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Abstract

In applied sciences PDEs model an extensive variety of phenomena. Typi-
cally the final goal of simulations is a system which is optimal in a certain sense.
For instance optimal control problems identify a control to steer a system to-
wards a desired state. Inverse problems seek PDE parameters which are most
consistent with measurements. In these optimization problems PDEs appear
as equality constraints. PDE-constrained optimization problems are large-scale
and often nonconvex. Their numerical solution leads to large ill-conditioned
linear systems. In many practical problems inequality constraints implement
technical limitations or prior knowledge.

In this thesis interior-point (IP) methods are considered to solve nonconvex
large-scale PDE-constrained optimization problems with inequality constraints.
To cope with enormous fill-in of direct linear solvers, inexact search directions
are allowed in an inexact interior-point (IIP) method. This thesis builds upon
the IIP method proposed in [24]. SMART tests cope with the lack of inertia
information to control Hessian modification and also specify termination tests
for the iterative linear solver.

The original IIP method needs to solve two sparse large-scale linear systems
in each optimization step. This is improved to only a single linear system so-
lution in most optimization steps. Within this improved IIP framework, two
iterative linear solvers are evaluated: A general purpose algebraic multilevel in-
complete LDLJ preconditioned SQMR method is applied to PDE-constrained
optimization problems for optimal server room cooling in three space dimen-
sions and to compute an ambient temperature for optimal cooling. The results
show robustness and efficiency of the IIP method when compared with the exact
IP method.

These advantages are even more evident for a reduced-space preconditioned
(RSP) GMRES solver which takes advantage of the linear system’s structure.
This RSP-IIP method is studied on the basis of distributed and boundary con-
trol problems originating from superconductivity and from two-dimensional
and three-dimensional parameter estimation problems in groundwater model-



ing. The numerical results exhibit the improved efficiency especially for multi-
ple PDE constraints.

An inverse medium problem for the Helmholtz equation with pointwise box
constraints is solved by IP methods. The ill-posedness of the problem is explored
numerically and different regularization strategies are compared. The impact of
box constraints and the importance of Hessian modification on the optimization
algorithm is demonstrated. A real world seismic imaging problem is solved
successfully by the RSP-IIP method.
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Chapter 1

Introduction

This thesis discusses interior-point (IP) methods for PDE-constrained opti-
mization. While PDEs are used to simulate certain effects, the ultimate goal of
simulations are often to find parameters which are optimal in a certain sense. In
the first chapter of this thesis, we start by presenting some applications of PDE-
constraint optimization to show possible practical impacts of this work. We then
turn our focus on numerical methods to solve these optimization problems and
end this chapter with an outline of the thesis.

1.1 Applications of PDE-Constrained Optimization

PDEs are ubiquitous when modeling continuum problems. They can be
found in almost every area of science and engineering and are used to simu-
late systems of varying sizes and complexity. Their solution usually depends
on parameters which adapt the PDE to an actual problem at hand. Often those
quantities are not the final goal, but an intermediate result to find parameters
leading to a “good“ simulation result.

PDE-constrained optimization can be considered as an automation of pa-
rameter searching, where the many interactively-modify-and-try iterations are
replaced by a systematic computational procedure. The goal is modeled as an
objective function and we aim to find the PDE parameters which yield a min-
imum. Typically, the objective depends only on the PDE’s solution, the state
variable y, which can be affected only indirectly by variation of the parameters u
via the PDE which appears as an equality constraint. To concretize this abstract
point of view we now give some example applications of PDE-constrained opti-
mization. Depending on how the PDE parameters influences the state variable,
we can distinguish different types of PDE-constrained optimization problems.

In shape optimization problems the parameters affect the simulation domain
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and the goal is to find an optimal construction which still fulfills structural sta-
bility constraints and minimizes the objective. For instance, in the design of
an aircraft the shape of the wings can be modeled by design parameters like
twist or sweep angles, or its shape can be described more generally by splines.
Given such a description a simulation yields the a drag or buoyancy. With shape
optimization we can now design a wing with maximal buoyancy or minimal
drag [60]. Another example for shape optimization is the design of structural
elements with minimal weight which sustain a given mechanical load [4]. In
medicine, shape optimization is used to design blood pumps or arterial grafts.
Here, the goal is to minimize the shear rate to circumvent red blood cell dam-
age or thrombus formation at device surfaces [2, 1]. In many of these examples
the governing PDEs are nonlinear Navier-Stokes equations and inequality con-
straints prevent physically meaningless parameter settings, like a local negative
mass for a structural element or a too small wings sweep angle.

The typical setting of optimal control is to steer a system toward a desired
state. Here, the PDE parameter, called control variable u affects the PDEs’ right-
hand side and can be varied to achieve PDE solutions (state variables y) as close
as possible to desired states ŷ. This is applied, e.g., in the glass industry to
control glass cooling. The aim here is to cool the glass according to a desired
temperature profile dependent on space and time in order to prevent cracks or
to control chemical reactions in the glass. The underlying physical process, heat
radiation, is modeled by a parabolic nonlinear PDE and can be influenced by
the ambient temperature which is the control variable [29]. Here inequality con-
straints may prevent too large temperature gradients which lead to cracks in
the glass. Another application of optimal control is the design of semiconductor
devices. Here a doping profile accounts for concentrations of impurity atoms
and is changed in order to maximize the current flow over contact regions [41].
Inequality constraints can avoid concentrations where the underlying model
might become invalid. In weather forecasting large-scale PDEs are solved start-
ing from initial conditions. At the initial time step atmospheric quantities like
pressure, temperature, and wind velocity are necessary at each simulation mesh
point. However, measurements are not available at all those points. The compu-
tation of these initial conditions, called data assimilation, can be stated as PDE-
constrained optimization problem, where we seek a state based on a previous
forecast and measurements. Here the governing nonlinear PDEs describe the
atmosphere physics and the objective consists of a misfit of measurements and
previous weather forecasts [25]. The enforcement of a maximal misfit then nat-
urally leads to inequality constraints. The location of an earthquake hypocenter
can also be stated as an optimal control problem. The problem is then con-
strained by the wave equation and the source term on the PDEs right-hand side
takes the role of a control variable.
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Figure 1.1: Principle of seismic imaging for marine oil reservoir exploration: air guns
towed behind a survey ship excite shock waves, which are reflected and scattered by the
subsurface rock layers and recorded at hydrophones. With PDE-constrained optimiza-
tion the seismic velocity of subsurface rock is reconstructed and helps geophysicists to
locate potential oil reservoirs for exploration drills. Attribution to OpenLearn1.

In parameter estimation problems we want to solve an inverse problem. In
this problem setting, we seek PDE parameters, (usually material parameters)
which are most consistent with measurements. The parameters, called the model,
affect the differential operator itself, and such problems are usually harder to
solve than optimal control problems. Most methods in medical imaging are
based on inverse problems. For instance, on electrical impedance tomography
electrical current is supplied to the bodies’ surface. This generates an electrical
potential which depends in the conductivity inside the body. The location de-
pendent conductivity is considered as a PDE parameter which is varied to min-
imize the misfit between measurement and simulation [50]. The same principal
can be applied in DC resistivity estimation and groundwater modeling [38].

One of the most challenging applications of PDE-constrained optimization
appears in oil reservoir exploration and we now discuss this application in more
detail. As the era of “easy oil” has finished, in the recent decades it has be-
come more and more difficult to find and produce oil. Today oil exploration
is economically considered as an expensive and high-risk operation. An explo-
ration oil drill can easily cost several million US dollars. Thus efficiently locating
prospective oil reservoirs is of uttermost importance.

In the genesis of oil, it may migrate upwards until it accumulates beneath
an impermeable sedimentary layer and gets trapped in certain geological for-
mations. To identify these prospective oil reservoirs geophysicists survey the
subsurface using seismic reflection experiments. Figure 1.1 shows a typical ma-
rine seismic imaging setup. A survey boat drags an air gun to excite pressure

1http://www.open.edu/openlearn
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shock waves (“shots”). These waves propagate through water and sedimen-
tary rock and are reflected and scattered at the stratigraphic boundaries. The
reflected waves are then recorded at receivers (hydrophones) also towed by a
survey boat.

During these experiments hundreds of terabytes of data may be collected
and need to be processed. After a preprocessing step, numerical methods of seis-
mic imaging including migration or inversion [19, 72] are applied. Due to the
accurate physical model full waveform inversion is considered one of the most
promising methods for high resolution imaging and material parameter quan-
tification [71]. It consists of a PDE-constrained optimization problem, where
the misfit is minimized subject to the constraining wave equation. To mitigate
against false solutions of this nonconvex problem, filtering temporal frequencies
is a common approach. This naturally leads to the frequency domain inversion
governed by the Helmholtz equation instead of the wave equation [56]. Here
different temporal frequencies are decoupled and can be solved separately, start-
ing from low temporal frequencies with a coarser mesh but fewer local minima
towards higher frequencies with more detailed features. In practice, low tem-
poral frequencies are often not available [53]. This lack of information may be
closed by the used of wide aperture data [67, 68, 69]. Again, inequality con-
straints can help to guide the algorithm and prevent physically unrealistic mod-
els.

Many of the above applications aim to minimize the distance of the achieved
system to a desired or measured state. Often, with this goal the PDE parame-
ters are not determined uniquely or the parameters do not depend continuously
on the desired or measured data. Such ill-posed systems are highly susceptible
to noise. To stabilize these methods, additional information is implemented in
terms of restrictions on the search space or as an additional Tikhonov regular-
ization term.

1.2 Numerical Methods for PDE-Constrained Optimiza-

tion

In the previous section, we have seen how PDE-constrained optimization
problems can arise in almost every area of science and engineering. In this sec-
tion we survey numerical optimization algorithms to solve PDE-constrained op-
timization problems.

Many problems are nonconvex and may have multiple local solutions. In-
deed, finding a global optimum in general is NP hard. Global optimization
methods are classified into deterministic and stochastic ones [54, 26]. In deter-
ministic methods error bounds are computed to exclude regions from the search
space. Stochastic algorithms evaluate the function at points, which are found
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by heuristics and some random process. Both approaches may utilize local op-
timization algorithms [42]. In this thesis we concentrate on IP methods to find
local solutions. They allow a search space restriction by inequality constraints,
to improve stability of convergence to a global optimum.

Local numerical optimization algorithms are iterative procedures [55, 31, 32,
40]. Starting at an initial guess they generate a sequence of improved points,
iterates, and aim to converge to a solution. To compute a new point, local infor-
mation in terms of derivatives are used. In trust-region methods, a local model
subproblem for the optimization step is solved in a neighborhood of the cur-
rent iterate. In line-search methods, a model subproblem is solved to compute
a search direction only. A line search algorithm then determines the step length
to the next point.

There are three main important questions when considering numerical opti-
mization algorithms.

1. Does the algorithm terminate? The first question considers the robustness
of the algorithm, the global convergence properties. In this thesis we refer
to global convergence as the guarantee to converge to a first-order critical
point or a point of local infeasibility from each initial point. It should not
be confused with guaranteed convergence to a global minimizer, which
might be common in other scientific communities.

2. How many iterations does it need to find a solution? Far away from the
solution global information is necessary for fast convergence. This is usu-
ally incorporated into the optimization problem formulation itself, e.g., in
form of inequality constraints, and is usually not covered by numerical
optimization algorithms. Close to the solution, however, derivative infor-
mation can be used to fasten local convergence, i.e. to decrease the number
of iterations to converge to a solution. This essentially depends on the ap-
proximation quality of the model subproblems which are solved in each
iteration.

