-
—w =Y v,
i=1
where each \; >0 foralli=1,...,7.

From (2.22) we have v;/w >0 for all i € {1,...,r} and so
T
0 < Z)\wiTw = —w'w < 0.
i=1
The only possibility is then w = 0. O
Thus by choosing w = —V f(x) in Theorem 2.4, positive bases can be used to check

either a point x € R" is a stationary point of the objective function or not.

Theorem 2.5. Let f be a continuously differentiable function with V f(z) # 0 for some
x € R™. Let [v1,...,v,] be a positive basis for R™, then there exists i in {1,...,7} such
as

—Vf(x) v > 0.
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Proof. Let w = —V f(x) where x € R". one knows that w ' w > 0 for all non-zero w and

since [v1,...,v,] spans R™ positively, one has

r
w = E )\iuiu
=1

where each \; > 0 for all i = 1,...,r. Hence,
T
wlw = Z )\Z-wTvi >0
i=1
T

from which we conclude that at least one of the scalars w vy, ..., w ' v, has to be positive.
O

In other words, Theorem 2.5 states that there must exist at least one descent direction
in a positive basis. In Figure 2.2, we identify the descent direction for the two positive

spanning sets D; and D in R2.

D1 D2

FIGURE 2.2: For a given positive spanning set and a vector w = —V f(x) (green), there
must exist at least one descent direction d (red) (i.e. w'd > 0).

2.2.1.2 Gradient estimates

By assuming that the set of search directions is a PSS, one is sure that for each iteration
a descent direction must exist in the PSS. However, in practice finding a good descent
direction may not be possible, see for instance Figure 2.3 where two vectors of the PSS

tend to be colinear opposite. A good descent direction can be defined as a direction

FIGURE 2.3: A positive spanning set with a very small cosine measure.

leading to a sufficient decrease of the objective function, which can be interpreted as:
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the more acute the angle between the descent direction and the negative gradient of
the objective function, the better the direction. A PSS gives descent directions at each
iteration but may not be good enough (depending on the level of acuteness) to ensure
convergence; in this case the PSS is said to be degenerate. Thus, the question that arises
naturally is: how to measure and control any deterioration in the PSS property to avoid
its degeneracy ? For that sake, we review the notion of the cosine measure for positive

spanning sets [108].

Definition 2.6. The cosine measure of a positive spanning set (with nonzero vectors)

or of a positive basis D is defined by

. v'd
cm(D) = min max ———-.
0#veRr deD ||v||||d]|
In R?, the cosine measure of a positive spanning set is the cosine of the half of the largest

angle 6 between two of its adjacent vectors (see Figure 2.4).

Dy
h=1
Cm(Dl) = cos(%) cm(Dg) = COS(%F)

FIGURE 2.4: In R?, for a given positive spanning set the cosine measure is defined by
cos(#) where 6 (blue) is the largest angle between two adjacent vectors.

Remark 2.7. The cosine measure of a positive set is strictly positive.

In terms of descent, a key point of the cosine measure can be seen as follows: given a

nonzero vector w € R™, one has

w'd
D) < _ .
(D) < e ol

Thus there must exist a d € D such that

w'd
D) < ————.
(D) < il

In particular if one chooses w = —V f(z), then
em(D)|[Vf (@)l < =V f(z)"d. (2.23)

A cosine measure close to zero indicates a deterioration of the PSS, meaning that the

PSS becomes degenerate. To see how the cosine measure can predict such deterioration,
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we emphasize the following example. Suppose that one has the following PSS :

= {(0) () ()}

where € > 0. The cosine measure of this set is ﬁ, then as € tends to zero the cosine
measure cm(D,) goes to zero also. If Vf(x) = (1 0)7, as shown in Figure 2.3, then
the quality of the descent directions in D, is poor (for small values of €) and the lower
bound of (2.23) is small compared to ||V f(z)]|.

To avoid such situations, the cosine measure must be uniformly away from zero; that is,
3¢ > 0;Ve € (0,400);cm(De) > & (2.24)

Such an assumption limits the deterioration of the positive spanning set and will be also
important to the analysis of the global convergence of direct-search methods (described
in the next section). We provide in the following example some values of the cosine

measure for known positive bases.

Example 2.2.

e If D = Dg, then cm(D) = ﬁ

e If D is a positive basis with n + 1 elements uniformly distributed (the same angle
between any two adjacent vectors), then cm(D) = L.
Based on the values of the cosine measure given in Example 2.2, one can explain why
the performance of direct-search methods may deteriorate for large scale optimization
problems, since as far as n grows the cosine measure goes to zero, and so the assump-

tion (2.24) does not hold anymore.

2.2.2 Direct-search methods
Direct-search methods are derivative-free methods for which each iteration is based on

the evaluation of the objective function at a finite set of points obtained from moving
along a PSS [17, 52].

2.2.2.1 Coordinate-search method

Coordinate-search method is a direct-search method that uses the maximal positive basis

Dg as PSS. An iteration of the algorithm can be described as follows. Let zj be the
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current iterate and oy, the associate step size. One evaluates the objective function f at
the following points
P, = {l‘k-l-akd:dGD@}

to find a point that decreases the objective function value. This step of evaluating the
objective function is called the polling step [36], the set P is known as the set of poll

points and Dg;, is the set of poll directions.

Figure 2.5 shows the polling process for a coordinate-search method. At each iteration
two situations are possible. The first is the successful iteration, meaning that a point
in the polling set Py is found to be better than the current iterate xy. In this case, the
new iterate 11 = xp + ardr € Py should achieve a simple decrease in the objective
function (i.e. f(xg+1) < f(xg)). The step size apyq of a successful iteration is either
left unchanged or increased by a factor v > 1. For instance, in Figure 2.5, the first four
iterations are all successful. The second possible situation occurs when no point, in the
polling set Py, ensures a simple decrease in the objective function. In this case, the step
size ay, is reduced by a factor § < 1 and the current iterate is kept unchanged. Such
iteration is declared unsuccessful, see for instance the fifth iteration in Figure 2.5. The
evaluation process of the objective function, can be done following different strategies,
opportunistically by moving towards the first evaluated point better than the current
iterate (see Figure 2.5), or in a complete way, by evaluating all the poll points and choose

the best point that improves the objective function.

Algorithm 2.2: Coordinate-search method.

Initialization: Let an initial point o and choose an initial step size ay > 0. Set
k = 0 and the parameters 0 < § <1 <.

Until some stopping criterion is satisfied:
1. Poll step: Evaluate the objective function f at the polling set points Pj following
the chosen evaluation process (opportunistic or complete).

If a poll point x + apdy is found such that f(zy + ardy) < f(xg), then set
Tp+1 = @ + agdy and declare the poll (and the iteration) as successful.

Otherwise, set z;11 = zj and declare the poll (and the iteration) as unsuccessful.
2. Update the step size parameter: If the iteration is successful, then set

41 = a (or agrq = yag). Otherwise, set a1 = Bay. Increment k by one and
return to Step 1.

The performance of Algorithm 2.2 can be significantly enhanced through an optional
step called a search step [36]. The latter one consists of using the previously evaluated

points to find a new point y such that f(y) < f(xp). If the search step is successful, the
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(e) Fifth iteration. (f) Sixth iteration.

FIGURE 2.5: Six iterations of the coordinate-search method with opportunistic polling

(following the order East/West/North/South). The initial point is xg = [—3.5, —3.5],

the starting step size is ap = 3. For successful iterations, the step size is kept unchanged,

otherwise it is reduced by a factor § = 1/2. The ellipses show the level sets of the

objective function f(z) = (z1 + 22 — 2)? + (¥1 — 22)2. The optimum is located at the
point [1, 1].

iteration is declared successful, the poll step is skipped and xy11 = y. The use of the
search step is for practical reasons and has no interferences in the global convergence
property. The next section will describe a general framework for direct-search methods

including coordinate-search method.
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2.2.2.2 Direct-search framework

In this section, we outline a general algorithmic description of direct-search methods,
such description includes the previous framework [18, 52] (based on integer lattice and
only simple decrease on the objective function value to compute the new iterate) as well
as direct-search methods based on randomly generated directions but with sufficient de-
crease condition to identify the new iterate [166]. To define the type of sufficient decrease

conditions we are using, we introduce the following notion of a forcing function [108]:

Definition 2.8. We call a non-decreasing continuous function p : R} — R% a forcing
function if it satisfies
t
tim 29—
t—0+

One example of such forcing function is p(t) = ¢2.

To describe the algorithm in the most general way, we will use p(.). The latter one will be
equal to the forcing function p(.) when the directions are randomly generated, or equal to
the constant zero function when the directions rely on integer lattices (i.e, MADS [17]).
Algorithm 2.3 gives a complete description of a typical direct-search algorithm. Its
framework can be formulated in the same way as coordinate-search, where the basic
idea of the algorithm relies on a polling step, in which we evaluate a set of points in
order to improve sufficiently the current iterate. By sufficiently, we mean that the new
point will be accepted only if a sufficient decrease condition is fulfilled. In other words,

a new point xxy1 # x is accepted only if

J(wrgr) < flar) — plowl|drl])- (2.25)

The new iterate x4 is found by exploring a set of points defined by a positive spanning

directions set Dy and a step size parameter ay:
P, = {l‘k +ard:de Dk}, (2.26)

The poll step and the iteration are declared successful, if a new point satisfying the
condition (2.25) is found. In that case, the step size parameter is kept unchanged or
possibly increased. When the poll step fails to find a new point x4, the iteration is
regarded as unsuccessful, the current iterate is kept the same and the step size parameter
is reduced. Again, the search step [36] is optional and has no impact on the convergence
properties of the algorithm. It takes benefit from the previously evaluated points to speed
up convergence and make the algorithm more efficient. A new point y will be accepted

only if it decreases sufficiently the objective function (i.e. f(y) < f(zr) — plak||dk|)),
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in such case the iteration is declared successful, xx41 = y and the polling step is skipped.