3. How expensive is each iteration? Most model subproblems are set up by
a Taylor expansion. The approximation error can be reduced by taking
more terms of this expansion. However, the computation of each step in-
creases. Usually the Taylor approximation contains at most the quadratic
term. Then a linear system needs to be solved. Indeed, in most modern
numerical optimization algorithms, this is the most expensive step, and
the question of fast solutions of the linear system appears.

When solving a PDE-constrained optimization problem, there are two
possible approaches to follow [41, 39]. While in the optimize-then-discretize
approach we first set up optimality conditions and then discretized the step
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computation operators, in the discretize-then-optimize approach we apply op-
timization algorithms to the discretized problem. This issue is discussed in the
Subsection 1.2.1 first section of this chapter.

Another choice needs to be taken whether as to we want to optimize an in-
tricate objective function on an easy manifold (often a box or even the whole
space) or we solve for a simpler objective function but on an intricate manifold.
The first choice is realized in the reduced-space approach while the latter is car-
ried out in the full-space approach. Both are discussed in Section 1.2.2 and 1.2.4

1.2.1 Optimize-then-Discretize and Discretize-then-Optimize

PDE-constrained problems are infinite dimensional and to make them
tractable by computers, they need to be discretized. There are two school
considering when to discretize the appearing functions and operators. In the
optimize-then-discretize approach, we first set up optimality conditions and
optimization method in function space and discretize the algorithm afterwards.
However, implemented derivatives many then not be the derivatives of imple-
mented functions, which slows down local convergence.

On the other hand, we can discretize the PDE and objective function first,
turning the infinite-dimensional optimization problem into a finite-dimensional
one. Then, we set up the optimality conditions and optimization algorithm in
the finite dimensional space. Now commonly used optimization methods can be
applied. Furthermore, automatic differentiation techniques may generate source
code to compute derivatives of the objective and constraint functions [43].

In general, both approaches do not lead to the same algorithm. For ex-
ample, for a parameter estimation problem discretized on a staggered grid for
state and control variable we find optimality conditions which are linear in the
model parameter when following the optimize-then-discretize approach while
the discretize-then-optimize approach leads to nonlinear optimality conditions
[38]. Another difference can be observed when considering PDE constraints
with initial conditions. In the optimality conditions, the adjoint operator ap-
pears. However, the discretized adjoint operator is not necessarily the trans-
posed of the discretized operator. As an example we consider an initial value
problem. After discretization we can think of a block vector containing one time
in each block. The time stepping scheme can then be written as a matrix where
the initial condition enters in the first row blocks. Thus they differ from the
blocks corresponding to later time steps. When transposing this matrix, the ini-
tial condition block will stay in the first block. However, when we first set up
the optimality condition, we find a final value problem as adjoint problem and
the final condition block will appear in the last row block. From this example we
see that the discretization of the adjoint operator may result in another matrix
and thus in another method than the transpose of the discretized operator [52].
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1.2.2 Reduced-Space Optimization

One characteristic of PDE-constrained optimization is the large number of
variables. Indeed, nowadays simulations can have several millions or even
billions of unknowns. These simulation variables appear in the optimization
problem as state variables. Assuming unique solvability of the PDE, they are
determined as a solution of the PDE for given parameters. Thus, the state vari-
ables can be eliminated from the optimization problem and only the parameters
appear as optimization variables. The resulting optimization problem is formu-
lated in the reduced-space.

The number of parameters varies in a wide range, starting from just a few
ones up to the order of the state variable. For instance, in the shape optimiza-
tion problem in 1.1, a wing can be modeled with a fixed number of only a few
parameters. On the other extreme a parametrization of a wing using splines
drastically increasing the number of parameters. Also in distributed control or
distributed parameter estimation, we have a function as parameter which needs
to be discretized. Then the number of optimization variables depends on the
discretization of the parameter function, which may yield a parameter vector as
large as the state variable.

1.2.3 Unconstrained Optimization

In the reduced-space we eliminate the state variables and the PDE con-
straints disappear. If there are no further constraints, the reduced-space prob-
lem is unconstrained and has fewer variables than the full-space problem.
However, to evaluate the objective, forward simulations are necessary, which
are expensive, especially when considering nonlinear PDEs, where the solution
procedure incorporates a Newton-type method itself.

Optimization methods use local information, i.e., derivatives, to improve the
current solution estimate. Trust-region methods need to control the size of the
trust region to ensure global convergence. To reach the same goal, line search
methods need to ensure that the objective function descends in the search di-
rection and that the step length actually yields a sufficient objective function
decrease. For the latter, step length algorithms are used including the Armijo
condition, the Wolfe condition, and the strong Wolfe condition. Within these
step length algorithms the objective function needs to be evaluated repeatedly.
The number of function evaluations can be reduced by polynomial interpola-
tion.

The basic optimization method is steepest descent, where the search direc-
tion is the negative gradient. Steepest descent possesses global convergence
guaranties, but only slow linear local convergence. For gradient evaluation, the
linearized PDE and its adjoint need to be solved.



10 CHAPTER 1. INTRODUCTION

Nonlinear conjugate gradient methods generalize the linear CG method and
aim to increase the local convergence of steepest descent while still avoiding
higher derivative evaluations. There are a number of nonlinear CG methods,
and among them, Fletcher-Reeves and Polak-Ribière are the most important
ones. While Fletcher- Reeves in combination with a strong Wolfe step length
algorithm leads to descent direction and thereby achieves global convergence,
Polak-Ribère needs to be safeguarded. Even though it has been shown that both
methods with reinitialization and exact step length algorithm achieve n-step
quadratical convergence [21] (i.e. if the algorithm is restarted after more than n
steps, the residuals decrease quadratically each n steps), quadratic convergence
in practice is not observed due to large n. However, the number of iterations
needed by nonlinear CG algorithms is usually much smaller than with steepest
descent [59].

To improve local convergence, the subproblem can be set up from a quadratic
model. This leads to Newton’s method which is the primary starting point for
algorithm development in numerical optimization. The local convergence rate
is here improved to quadratic, but at an increased cost of each iteration: Here, a
linear system, the Newton system with the Hessian matrix needs to be solved in
each optimization iteration. For optimization approaches in the reduced-space,
this reduced Hessian matrix has the size of the PDE parameters and it is dense.
Thus, it is usually not possible to form explicitly, not to mention its factorization.

Trust-regions methods define a region where the model is assumed to be rea-
sonably accurate. Within this region, the quadratic model is minimized. Often,
the trust region radius is adapted depending on the ratio of actual and predicted
reduction of the objective function. In this thesis, trust region algorithms are ap-
plied to a feasibility problem, where the objective function is hopefully reduced
to 0. There, the trust region radius is set to a multiple of the infeasibility, i.e.,
dependent on the objectives current iterate. Within trust-region methods, the
subproblems are often solved inexactly. To rate the current approximation to a
subproblem’s solution, it is compared to the Cauchy point, that is a steepest de-
scent step with exact step length. This rule plays a similar role as the conditions
in the step length algorithms for line search methods. Indeed, it suffices to guar-
antee global convergence. One approach to solve the subproblems inexactly is
the dogleg method. Here the solution of the subproblem is constructed on the
polygon defined by the current iterate, the Cauchy point, and the solution of an
unconstrained quadratic model problem.

Similarly, in Newton line search methods, a quadratic model is formed to
compute a search direction. For nonconvex objective functions the quadratic
model may represent a saddle instead of a bowl and the objective function might
increase in the search direction. To overcome this difficulty, the Hessian matrix is
modified yielding a descent direction. With this, a step length algorithm can de-
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termine the next iterate, thereby guaranteeing global convergence. In this step
length algorithm, the objective function needs to be evaluated several times,
which includes repeated assemblies and solutions of PDEs. Step length algo-
rithms are designed to generate full Newton steps close to the solution.

With an exact solution of the Newton system, both Trust-region and line
search methods inherit the fast local quadratic convergence from Newton’s
method. However, in the context of PDE-constrained reduced-space optimiza-
tion, a large dense linear system needs to be solved. One possible approach
to overcome the drawback of forming the dense Hessian is to approximate the
Hessian by finite differences of the previous optimization steps. This led to
the development of Quasi-Newton methods. Since in each optimization step
knowledge about the gradients change in one direction only is contained, there
are several methods to update a current Hessian estimate in order to reflect
this new information. Among Quasi-Newton methods, BFGS and DFP are
the most important ones. Remarkably, it is also possible not only to construct
Hessian approximations but also approximations to its inverse. Thus, it is not
necessary to solve the approximation to the Newton system, but only apply
the current approximation to a vector. Furthermore, since the approximations
are created by low rank updates in each iteration, it is not necessary to save
the dense approximation matrix, but only the previous vectors. In combination
with Wolfe or strong Wolfe step length algorithms, the search directions are de-
scent directions and global convergence is achieved. Furthermore, superlinear
convergence has been proved. However, these methods suffer from reduced
Hessian approximation efficiency with increasing problem size.

In most PDE-constrained optimization problems, the objective function is
quadratic and a Gauss-Newton approximation to the Hessian matrix is suitable.
Here, in the objective function a first-order approximation is applied leading
to a positive semidefinite Hessian. Thus, accent search directions cannot ap-
pear and Hessian modification is usually not performed. Since the approximate
Hessian is also symmetric, the CG method can be applied to solve the linear
systems. With appropriately controlled inexact solutions, the Gauss-Newton
method achieves superlinear convergence rates.

Another possibility for tackling the drawbacks of Newton’s method is to
solve the Newton system inexactly via Krylov methods. These methods do not
require to form or store the actual matrix but only its application to a vector
is needed. The resulting optimization problems are also referred to Newton-
Krylov methods. A prototype of this family is the Newton-CG algorithm by
Steihaug [70]. Global convergence can be assured in a trust-region framework
in combination with a step length algorithm and Hessian modification as de-
scribed above. When the inexact solution of the Newton system is controlled
suitably, Newton-Krylov methods converge superlinearly or even quadratically.
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The most expensive part in inexact Newton methods is the iterative solu-
tion of the KKT system. For efficient iterative solvers preconditioning is the
key component. Since the large-scale dense Hessian cannot be formed explic-
itly, incomplete factorization methods are out of scope. However, one can apply
Quasi-Newton techniques like BFGS for preconditioning. There are two major
drawbacks. First, Quasi-Newton methods often try to resemble positive definite
matrices, but for nonconvex optimization problems positive definiteness of the
reduced Hessian is not guaranteed. Second, Quasi-Newton approximations of-
ten work well only in certain directions but they do not approximate the whole
matrix, as would be desirable for a preconditioner.

1.2.4 Full-Space Optimization

While, in the reduced-space approach, the PDE constraints are used to elim-
inate the state variables, in the full-space approach we keep the state variables
and PDE constraints. This has several advantages:

• Derivatives can be evaluated exactly and stored explicitly. The linear sys-
tems, i.e., the constraints’ Jacobian and the Lagrange’s Hessian, are sparse
and their exact evaluation circumvents additional errors from approxi-
mate evaluation.

• Inexact solutions of the PDEs are acceptable. Since we do not assume fea-
sibility of the state variables, the algorithm may also visit infeasible points
and gain feasibility and optimality simultaneously.

• The evaluation of the functional is very cheap. In contrast, in the line
search of reduced-space methods a change of the control variable neces-
sitates a reassembly and possibly a refactorization to solve PDEs for objec-
tive function evaluation.

This advantages come at the cost of many more optimization variables and ap-
pearance of equality constraints.

Equality constrained optimization

First-order optimal points for equality constrained problems are saddle
points of the Lagrangian. To compute them, in each iteration a model subprob-
lem is formed and solved.

In penalty methods these subproblems are unconstrained and the constraint
violation is added as a penalty term to the objective function. The weight of the
penalty term is then increased to infinity, which leads to highly ill-conditioned
matrices when solving the unconstrained subproblems. In contrast, for exact
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penalty functions a finite penalty parameter already yields a solution of the con-
strained problem. However, exact penalty functions are nonsmooth or quite
complicated and they are not well suited for large-scale optimization. A loop-
hole for this situation are augmented Lagrangian methods, where a smooth
penalty term is added to the Lagrangian. Then, a finite penalty parameter suf-
fices. Since the subproblem of penalty methods is unconstrained, global con-
vergence and the local convergence rate comply with global convergence of the
subproblem solver and an appropriate estimation of the required penalty pa-
rameter.

In SQP methods the subproblem is generated by a quadratic approxima-
tion of the objective and linearized constraints. While for the unconstrained
problems, global convergence can be achieved by a sufficient decrease in each
step, the situation for constrained optimization is more involved. Here, we seek
two goals: finding a feasible point and at the same time reducing the objec-
tive. Trust-region methods achieve global convergence by a suitable choice of
the trust-region radius and a strategy to handle inconsistent subproblems in case
the linearized constraints are not fulfilled in the trust region. Line search meth-
ods utilize filters or merit functions to cope with the two goals. Since the SQP
method can be motivated by Newton’s method, local quadratic convergence can
be achieved. Like for unconstrained optimization problems, it is often practical
to approximate Hessians by Quasi-Newton methods or inexact solutions. These
approximations usually yield superlinear local convergence.

Inequality constraints

Inequalities are very useful in practical applications as they can be used to
model technical limitations or to keep the algorithm in a basin of attraction of a
good local minimum. Despite these attractive features, they constitute serious
algorithmic problems. The underlying problem is to determine the set of active
constraints, i.e., the set of inequality constraints which hold with an equality
sign at the optimal point. This problem owns combinatorial complexity.

In reduced-space methods the PDE equality constraints are eliminated. Thus
only constraints involving PDE parameters can be treated efficiently. Four types
of methods are well established in this context.

In projection methods, search directions are first computed from an uncon-
strained subproblem and afterwards iterates and search directions are projected
into the admissible set and feasible directions, respectively. For steepest descent
algorithms, the projected search direction yields a descent direction. For other
search directions like a Newton direction, even the projection of descent direc-
tions can yield an ascent direction. This can be corrected by varying the Newton
system and still superlinear convergence can be achieved [10].

Active set SQP methods hold an estimate for the set of active inequality con-
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straints. In each iteration they impose the active set as equality constraints and
update this set based on the solution of the subproblem. Once the set of active
inequalities has been identified correctly, these methods converge superlinearly
or even quadratically. The mayor problem of active set SQP methods is to iden-
tify the active set, especially if there are many almost active inequalities. Active
set SQP methods tend to change the active set by only a few single inequali-
ties. By these updates, the number of equality constraints varies which often
necessitates reinitialization of internal data structures.

In this thesis we consider IP methods to solve nonconvex PDE-constrained
optimization methods with inequality constraints. These methods add a loga-
rithmic barrier term to the objective and solve a series of equality constrained
problems. The methods treated in this thesis have global convergence guar-
anties and converges superlinearly. They are discussed in more detail in part I.

1.3 Thesis Outline and Contribution

This thesis is organized in three parts. In part I interior-point methods are
discussed and major convergence results are reviewed. Particularly, in Chapter 3
an IP algorithm which allows for inexact step computations is covered. In Part II
these IP methods are applied to PDE-constrained optimization algorithms. First,
a general structure induced by the distinction of state variables and PDE param-
eters is discussed in the context of full-space and reduced-space. On the basis of
several PDE-constrained optimization problems in two and three dimensions,
a general purpose algebraic multilevel incomplete LDLJ preconditioner and a
reduced-space preconditioned Krylov subspace method are evaluated and com-
pared to an exact IP algorithm. In Part III IP algorithms are applied to an in-
verse medium problem for the Helmholtz equation. The influence of inequality
constraints and Hessian modification are evinced numerically and different reg-
ularization strategies are compared. The part closes with numerical results for
a real world benchmark problem in seismic imaging. Finally, Part IV concludes
this thesis and points out possible directions of future research.

The main contribution of the thesis are the following:

• An exact and an inexact IP algorithm with global convergence properties
are considered for large-scale nonconvex PDE-constrained optimization
problems with inequality constraints.

• The IIP algorithm with a general purpose preconditioner is evaluated on
large-scale PDE-constrained optimization problems.

• A reduced-space preconditioned GMRES (RSP-GMRES) solver is intro-
duced in the IIP method. This RSP-GMRES method was implemented
building upon IPOPT and several preconditioners are assessed. The
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RSP-IIP method is assessed on the basis of large-scale nonconvex PDE-
constrained optimization problems with inequality constraints.

• For an inverse medium problem for the Helmholtz equation, model pa-
rameter box constraints are applied. Their influence as well as the need for
Hessian modification is demonstrated. Finally real world seismic imaging
problem is solved by the RSP-IIP method.

• An interface for a parallel version of IPOPT was contributed to the open
source project





Part I

Interior-Point Methods





Chapter 2

Interior-Point Framework and

Exact Step Computation

In the first chapter we have seen how PDE-constrained optimization prob-
lems appear and that they are large-scale and often the matrices are ill-posed. In-
equality constraints Especially pose a serious algorithmic challenge. In this part,
we will present two IP methods to solve large-scale nonconvex PDE-constrained
problems with inequality constraints.

First, we will introduce an IP framework and discuss local convergence
properties. In the framework, a sequence of barrier subproblems is solved and
its solutions converge to the solution of the original PDE-constrained problems.
To solve the subproblems, sparse, large-scale linear systems, the Karush-Kuhn-
Tucker (KKT) systems, need to be solved in each iteration. Two options to solve
them will be presented.

In the first method a sparse direct solver is used. This will be discussed
in Section 2.2. There, additional knowledge about an KKT system’s inertia is
available almost for free and the model problem can be varied by Hessian mod-
ification. This in combination with a filter line search then guarantees global
convergence under mild assumptions.

The KKT system can also be solved iteratively by Krylov subspace methods.
There, the systems are solved only inexactly and the question appears, how to
control the error. More importantly, to guarantee global convergence, Hessian
modification needs to be controlled in the absence of knowledge about the KKT
matrix inertia. These issues are handled by the SMART tests in chapter 3.



20 CHAPTER 2. IP FRAMEWORK AND EXACT STEP COMPUTATION

2.1 Interior-Point Framework

In this thesis we solve large-scale nonconvex PDE-constrained optimization
problems with inequality constraints. More precisely, we follow the discretize-
than-optimize approach and use IP methods to solve problems of the form

min
xPRn

Fpxq (2.1)

s.t. cEpxq � 0,

cIpxq ¥ 0,

where the equality constraints cE : Rn Ñ RnE , inequality constraints cI : Rn Ñ

RnI , as well as the optimization variable Rn Q x � py uq, consisting of state
variables y P Rny and decision variables u P Rnu , are high dimensional, typically
on the order of hundreds of thousands or millions.

Notation

Throughout this thesis vector-valued inequalities are meant componentwise.
Vectors and matrices are denoted in bold letters and their components with a
parenthesized superscript. We denote a vector consisting of stacked subvectors
by ra bs � paJ bJqJ. Function dependencies are often dropped once they are
defined.

2.1.1 Optimality Conditions

In this section, we give a very rough overview of optimality conditions and
follow the line from [55]. Solutions of problem (2.1) are characterized as saddle
points of the Lagrangian

Lpx, λE , λIq :� Fpxq � λJE cEpxq � λJI cIpxq,

with Lagrange multipliers λE P RnE , λI P RnI .
To state optimality conditions we need the concept of constraint qualifica-

tions:

Definition 2.1 (Active inequality, LICQ). Given a point x P Rn the set of active
inequalities is defined as

Apxq � ti P 1, . . . nI : cI piq � 0u.

We say, that the linear independence constraint qualification, (LICQ) hold in x
if the gradients of all equality and active inequality constraints are linearly independent.

With this, we can formulate the first-order optimality conditions, see also e.g.
Section 12.3 in [55]:
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Theorem 2.2 (Karush-Kuhn-Tucker conditions). Suppose that x� is a local solution
of (2.1), that F, cE , and cI are continuously differentiable, and that the LICQ holds at
x�. Then there exist Lagrange multipliers λ� � pλ�E , λ�Iq, λ�E P RnE , λ�I P RnI , such
that the following conditions are satisfied:

∇xLpx�, λ�q � 0, (2.2)

cEpx�q � 0,

cIpx�q ¥ 0,

λ�I ¤ 0,

λ�I
piqcIpx�qpiq � 0 for all i P 1, . . . , nI . (2.3)

Equation (2.3) is called the complementary condition. It is the reason why op-
timization problems with many inequality constraints are challenging: To solve
this system, the distinct cases for the complementarity condition need to be
considered, which number 2nI . Active set SQP methods seek the set of active
inequality constraints. In each iteration they consider an estimate on the ac-
tive set and update it on the basis of the solution of a subproblem. Usually in
this update, only a few inequalities can be added or removed from their cur-
rent estimate of the active set. Therefore, active set SQP methods are not fa-
vored when optimization problems with many inequality constraints need to be
solved. Here, we treat inequality constraints by a barrier method which allows
fast local convergence.

In unconstrained optimization, a second-order necessary condition is that
the Hessian matrix is positive semidefinite. To state a similar theorem in con-
strained optimization, we need to define the critical cone.

Definition 2.3 (Strongly active constraints, critical cone). Given a feasible point x
and a Lagrange multiplier λ satisfying the KKT conditions (2.2), the set of strongly
active inequality constraints is defined as

A�pxq � ti P Apxq : λI
piq   0u.

The critical cone Cpx, λq is the set of vectors

Cpx, λq �

$''&''%v P Rn :

$''&''%
∇cEpxqv � 0 and

∇cIpxqpi,:qv � 0 for all i P A�pxq and

∇cIpxqpi,:qv ¥ 0 for all i P ApxqzA�pxq

,//.//- .

Here ∇cE denotes the equality constraint Jacobian and ∇cI pi,:q the ith line
of the inequality constraint Jacobian. We now can give second-order necessary
and sufficient optimality conditions, e.g., from Section 12.5 in [55].
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Theorem 2.4 (Second-order necessary conditions). Suppose that x� is a local solu-
tion of (2.1) and that the LICQ condition is satisfied. Let λ� be the Lagrange multiplier
vector, for which the KKT conditions (2.2) hold. Then

vJ∇2
x,xLpx�, λ�q v ¥ 0 for all v P Cpx�, λ�q.

Theorem 2.5 (second-order sufficient conditions). Suppose that for some feasible
x� P Rn there is a Lagrange multiplier vector λ� such that the KKT conditions (2.2) are
satisfied. Suppose also that

vJ∇2
x,xLpx�, λ�q v ¡ 0 for all v P Cpx�, λ�q, v � 0.

Then x� is a strict local solution of (2.1)

2.1.2 Primal-Dual Interior-Point Algorithm

We now describe the IP framework from [80, 24]. By introduction of slack
variables s, inequality constraints turn into equality constraints and new, possi-
bly easier, inequality constraints,

s ¥ 0 with cIpxq � s � 0,

are created.
Next, a logarithmic barrier term is added to the objective and the barrier sub-

problem

min
xPRn,sPRnI

ϕpx, s; µq :� Fpxq � µ
nI̧

i�1

ln spiq (2.4)

s.t. cpx, sq :�

�
cEpxq

cIpxq � s

�
� 0

is formed. Note that due to the slack variables, the objective function and con-
straints can be evaluated in points, which do not satisfy the inequality con-
straints. This is of practical importance when it is hard to find an initial guess
which fulfills the inequality constraints.