Algorithm 2.3: A direct-search method.

Initialization: Let an initial point xg and choose an initial step size ag > 0. Set
k = 0 and the parameters 0 < 81 < By <1 < 7.

Until some stopping criterion is satisfied:

1. Search step: Try to compute a point with f(y) < f(xr) — plak|ldk||) by
evaluating the objective function f at a finite number of points. If such point is
found, then set 11 = y, declare the iteration and the search step successful,
and skip the poll step.

2. Poll step: Choose a set Dj, of directions in R™. Evaluate the objective function f
at the polling set points P following the chosen evaluation process
(opportunistic or complete).

If a poll point zy + agdy is found such that f(zx + ardr) < f(z) — paklldel),
then set zj1 = x + apdy and declare the poll (and the iteration) as successful.

Otherwise, set x;11 = x) and declare the poll (and the iteration) as unsuccessful.
3. Update the step size parameter: If the iteration is successful, then set

i1 € lag,,vag]. Otherwise, set agi1 € [Brak,, S2ak]. Increment k by one and
return to Step 1.

2.2.3 Global convergence

The global convergence of direct-search methods, outlined by Algorithm 2.3, relies on
proving that the behavior of the step size parameter «y, will approach zero as an indicator
of some form of stationarity. Such result can be established using two different strategies:
the first one requires the iterates to lie on integer lattices (known as pattern search) [52,
108, 163]. The second strategy consists in imposing a sufficient decrease condition on
the objective function values to accept or not the new iterate [52, 166]. In this thesis,
only the global convergence theory related to the second strategy is outlined. The reader
is referred to the references [17, 18, 52, 108, 163] for the convergence theory when one

is requiring the iterates to lie on integer lattices.

Direct-search methods are traditionally analyzed under the assumption that all the

iterates lie in a bounded set and that the objective function is bounded below.

Assumption 2.2.1. The level set L(zg) = {z € R" : f(z) < f(x9)} is bounded. The

objective function is bounded below.

Moreover, the following assumption is also needed:
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Assumption 2.2.2. The distance between x; and the point x; + apd tends to zero if
and only if oy does:

li dill =0& 1 =0
dim, cve| | fim g = 0,

for any infinite subsequence K.

Such assumption can be fulfilled, if one chooses to work with random directions generated

in the unit sphere (i.e. ||dg| = 1).

By imposing the condition f(zy + ardy) < f(zx) — p(akl|dk]|), the former assumptions

lead the step size to converge to zero.

The sufficient decrease condition suffices to ensure that the step size parameter, as

defined by Algorithm 2.3, converges to zero [52, 108] as follows:

Theorem 2.9. Let Assumptions 2.2.1 and 2.2.2 hold. Consider Algorithm 2.3 when
p(.) = p(.). Then there exists a subsequence K of unsuccessful poll steps such that

lim oy, = 0.
keK

Since L(xg) is bounded (Assumption 2.2.1), there exist a point x. and a subsequence K

of unsuccessful iterations such that lim o = 0 and lim xp = .
keK kinK

2.2.3.1 Global convergence for smooth functions

By imposing a sufficient decrease condition, one is able to derive stationarity results in
the continuously differentiable case. But, before, we need to assume first that the search
directions in the poll step has to positively span the whole space and that the cosine

measures of such set is bounded away from zero.

Assumption 2.2.3. For all k, the set Dy, used for the polling has to be a positive spanning
set (PSS) and must satisfy ecm(Dy) > £ with £ > 0.

As observed originally in [108], global convergence can be derived as follows:

Theorem 2.10. Let Assumptions 2.2.1 and 2.2.2 hold. Consider Algorithm 2.8 under
Assumption 2.2.3. Assume also that f is continuously differentiable with Lipschitz con-
tinuous gradient on an open set containing L(xo). Then, there exists a subsequence K

of unsuccessful poll steps such that élrﬁ ag = 0. and
€
li =0.
VI

Since L(xg) is bounded (Assumption 2.2.1), there exists a point z,. such that V f(z.) = 0.
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2.2.3.2 Global convergence for non-smooth functions

The only major difference compared to the smooth case is that the search directions in
the poll step do not need to positively span the whole space. We introduce first some
basic notions for non-smooth optimization to outline the global convergence properties

of direct-search methods based on the sufficient decrease strategy [166].

The first concept is related to the stationarity results performed at limit points of specific
subsequences known as refining subsequences [17]. More concepts will be outlined in
relation with the non-smooth calculus [43] used to analyze Algorithm 2.3. A refining
subsequence can be formalized as a sequence of unsuccessful iterates driving the step
size to zero [17]. Theorem 2.9 states that the convergence properties of direct-search

methods are derived only for refining subsequences.

Definition 2.11. A subsequence {xy }rck of iterates corresponding to unsuccessful poll

steps is said to be a refining subsequence if limge g o = 0.

The type of directions along which a directional derivative will be proved nonnegative

are the so-called refining directions [17].

Definition 2.12. Let z, be a limit point of a convergent refining subsequence K. If the
limgey, di/||di|| exists, where L C K and dy € Dy then this limit is said to be a refining

direction for xz,.

Assuming that the objective function f is Lipschitz continuous near z,. The Clarke

generalized directional derivative [43] at z, along the direction d is defined by

f(z4;d) = limsup [z +td) — f(z)
" T—T4,t10 t ’

The following results are showing that the Clarke generalized directional derivative is

Lipschitz continuous with respect to the second argument[43]:

Proposition 2.13. Let f be a Lipschitz continuous near x, with constant Ly. Then the

function d — f°(x;d) is Lipschitz continuous in R™ with constant Ly.

The Clarke subdifferential is defined by
Of (zs) = {s € R": f°(x4;d) > (d,s),Vd € R"}, (2.27)

where (.,.) denotes the dot product of two vectors. When the function f is smooth,
a point x, is said to be stationary point if Vf(xz,) = 0. In the non-smooth case, the

stationarity is defined as follows:
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Definition 2.14. Let f be a Lipschitz continuous near x,. A point z, is said to be
Clarke stationary if f°(x.;d) > 0, Vd € R™, or, in other words, 0 € 9f(x.).

Definition 2.15. A function f is strictly differentiable at x, if f is Lipschitz continuous
near x, and for some & = V f(x,),Vd € R", f°(z4;d) = (£, d).

If f is strictly differentiable function and z, is a Clarke stationary point, then V f(x,) =
0. As consequence, the convergence results in the smooth case can be seen as a partic-

ularization of the ones obtained using the Clarke calculus in the non-smooth case.

Under appropriate assumptions, the Clarke generalized derivative can be proved to be
nonnegative along any refining direction for z,. When the sequence of refining directions
for z, is dense in the unit sphere, one can conclude that z, is a Clarke stationary
point [52, 166].

Theorem 2.16. Let Assumptions 2.2.1 and 2.2.2 hold. Consider a refining subsequence
{zk}ker, generated by Algorithm 2.3 and converging to x.. Assume that f is Lipschitz
continuous near . Then,

[o(xe;d) 2 0
for all refining directions d for x,.

If the set of refining directions for x. is dense in the unit sphere, then x, is a Clarke

stationary point of the objective function f.

2.3 Conclusion

In this chapter, we presented the main ideas, techniques, and algorithms used in deter-
ministic DFO methods. This overview is given in an attempt to prepare the reader to
what comes next. Chapter 3 will present stochastic DFO and more particularly evolution
strategies (ES’s), on which we will try to incorporate some of the techniques presented
in this chapter to ensure its global convergence and enhance the original performance
(see Chapter 4).

The model-based techniques presented in Section 2.1.2 will be used later to hybridize
them with evolution strategies. In fact, by incorporating a search step at the beginning
of each iteration, one expects to improve the algorithm efficiency and its convergence
speed (as in the search-poll framework of direct search, see Section 2.2.2). In such a
step, one can, for instance, build a quadratic model using all or some of the points where
the objective function has been previously evaluated and then minimize such a model

in a certain region.



Chapter 3

Stochastic Derivative-Free
Optimization & Evolution

Strategies

The early development of stochastic derivative free optimization methods was motivated
mainly by the need for methods that mitigate the defect of the deterministic ones for
hard optimization problems [122, 158]. The key idea of the introduction of randomness
can be implemented through two different approaches. The first one is known as localized
random search methods, where we construct an oriented path, starting from an arbitrary
point, and then apply some stochastic decisions to obtain the new point. The second
approach, known as volume oriented methods, contrary to the first one is based on the
fact that the whole search space must be sampled, consequently, this approach is been
seen as performing global search. In general, the main classes of stochastic optimization

methods are as follows:

1. Evolutionary Algorithms (EAs) [26], where the optimization process is in-
spired by biological evolution. Its basic idea is to evolve a population of candidate
solutions (individuals) using operators inspired by natural selection and genetic
variation. The selection process focuses the search to “better” zones (which im-
proves the objective function value) by encouraging individuals with a better func-
tion value to be a member of the next generation. Genetic variation is the second
operation that creates new individuals in the search space. During the second pro-
cess, one generally uses random changes of some particular points (mutation) and
mixing of information of individuals (recombination). The different mechanisms
used for natural selection and genetic variation give birth to many classes of EAs

such as :

30
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e Genetic Algorithms (GAs) [91, 92] were initially designed by Holland to cope
with binary encoded individuals. In the continuous case, the variables are
generally mapped to binary strings which sometimes leads to weak perfor-

mance [89]. Some successful practical application of GAs are reported in [42].

e Evolution Strategies (ES’s) were originally developed in [142, 150] and have
been widely investigated and tested (see, e.g. [30, 32] and the references
therein). In a large class of ES a certain number A of points (called off-
spring) are randomly generated in each iteration, among which p < A of them
(called parents) are selected. ES’s have been growing rapidly in popularity
and start to be used for solving challenging optimization problems [21, 79].
One well known instance of ES’s is Covariance Matrix Adaptation ES (CMA-
ES) [85, 86]. More details about ES’s and CMA-ES will be provided later in
this Chapter.

e Evolutionary Programming (EP) [64, 65] is similar to ES’s and relies on
mutation as a variation operator. The selection operator is a mixture of
tournament selection and truncation selection. By tournament selection, we
mean that the individuals are randomly chosen from the population. The
truncation selection means that only a fraction of the best individuals is
chosen. A relevant instance of EP is meta-EP [65] where one use a self-

adaptation process to guide the population, similarly to the ES’s.