For a sequence of barrier parameters µ × 0, problem (2.1) is solved through
an inexact solution of a sequence of barrier subproblems of the form (2.4). If F
and c are continuously differentiable, then first-order KKT conditions for (2.4)
are �

γpx, s; µq � JpxqJλ

cpx, sq

�
� 0 (2.5)

along with s ¥ 0, where λ � pλE , λIq, e P RnI is a vector of ones,

γpx, s; µq :�

�
∇Fpxq

�µS�1Σe

�
, and Jpxq :�

�
∇cEpxq 0
∇cIpxq �Σ

�
, (2.6)
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where Σ denotes a diagonal scaling matrix, S � diag psq and ∇cE ,∇cI denote
the Jacobian matrix of the equality and inequality constraints, respectively.

In situations where (2.1) is infeasible, (2.5) has no solution, so the algorithms
are designed to transition automatically from solving (2.4) to solving the uncon-
strained feasibility problem

min
xPRn

1
2
}cEpxq}2

2 �
1
2
}maxt�cIpxq, 0u}2

2 (2.7)

as a certificate of infeasibility. Here, the “max” of vector quantities is to be un-
derstood componentwise. A solution to (2.7) that does not satisfy the constraints
of problem (2.1) is known as an infeasible stationary point of the optimization
problem. It satisfies the KKT conditions

JpxqJcpx, sq � 0 (2.8)

along with s ¥ 0 and cIpxq � s ¤ 0. In fact, the algorithms maintain s ¥ 0 and
cIpxq � s ¤ 0 during each iteration by increasing s when necessary. Thus, con-
vergence to a solution of the barrier subproblem (2.4) or an infeasible stationary
point of (2.1) is achieved once (2.5) or (2.8), respectively, is satisfied.

More precisely, an iterate pxsλq is considered an inexact solution if the error

Eµpx, s, λq ¤ κεµ, (2.9)

with some constant κε ¡ 0, where

Eµpx, s, λq :� max

�
}∇Fpxq � λJE∇cEpxq � λJI∇cIpx, sq}8

sd
,

}cpx, sq}8,
}diagpλIqcIpx, sq � µe}8

sc

� (2.10)

denotes the error. The scaling factors

sd � max
�

1,
}λE}1 � }λI}1

100 � pnE � nIq



and sc � max

�
1,

}λI}1

100 � nI



handle situations where gradients of active constraints are almost linearly de-
pendent, resulting in very large multipliers. Once an inexact solution of a barrier
subproblem is found, the barrier parameter µ is updated as

µ Ð max
� εtol

10
min

�
κµµ, µΘ

		
, (2.11)

with constants κµ ¡ 0, θ P p1, 2q. Here, εtol denotes the overall tolerance to
determine an inexact solution of (2.1) and terminate the algorithm if

E0px, s, λq ¤ εtol . (2.12)
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At each iterate px, s, λq, a Newton-type system for (2.5)�
W JJ

J 0

��
d
δ

�
� �

�
γ� JJλ

c

�
(2.13)

is solved to compute a search direction d � pdx, dsq and δ � pδE , δIq in the
primal and dual space, respectively. Here, W denotes an approximation on the
scaled Hessian of the Lagrangian

Wpx, s, λ; µq :�

�
∇2

xxFpxq � δr I 0
0 ΣpΞ� δr IqΣ

�

�
nȨ

i�1

λ
piq
E

�
∇2

xxcE piqpxq 0
0 0

�
�

nI̧

i�1

λ
piq
I

�
∇2

xxcI piqpxq 0
0 0

�
,

(2.14)

where the Hessian modification δr I is introduced to enforce convexity of the
subproblem model in the search direction. For Ξ � µS�2 the algorithm corre-
sponds to the so called primal IP algorithm. However, (2.5) is better suited for
Newton’s method if we pre-multiply the second line of γ in (2.6) by S. Thereby
the nonlinear term which is approximated is not S�1 but S diagpλIq. This ap-
proach, after post-multiplication with S�1 again yields (2.13) and (2.14) but with
Ξ � �S�1 diagpλIq.

Indeed, the solution of (2.13) is the most time consuming step in the opti-
mization process. In a full-space approach for PDE-constrained optimization,
the matrix is large-scale, sparse, and indefinite. The matrix structure for this
class of optimization problems will be discussed in more detail in Chapter 4.1.

There are basically two options to solve this KKT system. With a sparse
direct solver the system is solved exactly (up to round-off error) and knowl-
edge about the inertia can be used to modify the Hessian matrix to guarantee
global convergence; see Section 2.2. However, the fill-in, especially for three-
dimensional (3D) applications, limits their use due to enormous memory re-
quirements. The second option is the use of Krylov subspace methods. Then the
system is solved inexactly, and Hessian modification and inexactness need to be
controlled appropriately. This will be explained in Chapter 3.

In either way, an update of the current iterates x, s, λE , λI is computed,
where the slack variables fulfill the fraction-to-the-boundary rule

spiqnew ¥ p1� ηBdqs
piq
old for all i P 1, . . . nI . (2.15)

We use ηBd � maxt0.99, 1� µu. It is important to mention, that this choice of η1

does not inhibit superlinear convergence, since it depends on µ Ñ 0.
The overall IP framework is summarized in Algorithm 2.1
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Algorithm 2.1 IP Framework
1: (Initialization) Choose parameters κε, εtol , κµ, Θ, an initial barrier parameter

µ ¡ 0. Initialize px0, s0, λ0q so that the slack variables satisfy s0 ¡ 0 and
s0 ¥ cIpx0q.

2: (Tests for convergence) If convergence criteria (2.12) for (2.1) are satisfied,
then terminate and return x as an optimal solution. Else, if convergence
criteria for (2.7) are satisfied and x is infeasible for (2.1), then terminate and
return x as an infeasible stationary point.

3: (Barrier parameter update) If convergence criteria (2.10) for (2.4) are satis-
fied, then decrease the barrier parameter µ according to (2.11) and go to step
2.

4: (Barrier subproblem step) Compute new estimates for the primal and dual
variables by applying the Algorithm 2.2 or Algorithm 3.1 which satisfy the
fraction-to-the-boundary rule (2.15) and go to step 2.

2.1.3 Barrier Parameter and Local Convergence

We will now visualize the barrier method on the basis of a simple example,

min
xPR2

Fpxq � x1 �
1
2

x2
2 (2.16)

s.t. x1 ¥ 0.

The solution is at x � p0, 0q and the objective function is visualized in Figure
2.1(a). For the ease of the example, we skip the slack variables. Thus, the barrier
subproblem reads

min
xPR2

Fpxq � x1 �
1
2

x2
2 � µ logpx1q (2.17)

with solution x�µ � pµ, 0q. Thus, the local convergence rate crucially depends
on the decrease rate of the barrier parameter. In the described algorithm, µ is
eventually decreased exponentially; see (2.11). It has been shown that there is a
solution of the barrier subproblem within a region with radius Opµq around the
solution of (2.1) [27]. Thus, if the algorithm converges superlinearly to a solution
of a subproblem, overall we would have superlinear convergence. To analyze
this, we follow the line of [18]. In a primal-dual IP algorithm, Newton’s method
is applied to the optimality conditions of (2.4)

bpx, s, λ; µq �

�����
∇Fpxq �∇cEpxqJλE �∇cIpxqJλI

�µe� S diagpλIq

cEpxq
cIpxq � s

����
� 0,
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and in each iteration, the KKT system

b1px, s, λqp � �bpx, s, λ; µq

needs to be solved. Note, that the matrix b1px, s, λq does not depend on µ. Thus,
we can consider a primal-dual IP method as an inexact Newton method for the
optimality condition of (2.1), bpx, s, λ; 0q � 0, with residual vector

b1px, s, λqp� bpx, s, λ; 0q � �µ
�
0 e 0 0

�
� rµ, (2.18)

where r accounts for the residual of inexact solutions of the KKT system. Then
theorem 2.5 in [18] states:

Theorem 2.6 (Local convergence of IP methods). Let z� � rx�, s�, λ�s denote a
KKT point of (2.1) that is bpx�, s�, λ�; 0q � 0, and assume that the Hessians of the
objective function and each constraint exist and are locally Lipschitz continuous at x�.
Assume that LICQ and sufficient second order condition from Theorem 2.5 hold at z�

and also strict complementarity, i.e., s��λ�I ¡ 0. Let z be an iterate sufficiently close to
z� at which the barrier parameter is decreased from µ to µ�. Suppose, that the residual
in (2.18) satisfies

}rµ�} ¤ C}bpz; µ�q}1�κ

for some constants C ¡ 0, κ ¡ 0. Then if µ� � op}bpz; 0q}q and κ ¡ 0, the step will
be superlinearly convergent to z�; moreover, if µ� � Op}bpz; 0q}2q and κ ¥ 1, the step
will be quadratically convergent.

Another point of IP methods, that we can see from example (2.16) is the ill-
conditioning of the KKT system. The Hessian matrix for the subproblem (2.17)
in its solution is

Hpx�µq �

�
1
µ 0
0 1

�
with condition 1{µ for µ ¤ 1. Thus, the Hessian becomes more and more ill-
conditioned as the barrier parameter is reduced. This can be also seen from
Figure 2.1(b) – 2.1(d), where the contour lines close to the barrier subproblems
solution become more and more stretched as µ Ñ 0. Changing from an primal
IP methods to an primal-dual approach does not improve the situation. Then
the ill-conditioning does not appear in the barrier term anymore, but active in-
equality constraints become arbitrarily strong weights due to λ

piq
I � µ{spiq; see

[27].

2.2 Exact Interior-Point Method

In Section 2.1 we have seen a general framework of IP methods. We now de-
scribe our first option to compute a new iterate of Algorithm 2.1, which consists
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(a) µ � 0
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(b) µ � 0.5
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(c) µ � 0.1
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Figure 2.1: Toy example: Contour plots of the original objective function (µ � 0) and
objective of the barrier subproblems with µ � 0.5, 0.1, and 0.02

in an exact Newton method combined with a filter line search. This algorithm
originates from [80]. Its superlinear convergence has been proven in [78] and
global convergence was analyzed in [79].

In the algorithm described in this section, a sparse direct solver is applied to
(2.13). Here, an LDLJ decomposition is computed. From this factorization, the
inertia can be computed easily to check if the Hessian matrix is positive definite
on the null space of the constraints. If not, a Hessian modification is performed
and a new factorization is computed repeatedly.

The algorithm then seeks step lengths αx,s,E and αI to update the iterates

xpαq :� x� αx,s,Edx, (2.19)

spαq :� s� αx,s,Eds,

λE :� λE � αx,s,EδE ,

λI :� λI � αIδI .
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First, αmax and αI are determined by the fraction-to-the-boundary rule

αmax � maxtα P p0, 1s : s� αds ¥ p1� ηqsu,

αI � maxtα P p0, 1s : λI � αδI ¥ p1� ηqλIu.

Then a backtracking line search aims a filter accepted step length αx,s,E by check-
ing the trial steps 2�lαmax. If the first trial step is not accepted and the trial step
decreases feasibility, second order corrections try to improve feasibility before
smaller step lengths are tested. If in the line search the step length becomes too
small, a feasibility restoration phase is launched, where the algorithm is applied
to the feasibility problem (2.7). In the remainder of this chapter main algorithmic
ingredients will be presented. For a complete algorithmic overview, we refer to
[80].

Algorithm 2.2 Barrier Subproblem Exact Newton Step
Input: Current estimate x, λ, s, µ,

1: Initialize δr � 0
2: repeat
3: Compute a factorization of the KKT matrix in (2.13).
4: If the matrix is singular, perturb the lower left block.
5: If the δr � 0 set δr Ð δinit

r � 0, else set δr Ð maxtδmin
r , κδδru.

6: until Inertial is pn, m, 0q
7: Compute search direction d, δ by solving (2.13)
8: Set αmax by the fraction-to-the-boundary-rule (2.15), set trial point xpαmaxq

and spαmaxq according to (2.19)
9: repeat

10: If xpαq P F apply a second-order correction, recompute αmax according to
the fraction of the boundary rule and compute the resulting trial point.

11: until trial point is accepted by the filter or maximum number of second-
order correction reached

12: repeat
13: Set α Ð α{2 and compute trial point xpαq, spαq
14: until trial point is accepted by the filer or α   αmin

15: if α   αmin then
16: Start feasibility restoration phase, apply the optimization algorithm to prob-

lem (2.7). If it is not possible to find a point which is accepted by the filter
terminate the optimization run, else use computed solution.

17: else
18: Augment the filter according to (2.20)
19: end if
20: Compute λE , λI by (2.19)
Output: xk�1, λk�1, sk�1
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2.2.1 Computation of the Newton Direction

The full-space approach in PDE-constrained optimization yields a sparse
and large-scale KKT matrix in (2.13). Furthermore, it is indefinite and often
ill-conditioned. Thus, a robust sparse linear solver for indefinite matrices is of
utter most importance.

We apply Pardiso [63] to compute a PLDLJPJ factorization with a lower tri-
angular matrix L, a permutation matrix P, and a block-diagonal matrix D with
blocks of size 1�1 and 2�2. The permutation P reduces the fill-in and improves
the accuracy by maximal matchings and pivoting strategies like Supernode-
Bunch-Kaufmann. Using this factorization, the number of positive, negative
and zero eigenvalues, the inertia, can be computed easily by investigation of the
small diagonal blocks in D.

The knowledge of the inertia is of great importance in the context of opti-
mization. In unconstrained nonconvex optimization a Newton direction may be
an accent direction, if the Hessian matrix is indefinite. A similar case can occur
in nonconvex constrained optimization. There the Lagrangian Hessian needs to
be positive definite on the null space of the constraints Jacobian.

To see this, recall, that the second-order sufficient conditions state that the
W-block in (2.13) is positive definite on the null space of the Jacobian. This
implies a fixed inertia, as we see in the next theorem from [27]:

Theorem 2.7 (Inertia of a KKT matrix). Let

K �

�
W JJ

J 0

�

with W P Rk�k, J P R`�k, rankpJq � `.
If W is positive definite on the null space of J, then it is regular and has k positive

and ` negative eigenvalues.

If K does not have this inertia, then W is semidefinite or indefinite on the
null space of the linearized constraints. Thus, there exists a first-order feasible
direction for which the objective can be nondecreasing. To circumvent those
situations, the Hessian matrix is modified. This is handled in Algorithm 2.2,
steps 2-6

2.2.2 Filter Line-Search Methods

In unconstrained optimization, the line search needs to ensure that each
step reduces the objective function sufficiently. In constrained optimization two
goals need to be achieved: to find a feasible point and to reduce the objective
function. Thus, filters prevent cycling in an optimization algorithm by consider-
ing a constrained optimization problem as a biobjective optimization problem.
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A filter contains taboo regions in R2 which are considered as banned for the
optimization algorithm. At the beginning of each subproblem solution, the filter
is initialized as

F Ð
 
pϕ, cq P R2|c ¥ cmax( ,

with some maximal constraint violation cmax. Thus, points with high infeasibil-
ity are banned in the whole algorithm. In the line search phase, the algorithm
generates trial point xpαq, spαq which are rejected if

pϕpx, s; µq, }cpxq}q P F

and accepted otherwise. Within algorithm 2.2, the filter saves visited points and
rejects points, which are worse than one of the previously visited points in both,
infeasibility and a merit function. The filter is then augmented as

F Ð F Y tpφ, cq P R2|φ ¥ ϕpx, s; µq � γϕ}cpx, sq} and c ¥ p1� γcq}cpx, sq}u,
(2.20)

with γϕ, γc P p0, 1q. A filter is visualized in Figure 2.2. On the horizontal axis
we see the barrier objective function and on the vertical axis we draw the infea-
sibility. A solution of (2.4) lies on the x-axis as left as possible. The taboo region
is marked gray and any trial point whose objective value and infeasibility are in
the gray region will be rejected. In the figure, the filter was augmented with at
least two iterates, each of which generates an edge in the graph.

When the algorithm has reached an almost feasible point and the search di-
rection is a decrease direction for the objective, the filter line search is replaced
by the Armijo condition

ϕpxpαq, spαq; µq ¤ ϕpx, sq � ηAαγJd,

where γ from equation (2.6) is the gradient of the barrier objective function and
η P p0, 1{2q.

2.2.3 Second-Order Correction

The famous Maratos effect shows that situations may occur, in which a full
Newton step yields local quadratic convergence, but it will not be accepted by
a filter or a merit function. This situation can be detected if the first trial point
xpαmaxq, spαmaxq is rejected by the filter and the infeasibility increased. To cope
with the Maratos effect, second-order correction aims to improve feasibility by
an extra Newton step in the primal variables on the constraints,

Jpxpαq, spαqq dSOC � �

�
cEpxpαqq

cIpxpαqq � spαq

�
.

The second-order correction is not completely determined by 2.2.3. Further-
more, an additional large-scale linear system needs to be solved. Both issues are
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Figure 2.2: A filter defines a taboo region (gray). A trial point xpαq, spαq corresponds
to a point in this graph by its objective function value and its infeasibility and may be
accepted by the filter if it lies in the white area. Later on the filter is augmented which
creates a new “corner“ in this graph.

resolved if the Jacobian matrix is not evaluated in the trial point xpαq, spαq but
in the current iterate x, s. Then the factorization of 2.13 can be reused. In the
algorithm we solve the linear system�

W JJ

J 0

��
dSOC

δ

�
� �

�
γ� JJλ

αc� cpxpαqq

�
,

and update the search direction

d :� αd� dSOC,

as well as αmax according to the fraction-to-the-boundary rule in the new direc-
tion.

This is described in Algorithm 2.2, step 9 – 11. There, second-order cor-
rections are applied repeatedly, until the filter accepted the step or a maximal
number of second-order corrections is reached.





Chapter 3

Inexact Interior-Point Method

In the previous chapter, we have presented the IP framework and a first op-
tion to compute a new iterate for Algorithm 2.1 by an exact Newton method
in combination with a filter line search. There, the KKT system (2.13) needs
to be solved, which is sparse and large scale. Sparse direct solvers suffer from
enormous memory requirements due to fill-in. Thus, the idea presented in this
chapter is to apply an iterative linear solver to (2.13). They compute a sequence
of inexact solutions which converge to the exact solution. Since the KKT sys-
tems are solved inexactly the question is, which inexact solution is considered
accurate enough. For global convergence the exact algorithm ensures a descent
direction of the objective function by inspection of the inertia of the KKT ma-
trix and modifies the Hessian block if necessary. Here we consider inexact IP
methods (IIP), where no factorization is available. Thus Hessian modification
needs to be controlled in the absence of knowledge about the KKT matrix iner-
tia. These issues are accomplished by the SMART tests.

In this chapter we follow the algorithm description as presented in [35] and
[22]. The optimization method is based on the series of inexact SQP, inexact
Newton, and IIP algorithms that have been proposed and analyzed in [17, 23,
24, 35], though the majority relates to the latest enhancements in [35].

In [17], iterates of a linear solver were considered as search direction candi-
dates. On the basis of a local model of a merit function, termination tests for the
linear solver were developed to achieve global convergence. For the central role
of the reduction of the merit function, these tests are referred to as SMART tests.
In cases where the constraint Jacobians were almost rank deficient, unproduc-
tive steps may be taken. This was tackled in [23] by a step decomposition into
a normal and a tangential step. The normal step was computed as the inexact
solution of a trust-region subproblem aiming to reduce the primal infeasibility.
The tangential step was then computed implicitly as the solution of a modified
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Newton system.
In [24] the SMART tests were extended to IP methods to cope with inequal-

ity constraints. Special care was taken to the logarithmic barrier term and the
fraction-to-the-boundary rule in the line search phase. All of the aforementioned
inexact methods guarantee global convergence. The stabilized SMART tests in
[24, 22] require the solution of two Newton systems, thus doubling the price of
a Newton iteration. Even though global convergence is not guaranteed for the
inexact method in [17] within an IIP framework, in practice it has shown good
results. This led to the combination of both methods in [22], where the nonsta-
bilized method was safeguarded by the globally convergent one.

The inexact step computation method is summarized in Algorithm 3.1.

Algorithm 3.1 Inexact Step Computation
1: (Initialization) If uninitialized choose line search parameters η2 P p0, 1q,

αmin P p0, 1q
2: if barrier parameter µ changed then
3: (Reinitialization) Chose initial penalty parameter π ¡ 0.
4: end if
5: Compute α � αmax according to the fraction-to-the-boundary rule (2.15).
6: Compute a SMART accepted search direction pd, δq and update the merit

function parameter π by Algorithm 3.2.
7: repeat
8: Set α Ð α{2 and compute a new trial point pxpαq, spαqq.
9: until trial point pxpαq, spαqq fulfills the Armijo rule (3.10) or α   αmin

10: if α   αmin then
11: reset α Ð αmax

12: Compute a new SMART accepted search direction pd, δq and update the
merit function parameter π by Algorithm 3.3.

13: repeat
14: Set α Ð α{2 and compute a new trial point pxpαq, spαqq.
15: until trial point pxpαq, spαqq fulfills the Armijo rule (3.10)
16: end if
17: Compute dual step length β according to (3.11) and update the dual variable

λ Ð λ� βδ

18: Update x, s

3.1 SMART Tests for an Inexact Newton Method

As mentioned earlier, when inexact solutions are used to compute an update,
strategies need to be employed to cope with errors and Hessian modification.
Here we first describe a search direction computation, which itself yields global
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convergence [17] under assumptions, which may not hold for all steps within
an IP optimization method. In cases where it fails, the method changes to Algo-
rithm 3.3 described in Section 3.2, where care is taken of almost rank deficient
constraint Jacobians and the logarithmic barrier term.

The IIP methods consider a given iterate of an iterative linear solver as an
search direction candidate and check its effect in terms of the optimization problem
itself instead of just checking if a certain residual�

rd

rp

�
�

�
W JJ

J 0

� �
d
δ

�
�

�
γ� JJλ

c

�
(3.1)

has been reached. We denote the relative residual of the Newton system by
Ψ :� }p rd

rp
q}{}pγ�JJλ

c q}. To rate a search direction candidate the merit function

φpx, s; µ, πq :� ϕpx, s; µq � π}c} (3.2)

is approximated,

mpd; µ, πq :� φpx, s; µ, πq �∇x,s ϕpx, sqJd� π }c� Jd} ,

and its reduction

∆mpd; µ, πq : � mp0; µ, πq �mpd; µ, πq

� �∇x,s ϕpx, sqJd� π p}c} � }c� Jd}q (3.3)

is observed.
An exact Newton step fulfills �∇x,s ϕpx, sqJd ¥ 1{2 dJW d � }c}}λ � δ} and

thus we had ∆m ¥ 1{2 dJWd� ε1π}c} with some constant ε1. The first term can
be negative for nonconvex problems and thus we safeguard for such a situation.
These ideas give rise for the model reduction condition of termination test 1 in
Algorithm 3.2, step 3. It can be considered the main condition to be satisfied.

In cases where the search direction candidate yields a small relative residual
and the curvature dJW d

}d}2 is positive, failure of termination test 1 may be caused
by a too small merit function penalty parameter π. Thus, in the case where the
primal and dual residuals are small compared to the primal infeasibility and the
objective function curvature along the search direction candidate is positive, in
step 4 we accept the candidate and π is increased to a value such that the model
reduction condition from step 3 holds.