¢ Differential Evolution (DE) [159], Learning Classifier System (LCS) [39] and

Neuro-Evolution (NE) [76] algorithms are also considered as instances of EA’s.

2. Particle swarm optimization (PSO) [103] is inspired by the movement of
swarms of birds or insects searching for food or protection. The movement of each
particle depends on both its local best known position and also the best known
global position (found by other particles). Such process is expected to move the
swarm toward the best solutions. An instance of PSO is PSWARM [164, 165],
where one combines pattern search and particle swarm. Basically, it applies a
directional direct search in the poll step (coordinate search in the pure simple
bounds case) and particle swarm in the search step (see Section 2.2.2 for the

definition of the search and poll steps).

3. Simulated Annealing (SA) [107] is inspired by the physical behavior of material
during the annealing process. The latter is performed by controlling the material
cooling to obtain regular crystals and push the system to end up with a minimum of
energy. By analogy, this physical process is translated to the following algorithm:
given a candidate solution, a neighbor random solution can be accepted (to replace

the candidate solution) if the neighbor solution is better that the candidate one in
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terms of the objective function or with a probability that depends on the change
of the corresponding objective function values and a control parameters, called
the temperature. When none of the above conditions are fulfilled, the current
solution is unchanged and the temperature parameter is gradually decreased to
zero. A relevant instance of AS is Adaptive Simulated Annealing (ASA) [94] where
one starts from a traditional simulated annealing in which a different probability
density function is used for each variable with separate temperature parameters.

Such process allows ASA to possibly escape local minima.

This chapter gives an overview of the ES algorithms, their origin and history, their
basic ideas and philosophy. It is organized as follows. The first section is intended to
provide deeper insight into the basic ideas and principles as well as the ingredients for
designing ES algorithms, such as mutation, recombination, and selection operators. The
second section is devoted to emphasize theoretical aspects of ES research. In particular,
the existing global convergence properties of ES algorithms. The chapter closes with a
detailed description of the CMA-ES method which is regarded as the state of the art in

stochastic derivative free optimization [145].

3.1 Evolution strategies

ES algorithms are firstly developed by Rechenberg and Schwefel [142, 150] in the early
1970s. From the beginning ES’s were designed to solve real and integer optimization
problems. The selection and the mutation mechanisms as well as the population concept
are all described by the conventional notation (u/p T X)-ES [30, 32], such notation is

introduced within a general ES framework in the following section.

3.1.1 Notation and algorithm

Evolution strategies try to optimize an objective function f with respect to an n-
dimensional set of decision variables y € %), known in the ES’s community as the object
variables. The search space ) can be the n-dimensional real space R™ [32] or the integer

space Z" [25].

At the k-th generation, ES’s work with a population 9B, of individuals aﬁc. An individual

aﬁc is represented by a decision variable yfc (its position), its objective function value

fl = f(y}) (known as the fitness), and possibly a set of endogenous parameters s;. The

parameters sfc control the capacity of the strategy for adaptive evolution as one of the
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particularities of the ES’s (i.e. evolvability).

ah L (ko sk Sh)- (3.1)

A new population of A individuals (called offspring), noted ﬁﬁc, is generated from a set
of p parent individuals afk The offspring population contains A individuals, denoted
%, while the parent population, denoted B 5 contains p individuals. To create a new
offspring population, one uses p parents, where p is the mixing number. When p = 1
(known as cloning), no recombination is used, this case is usually denoted by (u, A) or
(1 + A) depending on the regarded selection strategy. The algorithmic description of
(u/p T X)-ES is outlined in Algorithm 3.1. The symbol ’T’ outlines the type of the
selection used to create the new parent population. The different possible selection

schemes are emphasized later in Section 3.1.3.

Algorithm 3.1: A general framework for (u/p T \)-ES.

Initialization: Choose positive integers A, p and p such that A > p > p. Initialize u
individuals a) = (v}, s, £0) , 1 =1,..., . Let B := (a},...,al). Set k= 0.

Until some stopping criterion is satisfied:

1. Offspring Generation:

mj, = marriage(BY, p),

sk := s_recombination(m}),
Yt := y_recombination(m}),
52 = s_mutation(s',),

gt =y mutation(y},),

fi = f),

forall  =1,...,\. Let the new offspring population be
{(giﬁgéﬂ’ ) l:]-a?/J'}

2. Parent Selection:

If (the comma-selection type (u, A)) then
By, = selection(BY, 1)
If (the plus-selection type (u + A)) then
B, = selection(BF, B}, 1)

Increment k& and return to Step 1.
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Algorithm 3.1 can be described as follows: given a generation k, the parent popula-
tion ‘Bi produces a new offspring population 25{,. This production process begins with
the marriage step using p individuals , denoted m%c, which are randomly chosen from
the parent population of size . The choice of individuals for marriage is completely
randomized and independent of the objective function f. After the marriage, the recom-
bination process of individuals is launched (see Section 3.1.2). The offspring generation
is completed with the mutation operator (see Section 3.1.4). The parent selection is

then performed using the chosen selection mechanism (see Section 3.1.3).

3.1.2 Recombination mechanism

ES’s recombination is inspired by natural sexual reproduction in order to increase the
genetic diversity of the offspring. For (u/p T A)-ES, the recombination operator uses
information only from p individuals (selected using the marriage operator) to produce
one offspring. T'wo recombination operators are possible depending on wether the search
space is continuous or discrete, known as intermediate recombination and discrete re-

combination, respectively.

Intermediate recombination deals with all p married parents by computing a weighted
mean of all of them. Let (a,,)1<m<, be the chosen p parent individuals. The new

recombinant offspring individual a is the computed as follows :

12
a = - Z Wyn Oy« (3.2)
P m=1
The weights used to compute the means belong to a simplex set {(w!,...,w?) € R? :
le w'=1,w’>0,i=1,...,p}, and their values reflect the contribution of each of the

parents in the weighted mean. The way the weights are chosen has an important impact
on the efficiency of the algorithm [12]. The intermediate recombination procedure is well
defined for real-valued search space R"™, but in the discrete search space case, one may

need to round y given in (3.2) to map the discrete domain.

Discrete recombination combines randomly parameters value from p married parents, the

ith component of the recombinant object y and s are set to the i*" component randomly

(uniformly) selected from the parent individuals. This means that for i =1,..., n:

)i = (ym,)i  and  (s)i = (sm,)is (3-3)

where m; is randomly chosen in {1,..., p}.
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3.1.3 Selection mechanism

The main purpose of the selection operator is to guide the generations towards better
regions in terms of the objective function value. Thanks to the selection mechanism
an ES proceeds following a natural evolution. The selection process is inspired from
natural selection where some beings (animals and plants) have to be strong enough to
get a chance to survive. The selection operator tries to ensure such natural paradigm for
all the new parent population. In Algorithm 3.1, the new parent population for the next
generation is produced by ensuring that only the p best individuals from the population,
at the k-th generation, will survive. This selection mechanism is known as a truncation

selection. The new parent population is then as follows:
1: :
Bl o= (a7, a7, (3.4)

the notation ;"7 means that one takes the m'* best individual out of v individuals [11,
32].

As mentioned in Section 3.1.1, two different selection operators are possible, depending
on whether or not the parent population, at the generation k, is included: the comma-
selection, denoted by (i, A), and the plus-selection, denoted by (u + M), respectively.
For comma-selection, the new parent population %i 41 is chosen only from the offspring
individuals 287. In this case, the selection is performed based on v = A individuals.
The plus-selection takes into account both the the new offspring population 5% and the
old parents population %Z. In contrast to the first selection type, the plus-selection is
performed using v = p + A individuals. The comma-selection variant of the algorithm
can be good for dynamic problem instances given its capability for continued exploration
of the search space, whereas the plus-selection variation can be good for refinement and
convergence. In fact, the plus-section ensures that only the best individuals survive so
far, thus such selection can be seen as elitist. Elitism can be a sufficient condition to

ensure the global convergence of the ES’s.

3.1.4 Mutation mechanism
3.1.4.1 The concept

Beside the selection operator, the mutations are another important process for an ES.
The mutation process is at the origin of the genetic variations. If the selection mech-
anisms try to exploit the objective function information to guide the search into to

promising regions, the mutations try to use only the search space information from the
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parent population (no information from objective function is exploited). Consequently,
no function based preference from the selection process is taken into consideration. The
mutations depend on the problem structure, therefore its difficult to establish a gen-
eral methodology. Meanwhile, Beyer [30] suggests some rules that may help during the

mutation design such as reachability, scalability, unbiasedness, and symmetry.

Reachability This rule ensures that any given parent individual state aP, can be
transformed into any other (finite) individual state @ in a finite time. An ES needs to

fulfill the reachability requirement particularly for proving its global convergence.

Scalability The scalability for the mutations operator states that the search length
(strength mutation) should be tunable in order to adapt the evolution to the properties
of both the objective function and the search space, known as fitness landscape. The
secret behind the scalability is evolvability of the ES which favor improvement steps by
using a smooth evolutionary random path to adapt the fitness landscape towards the
optimum solution [8]. The scalability is defined as the capacity of a system for adaptive
evolution. Again, by evolvability we mean the ability of the ES to generate adapted

population, and thereby evolve through natural selection.