The third termination test in step 5 checks for almost feasible points if a step
only in the dual space would improve dual feasibility. Then this dual search
direction is accepted and the primal step is set to 0.

If a search direction candidates exhibits a reasonably small relative residual,
then the curvature along this direction is inspected and if it is not sufficiently
positive the Hessian matrix is modified by increasing δr in (2.13). This test re-
places the inertia correction in the exact method. Note, that here, we only require
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that W is positive definite in the search direction instead of the whole Jacobian
null space. This is a much more direct way to ensure positive curvature along
the search direction.

These tests are usually referred to as Sufficient Merit function Approximation
Reduction Termination tests (SMART). Algorithm 3.2 summarizes the SMART
tests for the inexact Newton method. Indeed the global convergence theorem
5.1 in [17] shows that all causes of failure of termination test 1 are handled
appropriately. For completeness we restate it here:

Theorem 3.1. Suppose, the sequence rx, ss generated by Algorithms 2.1, 3.1 and 3.2 is
contained in a convex set over which the following properties hold:

1. The objective function, the constraints, and their first and second derivatives are
bounded.

2. The constraints Jacobian J have full rank with smallest singular value bounded
below by a positive constant.

3. The sequence of generated Lagrange multipliers rλEλI s is bounded over all itera-
tions.

4. The sequence of modified Hessian matrices W is bounded over all iterations and
the Hessian modification strategy yields matrices such that W � 2θI is positive
definite after a finite number of modifications.

5. Each W yields regular KKT systems (2.13) and the linear solver is capable of
solving each KKT system to an arbitrary accuracy.

Then �����
�

γpx, s; µq � JpxqJλ

cpx, sq

������Ñ 0.

3.2 SMART Test for a Stabilized Inexact Newton Method

The combination of Algorithms 2.1 and 3.1 with Algorithm 3.2 to compute
an inexact step works very well for many practical problems. However, in cases
where the constraint Jacobians are almost rank deficient the primal step length
α may become very small. In [23] strategies to overcome this problem were in-
troduced based on the decomposition of the step. In [24] these techniques were
extended for IP methods. The advantage of increased stability and the oppor-
tunity to handle inequality constraints however is paid for by the necessity of
solving two linear systems inexactly instead of only one. Therefore we change to
this stabilized algorithm only when we have evidence Algorithm 3.2 produces
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Algorithm 3.2 Inexact Newton Iteration with SMART Tests
1: (Initialization) Choose parameters J P N0, κdes P p0, 1q, κ P p0, 1q, ε1 P p0, 1q,

θ ¡ 0, ζ ¡ 0, τ P p0, 1q, κ3 P p0, 1q, ε3 ¡ 0, κW ¡ 0. Initialize j Ð 1 and
pd, δq Ð p0, 0q.

2: (Residual test) If j ¤ J and Ψ ¡ κdes, then go to step 7.
3: (Termination test 1) If Ψ ¤ κ and the model reduction condition

∆mpd; µ, πq ¥ maxt1{2 dJWd, θ}d}2u � ε1π maxt}c}, }rp} � }c}u

holds, then terminate by returning pd
δ q and the current π.

4: (Termination test 2) If the residual conditions

}rdpd, δq} ¤ κ}c} and }rppdq} ¤ κ}c}

are satisfied and the curvature condition 1{2 dJWd ¥ θ}d}2 holds, then ter-
minate by returning pd

δ q and π Ð maxtπ, πt � ζu, where

πt Ð
∇x,s ϕpx, sqJd� 1{2 dJWd
p1� τqp}c} � }rppdq}q

.

5: (Termination test 3) If the dual displacement and feasibility measures satisfy

}rdp0, δq} ¤ κ3}∇x,s ϕpx, sq � JJλ} and }c} ¤ ε3}∇x,s ϕpx, sq � JJλ},

then terminate by returning p0, δq (i.e., reset d Ð 0) and the current π.
6: (Hessian modification) If Ψ ¤ κW and 1{2 dJWd   θ}d}2, then increase the

Hessian regularization parameter δ, reset j Ð 1 and pd, δq Ð p0, 0q, and go
to step 2.

7: (Search direction update) Perform one iteration of an iterative solver on (3.1)
to compute an improved (approximate) solution pd, δq. Increment j Ð j� 1
and go to step 2.

unproductive search directions. As an indicator for this, we check if the pri-
mal step length is larger than some lower bound αmin, which we have chosen as
αmin � 10�3 and use Algorithm 3.3 only in these cases. Indeed, the numerical
examples show that this happens only very rarely.

According to the two goals of increasing feasibility and reducing the objec-
tive, the primal search direction d in the stabilized SMART test version is split
into a normal step n and tangential step t such that

d � n� t,

where Jt is small (i.e., t lies in the kernel of J or close to it) and n is near the range
of JJ. More specifically, the normal step n is computed as the inexact solution
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of the subproblem

min
n

1{2}rppnq}2 (3.4)

s.t. }n} ¤ ω}JJc}.

An inexact solution of this problem is accepted if it satisfies a Cauchy decrease
condition

}c} � }rp} ¥ εnp}c} � }rppαCnSq}q, (3.5)

where nS � �JJc is the steepest descent direction of (3.4) and αC the step length
to minimize the objective function along nS within the trust region. To find an
inexact solution, we follow a dogleg approach: We first compute the Cauchy
point nC � αCnS and then apply an iterative solver to the Newton system of
(3.4) which is very similar to (3.1) but with the (1,1) block replaced by an identity
matrix and a different right-hand side. Once a normal component candidate nN

fulfills (3.5), the dogleg approximation nD is computed as the point on the line
between nC and nN which is closest to nN in the trust region. Finally rnC and rnD

are scaled back from nC and nD, respectively, according to the fraction-to-the-
boundary rule (2.15). In analogy to (3.5) we choose n Ð nD if }c} � }rpprnDq} ¥

εnp}c} � }rpprnCq}q holds, and otherwise we set the Cauchy point n Ð nC.
Having found the normal component n, we implicitly compute t by solving

the system �
rd

rp

�
�

�
W JJ

J 0

� �
d
δ

�
�

�
γ� JJλ

J n

�
, (3.6)

where in the second row we force Jd � Jn, i.e. Jt � 0. Since we will solve (3.6)
only inexactly, this equality will only hold up to a residual rp. Note that even for
rank deficient Jacobians, this equation is solvable, which prevents a breakdown
of the algorithm due to inconsistent linearized constraints.

To rate a tangential component candidate, similar ideas like for the inexact
Newton system (3.1) are applied, but care must be taken for the search direction
decomposition and the fact, that the normal component may not exactly be or-
thogonal to the linearized feasible plane. To do so, the quadratic model problem

min
t
pγ�WnqJt � 1{2 tJWt (3.9)

s.t. Jt � 0

is considered in Algorithm 3.3, step 7. Note that a Newton step on (3.9) leads to
the same KKT system (3.6) ans thus if W is positive definite on the null space of
J, they share the same solution.

The stabilized search direction computation with SMART tests is summa-
rized in Algorithm 3.3. Global convergence with this algorithm has been proven
in Theorem 3.13 in [24] which reads:
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Algorithm 3.3 Regularized Inexact Newton Iteration with SMART Tests
1: (Initialization) Choose parameters J P N0, κdes P p0, 1q, ψ ¡ 0, θ ¡ 0, κ P
p0, 1q, ε1 P p0, 1q, ε2 P p0, 1q, ζ ¡ 0, τ P p0, 1q, κ3 P p0, 1q, ε3 P p0, 1q, κW ¡ 0,
and ξ ¡ 0. Initialize j Ð 1 and pd, δq Ð p0, 0q.

2: (Normal step computation) Compute n by an inexact solution of (3.4) as
described in the text.

3: (Residual test) If j ¤ J and Ψ ¡ κdes, then go to step 11.
4: (Direction decomposition) Set t Ð d� n.
5: (Tangential component test) If

}t} ¤ ψ}n} (3.7)

or if the inequalities
1{2 tJWt ¥ θ}t}2, (3.8)

p∇x,s ϕpx, sqJ �WnqJt � 1{2 tJWt ¤ 0

are satisfied, then continue to step 6; otherwise, go to step 9.
6: (Dual residual test) If the dual residual condition

} rdpd, δq} ¤ κ min
"�����∇x,s ϕJ � JJλ

Jn

����� ,
�����∇x,s ϕold � JJoldλ

Joldnk�1

�����*
is satisfied, then continue to 7; otherwise, go to step 9. Here ∇x,s ϕold and Jold
refer to values of the previous Newton iteration.

7: (Termination test 1) If the model reduction condition

∆mkpd; µ, πq ¥ maxt1{2 tJWt, θ}t}2u � ε1πp}c} � }rppnq}q

is satisfied, then terminate by returning pd, δq and the current π.
8: (Termination test 2) If the linearized constraint condition

}c} � }rppdq} ¥ ε2p}c} � }rppnq}q ¡ 0

is satisfied, then terminate by returning pd, δq and π Ð maxtπ, πt � ζu,
where

πt Ð
∇x,s ϕpx, sqJd� 1{2tJWt

p1� τqp}c} � }rp}q
.

9: (Termination test 3) If the dual displacement δ yields

}rdp0, δq} ¤ κ3 min
"�����∇x,s ϕJ � JJλ

Jn

����� ,
�����∇x,s ϕold � JJoldλ

Joldnk�1

�����*
and the stationarity and dual feasibility measures satisfy

}JJc} ¤ ε3}∇x,s ϕJ � JJλ},

then terminate by returning p0, δq (i.e., reset d Ð 0) and the current π. Here
∇x,s ϕold and Jold refer to values of the previous Newton iteration.

10: (Hessian modification) If Ψ ¤ κW , but both (3.7) and (3.8) do not hold, then
increase the Hessian regularization parameter δ, reset j Ð 1 and pd, δq Ð
p0, 0q, and go to step 3.

11: (Search direction update) Perform an iterative solver on (3.6) to compute an
improved approximate solution pd, δq. Increment j Ð j� 1 and go to step 3.
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Theorem 3.2. Suppose, the sequence rx, ss generated by Algorithms 2.1, 3.1 and 3.3 is
contained in a convex set over which the following properties hold:

1. The objective function, the constraints, and their first derivatives are bounded and
Lipschitz continuous.

2. The sequence of modified Hessian matrices W is bounded over all iterations and
the Hessian modification strategy yields matrices such that W � 2θI is positive
definite after a finite number of modifications.

3. The linear solver is capable of solving each KKT system to an arbitrary accuracy.

Let µj denote the sequence of positive barrier parameters with µj Ñ 0. Then one of the
following statements hold:

1. During the outer iteration in Algorithm 2.1, it always holds that }c}8 ¡ κεµj. In
this case the stationary condition (2.8) of the feasibility problem (2.7) is satisfied
in the limit.

2. During an outer iteration in Algorithm 2.1, there exists an infinity inner iteration
in Algorithm 3.3 where }c}8 ¤ κεµj, but (2.9) does not hold. Then stationary
condition (2.8) of the feasibility problem (2.7) is satisfied in the limit and the merit
parameter diverges, π Ñ8.

3. Each outer iteration results in an iterate px, s, λq satisfying (2.9). In this case
all limit points are feasible, and if a limit point satisfies the LICQ, the first-order
optimality conditions from Theorem 2.2 of (2.1) hold.

3.3 Step Length Computation

Globalization in the proposed algorithm is attained by a line search method.
In contrast to the exact IP method, we do not apply a filter to accept step lengths
but instead the Armijo rule is adopted on the merit function (3.2). This also
overcomes the Maratos effect; it has been shown, that a SMART accepted search
direction is indeed a descent direction of a local model of the merit function [17,
Lemma 3], [24, Lemma 3.5].

Having found a search direction and a step length α, the primal variables are
updated as

xpαq :� x� αdx,

spαq :� s� αds,

where the primal step length α needs to fulfill two conditions. First, a maximal
step length according to a fraction-to-the-boundary rule (2.15) is determined. A
backtracking line search then seeks a step length according to an Armijo-type
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rule for the merit function (3.2). The penalty parameter π is adapted automati-
cally during the algorithm; see Algorithm 3.2, step 4 and Algorithm 3.3, step 8.
With this merit function the step length condition is

φpxpαq, spαq; µ, πq ¤ φpx, s; µ, πq � η2α ∆mpx, s; µ, πq, (3.10)

with η2 � 10�8. Here, we use the local model of the merit function reduction
∆mpd; µ, πq as introduced in (3.3).

For the dual variables, the step length β is set to the smallest value in rα, 1s
that leads to a dual infeasibility reduction at least as large as a full Newton step,
that is,

β � min
 

β̃ P rα, 1s|
��cpx, s, λ� β̃δq

�� ¤ }cpx, s, λ� δq}
(

. (3.11)
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Interior-Point Methods for
PDE-Constrained Optimization





Chapter 4

Problem Formulation and

Inherent Structure

Optimization of functions subject to partial differential equations (PDEs)
plays an important role in many areas of science and industry. These optimiza-
tion problems are also known as PDE-constrained optimization problems. The
forward problem usually characterizes applications in which parameters of the
PDE–initial conditions, boundary and domain sources, material coefficients, or
domain boundary–are known, and the state variables are determined from the
solution of the PDE. In PDE-constrained optimization the process is reversed;
here we try to determine some PDE parameters to achieve goals in the form of
an objective function and possibly inequality and equality constraints on the be-
havior of the system. Since the behavior of the system is modeled by a PDE,
they appear as equality constraints in the optimization problem.

In this thesis we consider IP methods to solve PDE-constrained optimization
problems. They are usually large-scale and in Part I two IP methods with exact
and inexact step computations have been presented in a general optimization
framework. In this part, we concentrate on the special structure of optimal con-
trol and parameter estimation, especially in the regime of multiple constraining
PDEs.

The structure appears naturally by distinguishing independent PDE param-
eters from the dependent PDE solutions, the state variables. This will be dis-
cussed in Section 4.1. It is possible to eliminate the state variables which leads
to the reduced-space approach discussed in Section 4.2.
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4.1 Optimal Control and Parameter Estimation

We consider the general optimal control or parameter estimation problem
that consists of multiple PDEs and, additional inequality constraints involving
the state variable y or PDE parameter u:

min
y,u

Fpy, uq

s.t.Akpyk, uq � 0, for k � 1, . . . , NE,

Wpy, uq ¥ 0,

where Akpyk, uq represent the kth PDE, y � ry1y2 . . . yNEs are the state variables
that depend on the PDE parameter u, and NE denotes the total number of con-
tinuous PDEs.

We consider both examples of optimal control and parameter estimation of
PDE-constrained optimization problems. In optimal control, the control variable
u appears in the PDEs on right-hand side only and the goal is to vary u such
that the state variables y are as close as possible to desired states ŷk. Additional
constraints like control box constraints or constraints on the state variable may
account for technical limitations on the control u or desirable properties of the
optimal state y. Such inequality constraints are denoted by Wpy, uq. The ob-
jective functional F is often a sum of two terms: The first one accounts for the
misfit and typically consists of a convex function of norms of differences on a
subset of the computational domain Ω. The second term, the regularization term,
modifies the problem to be well-posed. In general the problem reads:

min
y,u

Fpy, uq �
1
2

NȨ

k�1

|yk � ŷk|
2 �

α

2
Rpuq

s.t. Ãpykq � fkpuq, for k � 1, . . . , NE,

Wpy, uq ¥ 0.

Since the control variable u appears on the PDE’s right-hand side only, a linear
PDE and linear auxiliary constraints yields linear constraints in the optimization
variable py, uq. For convex objective functionals, such optimal control problems
with linear PDEs are convex optimization problems. In this thesis, we concen-
trate on nonconvex PDE-constrained optimization problems. Convex optimal
control problems will be solved for comparison purposes, but most optimal con-
trol problems will contain some nonlinearity.

In parameter estimation, the PDE operator Ak itself depends on the model u.
Here the goal is to find a model which is most consistent with measurements.
The objective functional is of the same type as mentioned before and the problem
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reads

min
y,u

Fpy, uq �
1
2

NȨ

k�1

|vpykq � ŷk|
2 �

α

2
R puq

s.t. Ãpuq yk � fk, for k � 1, . . . , NE,

u� ¤ u ¤ u�,

where v denotes the evaluation functional. Parameter estimation problems are
inherently nonconvex due to the mixed product in the PDE constraints. To rem-
edy noise, multiple experiments may be measured leading to multiple PDE con-
straints. In the regime of parameter estimation additional inequality constraints
usually consist of box constraints in the PDE parameters.

For both optimal control and parameter estimation, we specialize the auxil-
iary inequality constraints to the form

Wpy, uq � �Wpuq �
NȨ

k�1

�Wkpyk, uq, (4.1)

and preclude cases with multiple states yk in the same constraint. This is not a
big restriction and most PDE-constrained problems fulfill (4.1).

In this work, we follow the discretize-then-optimize approach where the
functions y, u, the objective functional F , and partial differential operators Ak

are discretized. The optimality conditions and algorithms are then applied to
the finite-dimensional nonlinear optimization problem:

min
y,u

Fpy, uq �
1
2

NȨ

k�1

}Vyk � ŷk}
2 �

α

2
R puq (4.2)

s.t. Akpyk, uq � 0, for k � 1, . . . , NE,

Wpy, uq ¥ 0.

4.2 Full-Space Approach and Reduced-Space Approach

4.2.1 Full-Space Approach

Applications of PDE-constrained optimization may utilize inequality con-
straints to improve optimization results by eliminating solutions that are physi-
cally unrealistic. The most promising methods for such large-scale problems are
IP methods and active-set strategies. Since active-set algorithms exhibit combi-
natorial complexity with respect to the number of inequality constraints, they
are not favorable for problems that need to satisfy a large number of inequality
constraints.
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For this reason our optimization framework will be based on IP methods.
More precisely we adopt the IP methods from Part I and form the barrier sub-
problem

min
y,u,s

Fpy, u, s; µq :�
1
2

NȨ

k�1

��Vyk � ŷk

��2
�

α

2
R puq � µ

nI̧

i�1

logpspiqq (4.3)

s.t. Akpyk, uq � 0, for k � 1, . . . , NE,

Wpy, uq � s,

with s P RnI , s ¥ 0. In the context of the general optimization framework, we
have

cEpy, u, sq �

������
A1py1, uq

...
ANEpyNE

, uq
Wpy, uq � s

�����

with constraint Jacobian reads

∇cEpy, u, sq �

������
Jy1

J1 u
. . .

...
JyNE

JNE u

Ky1
� � � KyNE

Ku �I

�����
,

where Jyk
� ∇yk Akpyk, uq, Jku � ∇u Akpyk, uq, Kyk

� ∇ykWpy, uq, and Ku �

∇uWpy, uq denote the Jacobians of the PDE and auxiliary constraints with re-
spect to state and parameter variables, respectively. If we assume that the dis-
cretized and linearized PDE matrices Jyk

, k � 1, . . . , NE are regular, then the
Jacobian matrix has full row rank and the LICQ from (2.1) hold. This assump-
tion is very mild, as for many problems, the discretization schemes guarantee
regularity of the linearized discretized operator.

Thus, the solutions of (4.3) satisfy the first-order optimality conditions in
Theorem 2.2, that is they are critical points of the full-space Lagrangian

L f py, u, s, λq �
1
2

NȨ

k�1

��Vyk � ŷk

��2
�

α

2
R puq � µ

nI̧

i�1

logpspiqq

�
NȨ

k�1

λJk Akpyk, uq � λJI pWpy, uq � sq
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and need to fulfill the KKT conditions

∇yk
L f py, u, s, λq � VJ

�
Vyk � ŷk

�
� JJyk

λk �KJ
yk

λI � 0 for k � 1, . . . , NE, (4.4a)

∇uL f py, u, s, λq �
α

2
∇uR�

NȨ

k�1

JJkuλk �KJ
u λI � 0,

∇sL f py, u, s, λq � �µS�1e� λI � 0,

∇λkL
f py, u, s, λq � Akpyk, uq � 0 for k � 1, . . . , NE, (4.4b)

∇λIL
f py, u, s, λq � Wpy, uq � s � 0,

where S � diag psq denotes the diagonal matrix with entries according to the
slack variables and e a vector with all its entries equal to one. Here, (4.4b) im-
poses the discretized PDEs and is called the state equation. In (4.4a), the transpose
of the PDEs appears and thus it is called the adjoint equation.

As explained in Part I, we apply Newton’s method that yields a search di-
rection rdy du ds dλE dλI s by the solution of the linear system

��������
∇2

yyL f � δI ∇2
yuL f 0 JJy KJ

y

∇2
yuL fJ ∇2

uuL f � δI 0 JJu KJ
u

0 0 ΣpΞ� δIqΣ 0 �Σ

Jy Ju 0 0 0
Ky Ku �Σ 0 0

�������


�������
dy

du

ds

dλE

dλI

������
� �

�������
∇yk

L f

∇uL f

Σ∇sL f

∇λEL f

∇λIL f

������
,

(4.5)
where Ξ denotes an approximation to the exact Hessian matrix (see also (2.14))
and Ky �

�
Ky1

� � �KyNE

	
.

In the realm of nonconvex optimization problems, it may happen that the
projection of the Hessian onto the null space of the Jacobian of the constraints
is not positive definite. As a result, although the solution of (4.5) may still pro-
vide a feasible direction (up to first order), the objective along this direction is
increasing instead of decreasing. To remedy this, we modify the first three di-
agonal blocks of the Hessian by adding a multiple of the identity matrix δI as
described in Part I.

The matrix blocks in (4.5) are computed as follows: Denoting the ith com-
ponent of the PDE constraint Ak by Apiq

k and the of auxiliary constraint W by
W piq,

∇2
uuL f � α{2∇2

uuR�
¸
k,i

λ
piq
k
B2Apiq

k
Bu2 �

¸
i

λ
piq
I
B2W piq

Bu2 (4.6)

is the Lagrangian Hessian matrix with respect to the PDE parameters and
∇2

uyL f ,∇2
yyL f the Hessian matrices with respect to the state variables or with

the mixed derivatives. Since the PDEs in (4.3) are decoupled, the objective is ad-
ditive, and the auxiliary constraints W satisfy (4.1), the Lagrangian’s Hessians
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block ∇2
uyL f and ∇2

yyL f reflect the PDE block structure, that is

∇2
uyL f �

�
∇2

uy1
L f . . .∇2

uyNE
L f

	
with ∇2

uyk
L f �

¸
i

λ
piq
k
B2Apiq

k
BuByk

�
¸

i

λ
piq
I
B2W piq

BuByk
(4.7)

and

∇2
yyL f �

����
∇2

y1y1
L f

. . .
∇2

yNE
yNE

L f

���
 (4.8)

with

∇2
ykyk

L f � VJ V �
¸

i

λ
piq
k
B2Apiq

k
BykByk

�
¸

i

λ
piq
I
B2W piq

BykByk
.

The constraints’ Jacobian w.r.t. the states

Jy �

����
Jy1

. . .
JyNE

���
 (4.9)

is also a block diagonal matrix, where each diagonal block is the matrix obtained
by the linearization of the discretized PDE. This structure is again displayed in
Figure 4.1, where a PDE-constrained problem with five complex-valued PDE
constraints in 2D are displayed and the blocks are inscribed.