Unbiasedness The main condition is that the mutations should introduce no bias.
This assumption is shown to be equivalent to have a mutations operator following the
maximum entropy principle, meaning that the mutations distribution which best rep-
resents the current state of knowledge is the one with the largest entropy [99]. In the
real-valued search space R", the maximum entropy principle if the normal distribution

as mutation operator is chosen.

Symmetry This rule is strongly connected to the previous one, but not equivalent. It
means that the mean of the changes introduced by the mutation distribution should be

Zero.

3.1.4.2 Example in real-valued search spaces

To explain more precisely the definition of the mutation operator, we consider the fol-
lowing example. The first requirement to fulfill is that the mutation distribution should
follow the maximum entropy principle. As mentioned earlier, in the real-value search

space, i.e, ) = R", such a requirement is shown to be equivalent to work with normal
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distributions [99].
y =y+od (3.5)

with d is a random vector generated following multivariate normal distribution N (0, I,)

of mean zero and identity matrix as covariance matrix. In this case, § obeys the density

~ T ~
P(y) = \/%anexp ( - W) (3.6)

As the expected change is zero, such a distribution is symmetric and introduces no bias

function
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FIGURE 3.1: A scalar density function for a normal distribution.

(see Figure (3.1)). Moreover, small perturbations around the point y are more likely
to take place when the mutation strength ¢ is small. Thus, the scalability requirement
can be fulfilled using a normal distribution. Based on the given mutations distribution,
we need only one scalar parameter o as endogenous parameter to control and adapt the
evolution, such situation is known as isotropic mutations. Figure (3.2) depicts a 2-D
situation where the adaptation process using a non-isotropic mutations can speed up
the optimization process. It shows a simple case where axis-parallel mutations lead to

a better exploration of the search space.

The mutation distribution can be improved if one has a proper evolution parameter o; for
each component y; of y using non-isotropic Gaussian mutations. The set of endogenous
strategy parameters associated will be in this case an n-dimensional vector of standard
deviation parameters (o1, ...,02). In this situation, the mutation distribution will be of
the form

y = y+5d, (3.7)
where d is drawn from a normal distribution N (0, I,,) and S is a diagonal matrix.

The most general situation occurs when the mutation distribution can be also arbitrarily

rotated in the search space. Figure (3.3) outlines a situation where the rotation, see
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(a) Isotropic mutations. (b) Non-isotropic mutations parallel to the y-axis.

FicURE 3.2: A 2-D situation where non-isotropic mutations, parallel to the y-axis,
enhance the performance. The ellipses show the level sets of the objective function
f(@) = (21 + 22 = 2)* + (21 — 22)*.

Figure (3.3(d)), can lead to better performance compared to both the isotropic mutations
(Figure 3.3(a)) and non-isotropic (Figures (3.3(b)) and (3.3(c))). The rotation process
actually reflects the distribution correlation between the z components, contrary to the
assumption we made before where we assume that the components of the vector y are

independent.

Let R be a rotation matrix, the new mutation distribution is of the form
7 = y+ RSd, (3.8)

Such equation is equivalent to assume that the mutated vector § is drawn from a normal
distribution of mean y and covariance matrix C = RSSTR". Thus, the new density
function of g is as follows:

B(5) Lg—wTe - y>) , (3.9)

1 1
= —F—F——=—exp| —
Vo e 0) o F < 2
where det(C) corresponds to the determinant of matrix C.

Matrix C' is symmetric, therefore only n(n + 1)/2 endogenous strategy parameters are
needed to define properly the mutation operator. Such an adaptation process for the

mutation operator explains the success of the algorithm CMA-ES [86].
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(c) Non-isotropic mutations parallel to the x-axis. (d) Rotated non-isotropic mutations.

FIGURE 3.3: A 2-D situation where it is more efficient to have correlated Gaussian
mutations. The ellipses show the level sets of the objective function f(z) = (1 + 22 —
2)2 + (1’1 — 1'2)2.

3.2 A class of evolution strategies

This section focuses only on a subclass of (u/p T A)-ES denoted by (u/pw, A)-ES in

preparation to what comes next. In fact, all the contributions of this thesis are related

to (uu/pw, A)-ES.

3.2.1 Concept and algorithm

The (u/pw, A)—ES is a class of ES’s which evolves a single candidate solution. At the k-th
generation, the new offspring y,ﬁ IRTRp ,yfc‘ 1 are generated around a weighted mean z, of
the previous parents (candidate solution). The symbol “/uw” in (u/puw, A)—ES specifies
that p parents are ‘recombined’ into a weighted mean. The parents are selected as the
1 best offspring of the previous iteration in terms of the objective function value. The

mutation operator of the new offspring points is done by y,iﬂ = —}—a,lfsdi yi=1,..., )
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where d}'c is drawn from a certain distribution C, and UES is a chosen step size. The
weights used to compute the means belong to the simplex set S = {(w!,... ,wH) € R¥ :
Pw' =1Lw >0,i=1,...,u}.

The (u/pw, A)-ES adapts the sampling distribution to the landscape of the objective
function. An adaptation mechanism for the step size parameter is also possible. The
latter one increases or decreases depending on the landscape of the objective function.
Figure 3.4 depicts a 2-dimensional illustration, where one starting from an isotropic

distribution is able to adapt its evolution to the landscape of the objective function.

(a) The first generation. (b) The second generation. (c) The third generation.

FIGURE 3.4: A 2-D illustration of an evolution strategy. Generation after generation
the sampling distribution and the step size are getting adapted to the landscape of the
objective function. The ellipses show the level sets of the objective function.

The algorithmic description of such class of ES then can be given as follows:

3.2.2 Some existing convergence results

For almost three decades, many theoretical works on evolution strategies have focused
on convergence toward optima but under very mild assumptions either on the objective
functions or on the endogenous strategy parameters [20, 24, 26, 30, 33, 75, 96, 97,
100, 151, 169]. For the objective functions, the sphere problem is among the most
frequently studied case [20, 30, 33, 100, 151, 169]. Such problem may seem simple, but
the convergence theory behind is rather not trivial [20, 33, 100].

In addition to the assumption on the objective function, most of the existing global
convergence results consider simple schemes of Algorithm 3.2. By global convergence, we
mean convergence to a stationary point, with a probability one, regardless the starting
point. The most theoretical studied algorithm is known as (1, \)-ES where the new
parent is defined as the best offspring (see the reference [169] and the references therein).
The first convergence results were mainly obtained using martingale theory tools [30,
151].
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Algorithm 3.2: A general framework for (u/pw, \)—ES.

Initialization: Choose positive integers A and p such that A > p. Choose an initial
xg, an initial step length ogs > 0, an initial distribution Cy, and initial weights
(Wh, ... ,wh) € 5. Set k=0.

Until some stopping criterion is satisfied:

1. Offspring Generation: Compute new sample points Yz11 = {y,hl, . ,y,/c\ﬂ}
such that
i _ ES ji
Ypy1 = Tk + 03 dy,

where df,'€ is drawn from the distribution Cy, ¢ =1,..., \.

2. Parent Selection: Evaluate f (y}C 41), 1 =1,..., A, and reorder the offspring points
in Y1 = {gjiﬂ, e g},i‘H} by increasing order: f(gj,iH) <... < f(gj]’C\H).
Select the new parents as the best u offspring sample points {gjiﬂ, e ,g;jﬂ},
and compute their weighted mean

7
_ i~
Tp41 = E WeYk+1-
i=1

3. Updates: Update the step length UE_EI, the distribution Cg41, and the weights
(wé_H, e wif_i_l) € S. Increment k and return to Step 1.

More recent convergence proofs are based on Markov chains theory, Bienveniie and
Frangois [33] and later Auger [20] proved convergence results for (1, A\)-SA-ES* on the
sphere function. The first authors [33] showed that the convergence, or divergence, is
conditioned by the ability to prove some recurrence properties of a specific Markov chain.
Auger [20] proves sufficient conditions to ensure asymptotic log-linear convergence or
divergence of (1, A)-SA-ES algorithm. By log-linear convergence, we mean convergence

of 1/k1n(||xg||), where zy is the parent at the generation k.

For non-convex objective functions and using measure theory, Greenwood and Zhu [75]
proposed a globally convergent version of (1,\)-ES. A self-adaptation that uses 1/5-
success rule was incorporated in (1, A)-ES, meaning that depending on the percentage
of success mutations Ps (i.e. individuals that have better objective function values
compared to their parent) recorded over a certain number of generations. The mutation
strength (i.e. the step size) is increased after a certain number of generations, if P; > 1/5,

and decreased otherwise.

For spherical objective functions?, Jebalia and Auger [100] prove log-linear convergence

1SA stands for Self-Adaptive
2f is said to be a spherical function if there exists a strictly increasing function g such as Vz €

R™ f(x) = g(llz[)-
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of Algorithm 3.2 in the isotropic case (using an isotropic mutation) and under a scale-

invariant adaptation rule (i.e. for a given generation k one has o> = o||z)|| where

o> 0).

3.2.3 CMA-ES a state of the art for ES

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) [85, 86] is regarded
as one of the most relevant instances of (u/pw, A)—ES emphasized in Algorithm 3.2. The
success of such method has many reasons. In fact, CMA-ES adapts both the sampling
distribution as well as the step size parameter to the landscape of the objective function.
One decreases or increases the exploration depending on the landscape of the objective
function. CMA-ES is also known to be invariant upon monotonic transformations of the
objective function; these transformations are preserving the ranking of the solution (i.e.

selection mechanism) which is regarded as a robustness property of CMA-ES [69].

Figure 3.5 depicts the first six generations of CMA-ES on a convex problem. Starting
from an isotropic variance, the offspring population is getting adapted to the landscape
of the objective function. The secret behind such adaptation processes will be outlined
in the rest of Section 3.2.3. Starting from Algorithm 3.2 at a given generation k, we will

CMA-ES
k

now describe how the distribution C as well as the step size o are updated in

the CMA-ES framework.

3.2.3.1 The parent update

In Algorithm 3.2, the directions d;€ used for the offspring generation are generally drawn
from a given distribution Cx. In CMA-ES context, the distribution is chosen to be a
multivariate normal distribution of mean zero and covariance matrix Cj, denoted by
N(0,Cf). Following such choice for the mutations distribution, one fulfilled all the
mutations requirements specified earlier in Section 3.1.4. The offspring generation is

then completed as follows:
y,icJr1 = zp + o MAESN(0,Cp) L fori=1,...,\

The covariance matrix C}, reflects the landscape of the objective function, and serves to
steer the exploration to better zones. The step size O'ES is used as a global scaling factor
for the covariance matrix. More insights on both the covariance matrix and the step size
parameter will be outlined later in Sections 3.2.3.2 and 3.2.3.3. After the generation of

A individuals, the mean parent is updated using the p best individuals in terms of the



Chapter 3. Stochastic Derivative-Free Optimization & FEvolution Strategies

43

(e) Fifth generation. (f) Sixth generation.

FIGURE 3.5: A graphical representation of a 2-dimensional run of CMA-ES where
T = [—4, —4], the initial step size o§™MAFS = 1, and the covariance matrix is isotropic
(i.e. Cy = Iz). The population size is A = 10, the new parent is chosen using the
¢ = 5 best individuals. The ellipses show the level sets of the objective function
f(x) = (z1 + 29 — 2)% + (w1 — 22)2%. The optimum is located at the point [1,1].

objective function:
Iz Iz

i ~1 CMA-ES T
Thi1 = Y Wilier = T+ 0} > widiy,
=1 =1
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where g, | (resp. J}C +1) is the the i*" best individual (resp. direction) out of the offspring
generation. The number p is chosen to be equal to % and the weights (w;)i<i<, are
normalized, i.e. satisfying > ‘| w; = 1. The default weights are defined as follows:

w; = In(p +2) — In(i) fori=1,...,pu.

pln(p +2) —In(u!)’

3.2.3.2 Covariance matrix update

The adaptation of the covariance matrix targets to include second order information of
the underlying objective function (similarly to the inverse Hessian matrix approxima-
tion in the Quasi-Newton method in classical optimization) [130]. The update of the
covariance matrix is based on two update terms: the rank-one update term [85] and the
rank-y update term [82]. The first one is computed using the so-called evolution path
p;, € R, updated iteratively as

1 5

Pig1 = (L —co)pp + [ce(2 — co)pp]? (Tp41 — xk)/algMA s,

where ¢, € (0,1] is a positive constant depending on the problem dimension n, the
quantity puy = 1/ SR w? is a measure characterizing the considered recombination,

and is known as the variance effective selection mass.

The evolution path reflects the steps followed by the mean parent, the rank-one update
consists in adding to the covariance matrix a term that geometrically deforms the density
in the direction p (the next generation is more likely sampled in the direction of pf 41
such statement is equivalent to adding the term (piJrl)(piH)T to the covariance ma-
trix). The rank-mu update term is composed of the rank-mu matrix 3% w; (d3)(d%)"
such update turns out to conduct a natural gradient® update of the distribution param-

eters [13]. Thus, CMA-ES updates the covariance matrix of Cj as follows:

Cri1 = (1=e1 =) Cp + e1(pi) i) | + ¢ sz (di,)(d

The initial evolution path pf, c., ci1, and ¢, are the algorithm parameters (see [78] for

the default values).

3The natural gradient is defined as the gradient of J(6) the expected objective function under a
search distribution p(z/6), namely J(0) = E(f(z)/0) = [ f(z)p(z/0).
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3.2.3.3 Step size update

The CMA-ES’s step size is adapted iteratively according to:

CMA-ES CMA-ES Co ||p‘,§+1 l
= e |
ok T (da <E|w<o, D ’

where E|N(0,1)]| = v2I(%EL) /T(%)* is the expectation of the £, norm of an N(0,1)
distributed random vector, the constants c,,d, are positive constants, and pj,, € R" is
the current state of the so-called conjugate evolution path [84]. The latter one is updated
using a rank-one update multiplied by the covariance matrix inverse square root of the
last generation, i.e. meaning [C’k]_% (21 — 1) /o SMAES | The complete update formula

is as follows:

1
Pii1 = (L =co)pf +1/co(2 = co)pp[Cr] ™2 (Tpq1 — Ik)/UgMA‘ES

)

the constants p§j, ¢, and d, are parameters of the algorithm (see [78] for the default

values).

3.2.4 Local meta-models and ES’s

The main difficulty for applying ES’s to real-world applications is that ES’s may need
a large number of objective function evaluations to converge. Moreover, the objective
function evaluations are not always cheap in terms of CPU cost in many real-world
applications. Either an explicit objective function may not be available, or its evaluation
can be computationally very expensive. In all cases, it is necessary to estimate the
objective function using model based techniques, known as fitness approximation in the
evolutionary computation community. For ES’s, various model based technics have been
proposed. Jin [101] presents a comprehensive survey of the most popular model based

technics currently used with evolutionary algorithms, in particular, evolution strategies.

(1/ pw s A)—ES does not use explicitly information from the objective function except for
the ranking. Thus, a model that can preserve the ranking of the objective function would
be enough. On the light of such idea, Kern et al [105] proposed an algorithm where the
quality of a meta-model is measured using only the information coming from the change
in the exact ranking of the best individuals. The construction of the meta-model is based

on a locally weighted regression assisted by an approximate ranking procedure [147].

4T'(.) denote the Gamma function, i.e. T'(t) = f0+°° zt e %da.
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3.2.4.1 Locally weighted regression

Earlier in Section 2.1.2 of Chapter 2, we emphasized approximation model technics
based on a second-order Taylor series expansion. Basically, in a derivative-free context,
one uses quadratic interpolation to build the model. Based on the same idea, locally
weighted regression [14] attempts to build a model using an interpolation set (known as
training data in the evolutionary computing community). Thanks to a kernel weighting
procedure, the constructed models tend to be more adapted to the topography of the
objective function. An algorithmic description can be made as follows. Let z € R™ be the
point to be evaluated with an approximate interpolation model m. Let Y = {yi}lgigp be
an interpolation set of p points near the query point  and {f(y")}1<i<p the associated
objective function values. The local model for a given interpolation set at the point x

is of the form:
q
m(z,ag) = Y a;b;(),
7=1

where oy = (v, .. ., ay)" € R? and {¢:}L_, be a given basis of P? which is a set of ¢

polynomials of degree < d (see Section 2.1.2 of Chapter 2 for more details).

Rather than minimizing directly the gap between the model values {m(y’, )}1<i<, and
the interpolation values {f(y)}1<i<p to find the best coefficients a, locally weighted
regression minimizes the same gap but by mostly taking into account more the closest
points. The procedure is equivalent to minimizing a training criterion function C' with
respect to the interpolation coefficients a4 of the local model m at the point x. The
criterion function has the following form:

_ z J 72 d(yj , T)

0 = 3 [imiersae) ~ P ()| (3.10)

J

where K (.) is a kernel weighting function, d(y’,z) is the distance between the inter-
polation point 3/ and z, and h is a bandwidth chosen as the distance of k-th near-
est neighbor interpolation point, in Y, to the point . The distance used in [105]
for d(y’,x) is preconditioned with the covariance matrix C' used in the CMA-ES, i.e.
dy’,z) = ||/ — z|lc = /(4 —2)TC~1(yJ — ). The reason behind such a choice is

that the covariance matrix contains information on the local topography of the objec-

tive function that one is trying to exploit [105]. A bi-quadratic form is generally used

as a kernel function:

1—¢&2)?2 if 1,
K(E) = (1-¢6%) £<

0 otherwise.
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Local regression models are shown to be not very dependent to the choice of the kernel
function [105], and are not used until sufficiently many objective function evaluations

have been stored.

The minimization of C' turns to be equivalent to solve the following normal equations:
(v ar. ) Wt(6.7) s = (VM)W AY). (3.11)

where M(¢,Y) is the coefficient matrix, f(Y) = (f(y"), f(%?),...,f(x")", and W =
diag (/K (d(y!, z)/h), /K(d(y? 2)/h),...,/K(d(y?,z)/h)).

3.2.4.2 Approximate ranking procedure

Using the locally weighted regression a local model is built, to incorporate such model
in the ES an approximate ranking procedure is needed [147]. As our ES algorithm uses
only the ranking information from the objective function, the quality of the model will
be measured on how our built model is representing the true ranking. The ranking
procedure aims to tell if the model is good enough to exploit or new true objective
function evaluations should be performed. In the CMA-ES framework, the resulting
method is called the local-meta-model CMA-ES (Imm-CMA-ES) [105]. The choice of
the model is based on the idea that one adds to the interpolation set points until the rank
of the points remains unchanged for two consecutive iteration cycles. As the ranking
process for ES’s depends only on the p best points, the ranking invariance is checked
only for the p best individuals, this means that the predicted ranking in the g first
position should not change for two consecutive iterations to accept the model. A detailed

description of the approximation ranking procedure is depicted in Algorithm 3.3.

For the first call to the approximate ranking procedure, the number n;y;; is initialized
with the value A\, and gets adapted afterward for the next calls. For each iteration of
the procedure, the objective function is evaluated on a batch number n; of points until
the evaluation rank of the p best individuals, based on the model, is kept unchanged
for two consecutive iterations. The number ny is chosen to be equal to max(1,/10).
To construct a good model, the ranking procedure ends up with njni + ¢ * np individual
evaluations, where ¢ € {1,..., (A —ninit)/np } represents the number of iterations needed

to get the model accepted.
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Algorithm 3.3: Approximate ranking procedure.

1. Building a model: build of model m and evaluate the points m(y*),k =1,..., A
based on an interpolation set Y.

2. Ranking: rank individuals according to m, let RY = {7, ..., 7*} by increasing
order: m(g') < --- < m(g").

3. Evaluating : Evaluate the individuals {§'}1<i<n,,, using the objective function,
and add their evaluations to the set Y.

4. For i e {1,...,(A— niit)/np}
e Build a model m based on the point set Y, and evaluate the points
m(y*), k=1,...,\

e Rank individuals according to m, let R} = {g',...,§"} by increasing order:
m(gh) < - <m(@).

o If Rl! = R}, ,, the model m is accepted and we exit from the loop.

o If Rg #* RZ_l, evaluate the best ninit (not yet evaluated) using the objective

function, and add their evaluations to the set Y.

5. If i > 2 then set nini¢ t0 min(nipit, A — np), otherwise if ¢ < 2 then set njyi to
max (Ninit — N, Np)-

3.3 Conclusion

In this chapter, we presented an overview of ES’s and explained their philosophy and
mechanisms, a detailed description can be found in [30, 32, 32, 142, 150]. We de-
scribe succinctly a class of ES’s, denoted by (u/uw, A)-ES, for which we cited some
theoretical aspects, in particular, the main existing global convergence properties of ES
algorithms [20, 24, 26, 30, 33, 75, 96, 97, 100, 151, 169]. We closed the chapter by first
given a detailed description of CMA-ES [85, 86], and then explaining how quadratic

models were used in a large class of ES’s.

This chapter was introduced in preparation to what comes next. The next chapter
will detail our first contribution of this thesis, where we show how to equip (u/pw, A)—
ES with some direct search techniques (introduced in Chapter 2) to rigorously achieve
a form of global convergence under reasonable assumptions. Later, we will explicit
another way to incorporate surrogate quadratic models in our proposed ES to enhance
the performance without deteriorating the global convergence properties of the proposed

algorithm.

In all our numerical experiments, we choose CMA-ES as our evolutionary strategy, on

top of which we tested all the proposed modifications.



Chapter 4

Globally Convergent Evolution
Strategies

In this chapter, we emphasize the first contribution of this thesis [58]. We show how to
modify (u/uw, A)—ES to rigorously achieve a form of global convergence under reason-

able assumptions.

As far as we know (see Section 3.2.2), most existing global convergence results focused
on specific objective functions where the most studied one is the sphere problem [20, 30,
33, 100, 151, 169]. Other existing global convergence results consider a weak framework
of (p/pw, N)-ES, particularly (1, A)-ES [30, 75, 151, 169]. Previously mentioned works
do not take into account recombination (Section 3.1.2). Recent studies start to include
the recombination constraint for some specific problems and with strong assumptions.
For instance, asymptotic results for (u/uw, A)-ES are proved for spherical functions in

the isotropic case and under a scale-invariant adaptation rule for the step size [100].

In our framework, we consider the algorithm (u/pp, \)-ES as general as possible, in
the sense that no assumptions are made on the generation distribution. Meanwhile,
one needs to assume the density of certain limit directions in the unit sphere. The
modification of (u/uw, A\)-ES consists essentially of the reduction of the size of the
steps whenever a sufficient decrease condition on the function values is not verified. By
a sufficient decrease condition we mean a decrease of the type f(zry1) < f(xx) — p(o%),
where o}, stands for the step size parameter and p(-) obeys some properties, in particular
p(t)/t — 0 when t | 0 (see Section 2.2.2). When such a condition is satisfied, the step
size can be reset to the one designed by the ES itself, as long as this latter one is
sufficiently large. We suggest three ways of imposing sufficient decrease for which global

convergence holds under reasonable assumptions.

49
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The technique that we use to proove the global convergence of a such ES resembles what
is done in direct search [18, 52, 166]. In particular, given the type of random sampling
used in these ES, our work is inspired by direct-search methods for nonsmooth functions
outlined in Section 2.2.2, where one must use a set of directions asymptotically dense in
the unit sphere and with a sufficient decrease condition to control the step size. One way
of imposing such condition in the type of ES under consideration is to apply it directly
to the sequence of weighted means. However, ES are population-based algorithms where
a sample set of the offspring is generated at every iteration. Other forms of imposing
this type of decrease which involve the maximum value of the best offspring are also
found globally convergent. In fact, requiring a sufficient decrease on the sequence of
maximum best offspring values renders a globally convergent algorithm. Furthermore,
we will show that demanding this maximum value to sufficiently decrease the weighted

mean leads also to global convergence.

The approach we have taken in our thesis is (i) to focus on deterministic objective func-
tions and (ii) to analyze each algorithm deterministically (considering a single realization
of a stochastic algorithm). In such a way, we were able to use the Clarke calculus and

avoided imposing additional assumptions on the objective function.

The chapter is organized as follows. In Section 4.1, we first describe how to modify
such algorithms to enable them for global convergence. The second part is devoted to
the analysis of global convergence of the modified ES versions. Our numerical experi-
ments comparing the different modified versions of CMA-ES are described in Section 4.2.

Finally, in Section 4.3, we draw some conclusions and perspectives.

4.1 A class of evolution strategies provably global conver-

gent

4.1.1 Globally convergent evolution strategies

The main question we address in this chapter is how to change (u/uw, A)-ES algorithm
(see Algorithm 3.2 in Chapter 3), in a minimal way, to make it enjoy some convergence
properties, while preserving as much as possible the original design and goals. We will
target at global convergence in the sense of nonlinear optimization, in other words we
would like to prove some limit form of stationarity for any output sequence of iterates
generated by the algorithm (i.e., for any realization of the algorithm), and we would like

to do this independently of the starting point.
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The modifications to the algorithm will be essentially two, and they have been widely
used in the field of nonlinear optimization, with and without derivatives. First we
need to control the size of the steps taken, and thus we will update separately a step size
parameter oy, letting it take the value of O'E‘S whenever possible, where O'E‘S is the original
step size of the considered evolution strategy. Controlling the step size is essential as we
know that most steps used in nonlinear optimization are too large away from stationarity
— an example is Newton’s method without a line search, which may take arbitrarily large
steps if not started sufficiently close to a problem solution. Secondly we need to impose
some form of sufficient decrease on the objective function values to be able to declare an
iteration successful and thus avoiding a step size reduction. These two techniques, step
size update and imposition of sufficient decrease on the objective function values, are
thus closely related since an iteration is declared unsuccessful and the step size reduced
when the sufficient decrease condition is not satisfied. This condition involves a function
p(oy) of the step size oy, where p(-) is a forcing function [108] (see Definition 2.8, one

can think for instance of p(t) = t?).

Since the (p/pw, A)-ES algorithm evaluates the objective function at the offspring sam-
ple points but then computes new points around a weighted sum of the parents selected,
it is not clear how this does impose sufficient decrease. In fact, there are several ways
of proceeding in the follwing. A first possibility (denoted by mean/mean) is to require
the weighted means to sufficiently decrease the objective function, see Figure (4.1(a))

below, which obviously requires an extra function evaluation per iteration.

(a) The mean/mean version. (b) The max/max version. (¢) The max/mean version.

FIGURE 4.1: A 2-D illustration of three possible globally convergent evolution strate-
gies. The ellipses show the level sets of the objective function.

A second possibility to impose sufficient decrease (referred to as max/max), based en-
tirely on the objective function values already computed for the parent samples, is to
require the maximum of these values to be sufficiently decreasing, see Figure (4.1(b)).
Then, it would immediately occur to combine these first two possibilities, asking the
new maximum value to reduce sufficiently the value of the previous mean or, vice-versa,
requiring the value of the new mean to reduce sufficiently the previous maximum. The

lack of theoretical support of the latter possibility made us consider only the first one,



Chapter 4. Globally Convergent Evolution Strategies 52

called max/mean, see the Figure (4.1(c)). Algorithm 4.1 outlines the modified form of

The version mean/mean is clear in the sense that it imposes the sufficient decrease con-
dition directly on the function values computed at the sequence of minimizer candidates,
the weighted sums. It is also around these weighted sums that new points are randomly
generated. Versions max/max and mean/max, however, operate based or partially based
on the function values at the parents samples (on the maximum of those). Thus, in these
two versions, one needs to impose a condition of the form (4.1) below to balance the

function values at the parents samples and the function value at the weighted sum.

When the objective function is convex, condition (4.1) would be true for any weights
in S, but neither such a condition is realistic when optimizing without derivatives nor
would perhaps the type of techniques explored in this work be the most appropriate
under such a scenario. Note that one also imposes bounds on all directions di used
by the algorithm. This modification is, however, very mild since the lower bound dii,
can be chosen very close to zero and the upper bound d,x set to a very large number.
Moreover, one can think of working always with normalized directions which removes

the need to impose such bounds.

4.1.2 Convergence

Under appropriate assumptions we will now prove global convergence of the modified
versions of the considered class of ES (again, by global convergence, we mean some form
of limit first-order stationary for arbitrary starting points). Our convergence analysis is
inspired by direct-search methods for nonsmooth functions outlined in Section 2.2. The
analysis of the algorithm is done deterministically, as if we were considering a single

realization of a stochastic algorithm.

4.1.2.1 The step size behavior

As we have seen before, an iteration is considered successful only if it produces a point
that has sufficiently decreased some value of f. Insisting on a sufficient decrease will
guarantee that a subsequence of step sizes will converge to zero. In fact, since p(oy)
is a monotonically nondecreasing function of the step size o, we will see that such a
step size cannot be bounded away from zero since otherwise some value of f would tend
to —oo. Imposing sufficient decrease will make it harder to have a successful step and
therefore will generate more unsuccessful steps. We start thus by showing that there is

a subsequence of iterations for which the step size parameter o tends to zero.
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Algorithm 4.1: A class of globally convergent ES’s.

Initialization: Use the same initialization of Algorithm 3.2. Choose constants
B1, B2, dmin, dmax such that 0 < 61 < B2 < 1 and 0 < dpin < dmax. Select a forcing
function p(-). Set k = 0.

Until some stopping criterion is satisfied:

1. Offspring Generation: Compute new sample points Y11 = {yéﬂ, e ,y,;\H}

such that ‘ '
y}ﬁ»l = Tk +O-kd7i<;7

where d}'C is drawn from the distribution C, and obeys dyi, < ||d}€|| < dmax,
i=1,...,)\

2. Parent Selection: Evaluate f(y,iﬂ), i=1,..., A, and reorder the offspring points
in Y1 = {ﬂi_‘_l, e gj,i‘H} by increasing order: f(gjé_H) <. < f(gé‘_i_l)

: : ~1 <t

Select the new parents as the best u offspring sample points {1, .., %1}
and compute their weighted mean

trial

W
_ i~
T+l — WeYk+1-
i=1

Evaluate f (ac}ﬁall) In versions max/max and max/mean, update the weights, if

necessary, such that (wj,...,w}) € S and
flafidh = f (Zwi%ﬂ) <Y Wi f (Fhr)- (4.1)
i=1 i=1

3. Imposing Sufficient Decrease:

If (version mean/mean)

F@i) < ) — plow), (4.2)
or (version max,/max)

Fh) < F@f) = plow), (4.3)
or (version max,/mean)

Fh) < flan) = plow), (4.4)

then consider the iteration successful, set 41 = xﬂ_all, and op11 > oy (for
example oy, 1 = max{oy,oEo}). Set T}y = Yy i version max/max.
Otherwise, consider the iteration unsuccessful, set xx41 =z (and wh =}, for
max/max) and o1 = Brok, with B € (81, B2).

4. ES Updates: Update the ES step length a,]?_fl, the distribution Cj, and the
weights (wiﬂ, ..,wy,q) € S. Increment k and return to Step 1.
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Lemma 4.1. Consider a sequence of iterations generated by Algorithm 4.1 without any

stopping criterion. Let f be bounded below. Then liminfy_, . o = 0.

Proof. Suppose that there exists a ¢ > 0 such that o > o for all k. If there is an
infinite number of successful iterations, this leads to a contradiction to the fact that f is
bounded below. Since p is a nondecreasing, positive function, one has p(ox) > p(o) > 0.

Let us consider the three versions separately, as we shall see now.

In the version mean/mean, we obtain f(zx+1) < f(xr) — p(o) for all k, which obviously
contradicts the boundedness below of f. In the version max/max, we obtain f(z}, ;) <
f(zf) — p(o) for all k, which also trivially contradicts the boundedness below of f. For

the max/mean version, one has

f(g]1€+1) S f($/1i+1) S f(xk)_p(ak)a Z:Lau

Thus, multiplying these inequalities by the weights w};, i=1,...,u, and adding them

up, lead us to

W
ST wkfGhin) < flaw) — plow),
=1

and from condition (4.1) imposed on the weights in Step 2 of Algorithm 4.1, we obtain

f(zre1) < f(zx) — p(ok), and the contradiction is also easily reached.

The proof is thus completed if there is an infinite number of successful iterations. How-
ever, if no more successful iterations occur after a certain order, then this also leads to a
contradiction. The conclusion is that one must have a subsequence of iterations driving

o, to zero. M
From the fact that o is only reduced in unsuccessful iterations and by a factor not
approaching zero, one can then conclude the following.

Lemma 4.2. Consider a sequence of iterations generated by Algorithm 4.1 without any

stopping criterion. Let f be bounded below.
There exists a subsequence K of unsuccessful iterates for which limgc i op = 0.
If the sequence {xy} is bounded, then there exists an x. and a subsequence K of unsuc-

cessful iterates for which limge g o = 0 and limge g T = T«

Proof. From Lemma 4.1, there must exist an infinite subsequence K of unsuccessful
iterates for which ogy1 goes to zero. In a such case we have o), = (1/B]€)O']€+1, B €
(81, 82), and 31 > 0, and thus o — 0, for k € K, too.
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The second part of the lemma is also easily proved by extracting a convergent subse-

quence of the subsequence K of the first part for which z; converges to .. O

The above lemma ensures under mild conditions the existence of convergent subse-
quences of unsuccessful iterations for which the step size tends to zero. Known as

refining subsequences (see Section 2.11).

4.1.2.2 Global convergence

The global convergence in our case is extracted from refining subsequences. One will
assume that the function f is Lipschitz continuous near the limit point x, of a refining

subsequence, so that the Clarke generalized derivative [43]

f(z4;d) = limsup [z +td) — f(z)
" T4, tL0 t

exists for all d € R™. The point z, is then Clarke stationary if f°(x.;d) > 0, Vd € R"

(See Section 2.2.3.2 for more details on the non-smooth Clarke calculus).
Our first global convergence result concerns only the mean/mean version.

Theorem 4.3. Consider the version mean/mean and let ay = >t widi. Assume that
the directions di.’s and the weights w},’s are such that |lay|| is bounded away from zero
when o — 0. Let x4 be the limit point of a convergent subsequence of unsuccessful
iterates {x} i for which limgeg o = 0. Assume that f is Lipschitz continuous near x.

with constant v > 0.
If d is a limit point of {ax/||ak||} k, then f°(x.;d) > 0.

If the set of limit points {ay/|lar||}x is dense in the unit sphere, then . is a Clarke

stationary point.

Proof. Let d be a limit point of {ay/|lax| }x. Then it must exist a subsequence of K’ of
K such that ag/||ag|| — d on K’. On the other hand, we have for all k& that

Iz Iz
ol = Wil = vkt ok Yy widy = Tk + opag,
i=1 i=1
and, for k € K,
fle +orar) > f(xr) — plow).

Also, since the directions d}; and the weights are bounded above for all k and i, ay is

bounded above for all k, and so o|lak|| tends to zero when oy, does.
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Thus, from the definition of the Clarke generalized derivative,

fz +td) — f(x)

f(z4;d) = limsup
T—=x 4,0 t
> limsup [+ orllarll(ar/llal)) — flaze) .
keK' okl all

where, from the Lipschitz continuity of f near x,,

[y + opar) — f(xp + opllagl|d)
ollax]|

ag B
[l

TR =

tends to zero on K'. Finally, since ||ay|| is bounded away from zero in K’,

f(xx + okag) — f(xx) + plow)  plok)

f(x4;d) > limsup — — 7
keK’ ol ax|| okl ax|l
— limsup [z + orag) — f(z) + plog)
keK' okla]]
> 0.

Since the Clarke generalized derivative f°(xy;-) is continuous in its second argument [43],
it is then evident that if the set of limit points {ax/||ar||}x is dense in the unit sphere,
fo(zy;d) > 0 for all d € R™. O

Now we prove global convergence for the two other versions (max/max and max/mean).

Theorem 4.4. Consider the versions maz/maz and mazx/mean. Let x, be the limit point
of a convergent subsequence of unsuccessful iterates {xy}x for which limpck o, = 0.

Assume that f is Lipschitz continuous near . with constant v > 0.
If d is a limit point of{d;;’“/Hdik 1}k, where iy, € argmax; <<, S Why1)s then fo(2.;d) > 0.

If, for eachi € {1,..., u}, the set of limit points {d} /||d} ||}k is dense in the unit sphere,

then x, is a Clarke stationary point.

Proof. The proof follows the same lines of the proof of the mean/mean version. In the

max/max case, one departs from the inequality that is true when k € K,

@) > flag) = plok),
which implies for a certain iy

Fihn) = flale) > f(2f) = plon).
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Now, notice that xZ_H = :L‘f: =...= xZ_pk, where k — pp — 1 is the index of the last

successful iteration before k. Thus,

Fi) > f@hy,) = plow) = f(Gip,) = plon), i=1,....p.

Multiplying these inequalities by the weights w]i_pk_l, t=1,...,u, and adding them up

implies
yk+1 Zwk —Pr— 1f yk pk) ( k‘)

Condition (4.1) imposed on the weights in Step 2 of Algorithm 4.1 with k replaced by
k — pr — 1 implies

. ’u . .
) > f (szi_pk_lﬂi_pk) = (k).

i=1

__ trial :
Since EZ 1wk e 1yk Cpp = Tty = Thop, = Tk (because k — pp — 1 is successful and

k — pk, ...,k are unsuccessful) and ka = + okdégﬁ we arrive at

flag+ord®) > f(zr) — plon). (4.5)

(If there is no successful iteration before the k-th one, then, since zg = zf, we will
directly obtain (4.5).)

Note that in the max/mean version we arrive directly at f(zy + akdﬁf) > f(zg) — p(ok)-

From this point, and for both cases (max/max and max/mean), the proof is nearly
identical to the proof of Theorem 4.3 (in particular note that dfj is forced to be bounded
away from zero by Algorithm 4.1). O

When f is strict differentiable at z, (in the sense of Clarke, see Section 2.2.3.2, meaning
that there exists V f(z.) such that f°(x.;d) = (Vf(x4),d) for all d), one can conclude
that V f(z.) = 0.

4.1.3 Convergence assumptions

Global convergence in Theorems 4.3 and 4.4 is shown under several additional as-
sumptions. The first one is the bounds on the step length dp, < Hd;H < diax, such
assumption is quite irrelevant, as in practice for all the tested problems these step lengths
were never seen out of the bounds dp,in and dyax. The boundedness of ||ag| away from
zero is also not very hard to fulfill, as if one has aj, = >/ ; wid}% = 0 it suffices to modify

the weights {w} }1<i<, so that a; # 0.
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The assumption that any subsequence of normalized steps is dense on the unit sphere
is less trivial. In the sense that the assumption regarding the directions aj applies to
a given refining subsequence K and not to the whole sequence of iterates, but such a
strengthening of the requirements on the density of the directions seems necessary for

these type of directional methods (see [18, 166]).

Then, the question that arises concerns the density in general of the ap’s in the unit
sphere. For the purpose of this discussion, and to keep things simple, let us assume
that the weights are fixed for all k£ (which is a valid choice for Theorem 4.3 but not
for Theorem 4.4). Let us assume also that dj’s are drawn from a multivariate normal
distribution with mean 0 and covariance matrix C. The direction ar = Y i, w'd} is
then a realization of a random vector A following a multivariate normal distribution with
mean 0 and covariance matrix >/, (w®)2C. Then, for any y € R™ such that ||y| = 1

and for any 6 € (0, 1), there exists a positive constant 1 such that
P(cos(A/||A]l,y) > 1—8) > 7 (4.6)

(see for instance the proof of Lemma B.2 in [73]), such property guarantees us the density

of the ax’s in the unit sphere.

Finally, under the random generation framework of the previous paragraph one can also
see that we could fix an M > 0 (preferably small) at the initialization of the algorithm
and then re-sample the d}’s again whenever [agx|| < M. The density of the a;’s in the
unit sphere (with probability one) would then result from the fact that, for the same
reasons, for any y € R™ such that |ly|| = 1 and for any § € (0,1), there would still exist
a positive constant n such that P(cos(A/||All,y) >1—4,||Al| > M) >n.

4.2 Numerical experiments

We made a number of numerical experiments to try to measure the effect of our mod-
ifications of ES. We are mainly interested in observing the changes that occur in ES
in terms of an efficient and robust search of stationarity. We chose CMA-ES as our
evolutionary strategy, on top of which we tested our globally convergent modifications.
For CMA-ES details the reader is referred to Section 3.2.3.

For our numerical experiments, we first compare our modifications of CMA-ES among
each other and choose the best modified version. For the second part, we have compared
the chosen modified CMA-ES and the pure one with the direct search method MADS
for which we used the implementation given in the NOMAD package [3, 16, 116], ver-

sion 3.6.1 (C++ version linked to Matlab via a mex interface), where we enabled the
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option DISABLE MODELS, meaning that no modeling is used in MADS, both in the search
step and in the construction or order of usage of directions in the poll step.The mod-
els are disabled since our solvers at this stage are not using any modeling to speed
up the convergence. The reader is referred to Chapter 6 for model incorporation into

direct-search methods.

4.2.1 Algorithmic choices

A number of choices regarding parameters and updates of Algorithm 4.1 were made

before the tests were launched.

Regarding initializations, the values of A and p and of the initial weights followed the
choices in CMA-ES (see [78]):

A = 4+ floor(3log(n)),
p = floor(A/2),
wh = aif(ar + -+ +ay), with a; = log(A\/2+1/2) —log(i), i=1,...,u,

where floor(-) rounds to the nearest integer. The values for ¢1, ¢4, co, ¢y, and d, are

chosen also as in the CMA-ES implementation (see [78]) as

e = 2/((n+137+uy),

cp = min{l —c1,2(uy — 2+ 1/pp) /(0 +2)* + pp)},
= (4+ps/n)/(n+4+2pup/n),

¢o = (uf+2)/(n+ps+5),

dy = 142max{0, [(uy — 1)/(n+1)]2 — 1} + ¢5, with
pp = (wp+ -+ wf)?/((wo)? + -+ (wh)?).

C

Q

q

The initial step length parameters were set to oo = ogMA‘ES = 1. The forcing function

selected was p(o) = 107402,

To reduce the step length in unsuccessful iterations we used opy; = 0.50; which

corresponds to setting 81 = B2 = 0.5. In successful iterations, we used opy1 =

max{oy, U,SMA'ES 1,

sible.

in attempt to reset the step length to the ES one whenever pos-

The directions d};, i1 =1,...,\, were drawn from the multivariate normal distribution Cj
updated by CMA-ES, scaled if necessary to obey the safeguards dp, < Hd%H < diax,
with dmin = 10719, dypax = 100, In the experiments reported, we have never seen a run

where there was a need to impose these safeguards.
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Updating the weights in Step 2 of Algorithm 4.1 to enforce (4.1) was not activated. On
the one hand, we wanted the least amount of changes in CMA-ES. On the other hand,
such an update of the weights in Step 2 did not seem to have a real impact on the results
for versions max/max and mean/max, perhaps due to the convexity near the solutions

present in many of the problems.

4.2.2 Test problems

Our test set P is the one suggested in [125] and comprises 22 nonlinear vector func-
tions from the CUTEr collection. The problems in P are then defined by a vector
(kp,np, mp, sp) of integers. The integer k, is a reference number for the underlying
CUTEr [71] vector function, n, is the number of variables, m,, is the number of compo-
nents F1,. .., Fpy,, of the corresponding vector function F. The objective function value

is then computed as the ls-norm of the vector function F'.

The integer s, € {0,1} defines the starting point via z¢p = 10°?xs, where z is the
standard CUTEr starting point for the corresponding function. According to [125], the
use of s, = 1 is helpful for testing solvers from a more remote starting point since the

standard starting point tends to be too close to a solution for many of the problems.

The test set P is then formed by 53 different problems. No problem is overrepresented
in P in the sense that no function k, appears more than six times. Moreover, no pair

(kp,np) appears more than twice. In all cases,
2<n, <12, 2<m, <65 p=1,...,53,

with n, < m,. Table 4.1 contains the distribution of n, across the problems. For other
details see [125].

Ny

2 3 4 5 6 7 8 9 10 11 12
Number of problems 5 6 5 4 4 5 6 5 4 4 5

TABLE 4.1: The distribution of n, in the test set.

The test problems have been considered in four different types, each having 53 instances:
smooth (least squares problems obtained from applying the ¢5 norm to the vector func-
tions); nonstochastic noisy (obtained by adding oscillatory noise to the smooth ones);
piecewise smooth (as in the smooth case but using the ¢1 norm instead); stochastic noisy

(obtained by adding random noise to the smooth ones).
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4.2.3 Test strategies

For our numerical experiments, we chose to work with two types of profiles, data and

performance profiles.

Data profiles

Data profiles [125] were designed for derivative-free optimization and show how well
a solver performs, given some computational budget, when asked to reach a specific

reduction in the objective function value, measured by
flxo) = f(z) = (1= a)[f(x0) — fil,

where o € (0,1) is the level of accuracy, xg is the initial iterate, and f7, is the best
objective value found by all solvers tested for a specific problem within a given maxi-
mal computational budget. In derivative-free optimization, such budgets are typically

measured in terms of the number of objective function evaluations.

Data profiles plot the percentage of problems solved by the solvers under consideration
for different values of the computational budget. These budgets are expressed in number
of points (n + 1) required to form a simplex set, allowing the combination of problems
of different dimensions in the same profile. Note that a different function of n could
be chosen, but n 4 1 is natural in derivative-free optimization (since it is the minimum
number of points required to form a positive basis, a simplex gradient, or a model with

first-order accuracy).

We used in our experiments a maximal computational budget consisting of 50n function
evaluations, as we are primarily interested in the behavior of the algorithms for problems
where the evaluation of the objective function is expensive. As for the levels of accuracy,
we chose two values, & = 1072 and a = 10~7. Since the best objective value fr, is chosen
as the best value found by all solvers considered, but under a relatively low maximal
computational budget, it makes some sense to consider a high accuracy level (like 107

or less).

Performance profiles

Performance profiles [60] are defined in terms of a performance measure ¢, ; > 0 obtained
for each problem p € P and solver s € S. For example, this measure could be based on

the amount of computing time or the number of function evaluations required to satisfy
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a convergence test. Larger values of ¢, s indicate worse performance. For any pair (p, s)

of problem p and solver s, the performance ratio is defined by

tps
min{t,s:s €S}

Tpss =

The performance profile of a solver s € S is then defined as the fraction of problems

where the performance ratio is at most 7, that is,

ps(T) = |Pl|size{p EP:irps < T},
where |P| denotes the cardinality of P. Performance profiles seek to capture how well
the solver s € § performs relatively to the others in S for all the problems in P. Note,
in particular, that ps(1) is the fraction of problems for which solver s € S performs the
best (efficiency), and that for 7 sufficiently large, ps(7) is the fraction of problems solved
by s € S (robustness). In general, ps(7) is the fraction of problems with a performance
ratio rp s bounded by 7, and thus solvers with higher values for ps(7) are preferable. In
this thesis, the performance profiles are plotted in a logy-scale to better visualize the

relative efficiencies of the solvers (7 = 1 will then correspond to 7 = 0).

It was suggested in [61] to use the same (scale invariant) convergence test for all solvers

compared using performance profiles. The convergence test used in our experiments was

f) = fo < allfsl +1), (4.7)

where « is an accuracy level and f, is an approximation for the optimal value of the
problem being tested. The convention 7, ; = 400 is used when the solver s fails to satisfy
the convergence test on problem p. We computed f, as the best objective function value
found by the four CMA-ES solvers (our three modified versions and the pure one) using
an extremely large computational budget (a number of function evaluations equal to
500000). Thus, in this case, and as opposed to the data profiles case, it makes more
sense not to select the accuracy level too small, and our tests were performed with
a = 1072,107%. The performance profiles were then computed for a maximum of 1500

function evaluations.

4.2.4 Numerical results
Comparison of the three modified versions of CMA-ES

The purpose of this section is to compare the three modified versions of CMA-ES

(mean/mean, max/max, and max/mean) to each other. Our experiments have shown
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that the mean/mean version emerges as the best one.

We report here only the results for the class of smooth problems of Section 4.2.2; since

the results of the other class problems followed a very similar trend (See Appendix A).

Figure 4.2 depicts the data profile using two levels of accuracy 1073 and 10~7. The
data profiles are clearly favorable to the mean/mean version. For instance, with an
accuracy of 1073 and within a unit budget of 40, i.e., 40(n+1) function evaluations,
the mean/mean version is able to solve about 70% of the problems when the max/max
version is solving around 35%. The max/mean version shows the worst profile by solving
no more than 20%. The advantage of the mean/mean version for higher accuracy, i.e.,

1077, is more obvious.

Data pro