4.2.2 Reduced-Space Approach

In the full-space approach, the number of optimization variables is large and
may range in the hundreds of thousands or millions. To reduce the search space,
reduced-space methods eliminate the state variable y. In doing so, an optimization
problem with an easy objective function on an intricate manifold is transformed
to an optimization problem with an intricate objective on an easy domain. The
discrete reduced-space optimization problem reads

min
u

Fpypuq, uq �
1
2

NȨ

k�1

}Vykpuq � ŷk}
2 �

α

2
R puq

s.t. Wpypuq, uq ¥ 0,

where ykpuq denotes the solution of the kth PDE. The number of optimization
variables reduces from ny � nu to nu, which is much less, say tens or hundreds
of thousands. Furthermore, there are no more PDE constraints; they are now
implicitly imposed by ypuq. However, each objective function evaluation now
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Figure 4.1: Example KKT matrix: KKT matrix with its matrix blocks from equation
(4.5) and subblocks from (4.8) and (4.9) (thin) for a rather small example with ny �
2790, nu � 279, nE � 2790, nI � 558 for a PDE-constrained optimization problem
in 2D with five constraining complex-valued PDEs yielding a KKT matrix of size 6975
with almost 1501000 nonzeros.

comprises exact solutions of the (nonlinear) PDE, while in the full-space ap-
proach, the objective evaluation was cheap. Following the IP framework from
Section 2.1 yields a barrier subproblem

min
u

Fpypuq, uq �
1
2

NȨ

k�1

}Vykpuq � ŷk}
2 �

α

2
R puq � µ

nI̧

i�1

logpspiqq

s.t. Wpypuq, uq � s � 0

with the reduced-space Lagrangian

Lr :�
1
2

NȨ

k�1

��Vykpuq � ŷk

��2
�

α

2
R puq � µ

nI̧

i�1

logpsiq � λJI pWpypuq, uq � sq .

Since the LICQ holds, first-order optimal points are KKT points, that is

∇uLr �
NȨ

k�1

�
Byk
Bu


J

VJ
�
Vykpuq � ŷk

�
�

α

2
∇uRpuq��

BW
Bu

J

�
NȨ

k�1

Byk
Bu

J BW
Byk

J
�

λI � 0, (4.10)

∇sLr � �µS�1e� λI � 0,

∇λIL
r � Wpypuq, uq � s � 0
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with

dAkpykpuq, uq
du

�
BAkpyk, uq

Bu
�
BAkpyk, uq

Byk

Byk
Bu

� Jku � Jyk

Byk
Bu

� 0,

and, assuming nonsingularity of the discretized and linearized PDE Jyk
�

BAkpyk ,uq
Byk

, we have
Byk
Bu

� �J�1
yk

Jku. (4.11)

We apply a Newton-type method to achieve fast local convergence. For the
ease of notation, we restrict ourself to the case Wpypuq, uq � �Wpuq and skip the
Hessian modification. In each iteration, the KKT system���∇uuLr 0 KJ

u
0 ΣΞΣ �Σ

Ku �Σ 0

��

��� du

ds

dλI

��
� �

��� ∇uLr

Σ∇sLr

∇λILr

��

needs to be solved. To compute the derivative of JJku J�Jyk

VJ
�
Vykpuq � ŷk

�
which

appears in ∇uLr of (4.10) we define

λk � �J�Jyk
VJ

�
Vykpuq � ŷk

�
,

consistent with the full-space approach (4.4a), since Kyk
� 0. With this, we have

d
�

JJkuλk
�

du
� �

d

�°
i

�
BApiq

k
Bu


J

λ
piq
k

�
du

� �
¸

i

�
B2Apiq

k
Bu2 �

B2Apiq
k

BuByk

Byk
Bu

�
λ
piq
k �

¸
i

BApiq
k

Bu
Bλ

piq
k

Bu

�
¸

i

�
�
B2Apiq

k
Bu2 �

B2Apiq
k

BuByk
J�1

yk
Jku

�
λ
piq
k � JJku

Bλk

Bu
.

(4.12)

Defining
p :� JJyk

λk �VJ
�
Vykpuq � ŷk

�
� 0,

we see that

dp
du

�
¸

i

�
B2Apiq

k
BykByk

Byk
Bu

�
B2Apiq

k
BykBu

�
λ
piq
k � JJyk

Bλk

Bu
�VJV

Byk
Bu

� 0

which yields

Bλk

Bu
� J�Jyk

�¸
i

�
B2Apiq

k
BykByk

J�1
yk

Jku �
B2Apiq

k
BykBu

�
λ
piq
k �VJV J�1

yk
Jku

�
.
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Plugging this into (4.12) together with (4.11) yields

d
�

JJkuλk
�

du
� �JJku J�Jyk

VJV J�1
yk

Jku¸
i

λ
piq
k

�
�
B2Apiq

k
Bu2 �

B2Apiq
k

BuByk
J�1

yk
Jku � JJku J�Jyk

B2Apiq
k

BykBu
� JJku J�Jyk

B2Apiq
k

BykByk
J�1

yk
Jku

�
.

Comparing

∇2
uuLr �

NȨ

k�1

�
d
�

JJkuλk
�

du
�∇2

uuRpuq �
nI̧

i�1

B2W piq

Bu2 λ
piq
I

with the full-space Lagrangian’s Hessians (4.6), (4.7), and (4.8), we see that

∇uuLr � JJu J�Jy ∇yyL f J�1
y Ju �∇uuL f � JJu J�Jy ∇yuL f �∇uyL f J�1

y Ju. (4.13)

For most PDE-constrained optimization problems, this matrix cannot be
stored explicitly since ∇uuLr is dense of size nu � nu. Even if nu is small, say
several thousands, and ∇uuLr could be stored, then to compute it, nu dis-
cretized and linearized PDEs need to be solved to compute J�1

y Ju. To cope
with this, there are basically two strategies: The first strategy takes advantage
of the fact that Krylov subspace methods can solve a linear system inexactly
without storing the matrix explicitly; it suffices to apply the matrix to a vec-
tor. Another approach is to use approximations for the Hessian matrix based
on first-order derivatives only. This is followed in Gauss-Newton or Quasi-
Newton approaches as well as nonlinear CG methods like Fletcher-Reeves and
Polak-Ribière.

Another disadvantage of reduced-space methods is that it is hard to cover
additional constraints including the state variable. In Section 5.2 we will see how
the ideas of reduced-space methods and full-space methods can be combined to
cope with additional state constraints as well.





Chapter 5

Iterative Solution of the KKT

System and Preconditioning

In Chapter 3 we have presented an IIP algorithm to avoid high memory re-
quirements of direct linear solvers. Iterative linear solvers are an alternative to
direct linear solvers. Krylov subspace methods are nowadays the most success-
ful and commonly used iterative solvers. Their convergence depends on the
eigenvalue distribution and can be improved significantly by preconditioners.

A preconditioner M is a linear mapping which aims to cluster the eigenval-
ues of a matrix, thereby making it more suitable for Krylov subspace methods.
Instead of solving the system

Ax � b

the linear system

M�1Ax � M�1b or AM�1y � b with x � M�1y

is solved. On the one extreme, M � A would lead to convergence in one itera-
tion but solution of the preconditioning system x � M�1y would be as difficult
as the original system. The other extreme is M � I, which does not precondi-
tion at all. The challenge is to find a preconditioner which is easy to solve and at
the same time clusters the matrix spectrum, yielding a small number of Krylov
subspace iterations.

5.1 Algebraic Multilevel Incomplete LDLJ Preconditioner

In this section, we discuss a general-purpose preconditioning approach and
compare the IIP method from Chapter 3 with the exact IP method from Section
2.2. This work was published in [22].
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Our approach is based on an algebraic multilevel preconditioner recently
designed for symmetric highly indefinite systems. It uses symmetric maximum
weight matchings to improve the block diagonal dominance of the system, fol-
lowed by an inverse-based pivoting strategy to compute an inexact factoriza-
tion. In order to bound the norm of the inverse, the factorization of some rows
and columns might be postponed to the end. This leaves a Schur complement to
which the procedure is applied recursively within a multilevel preconditioning
framework.

In this section, we denote Ā P Rm�m as the matrix from (4.5). Symmetric
weighted matching can be viewed as a preprocessing step that computes a pos-
itive diagonal matrix D P Rm�m and a permutation matrix P P Rm�m to obtain
a new rescaled and reordered matrix

Â � PJDĀDP (5.1)

such that the block diagonal dominance of the matrix is improved. All entries
âpi,jq of Â are at most one in size. Moreover, the diagonal blocks are either 1� 1
scalars âpi,iq with |âpi,iq| � 1 (in exceptional cases one has âpi,iq � 0) or symmetric
2� 2 blocks�

âpi,iq âpi�1,iq

âpi�1,iq âpi�1,i�1q

�
such that |api,iq|, |âpi�1,i�1q| ¤ 1 and |âpi�1,iq| � 1.

In addition, a further permutation based on nested dissection [47] (w.l.o.g. in-
cluded in P) is computed to reduce the fill-in in a sparse L D LJ factorization.
Numerical experiments in [61, 63, 65] indicate that this preprocessing step, in
the context of computing a factorization of Ā, makes dynamic pivoting strate-
gies unnecessary.

Once the system is reordered and rescaled according to (5.1), the precondi-
tioner is computed by an incomplete factorization L D LJ � Â� E of Â. Sup-
pose that at step j of the factorization algorithm we have

Â �

�
B FJ

F C

�
�

�
LB 0
LF I

��
DB 0
0 SC

��
LJB LJF
0 I

�
,

where LB P Rj�j is unit lower triangular, DB P Rj�j is block diagonal with
diagonal blocks of size 1� 1 and 2� 2, and SC � C � LF DBLJF denotes the ap-
proximate Schur complement. Following [15, 62], one can easily estimate������

�
LB 0
LF I

��1
������ ¤ κL (5.2)

in every step for a prescribed bound κL ¡ 1 based on a sparse adaption of the
method presented in [20]. If at step j the approximate factorization fails to sat-
isfy (5.2), then row and column j are permuted to the end. Otherwise we pro-
ceed with the approximate factorization where small entries in L are dropped
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according to a relative drop tolerance εL P p0, 1s. When the approximate L D LJ

decomposition has finally passed all rows and columns of Â, we are faced with
a system of the form

QJ Â Q �

�
L11 0
L21 I

��
D11 0

0 S22

��
LJ11 LJ21
0 I

�
.

The Schur complement S22, corresponding to all postponed updates, is then
computed explicitly, and the strategies for reordering, scaling, and factoring are
recursively applied to S22, leading to a multi-level factorization. To improve
sparsity, small elements of the Schur complement S22 are dropped before the
recursion according to a relative drop tolerance εS P p0, 1s. Once the Schur com-
plement has a sufficiently small size (less than 5000 rows and columns in our
implementation) or a maximum number of levels is reached, the Schur com-
plement is factored exactly. More details of the preconditioner can be found in
[61, 64].

For the iterative solution of linear systems we use the symmetric quasi-
minimum residual (SQMR) method [30] which has been found to work well
with this preconditioner. Here, we allow a depth up to 30 in the multi-level
approach, the constant bounding the norm of the inverse of the factor in (5.2) is
chosen to be κL � 2, and the drop tolerances for the factor and the Schur com-
plement are set to be εL � 10�2 and εS � 10�3, respectively. The SQMR method
is allowed a maximum number of 1500 iterations. If this number is exceeded,
then the preconditioner is recomputed with tightened drop tolerances (both
divided by 3) and the iteration counter is reset. If necessary, the tolerances are
tightened repeatedly. If an SMART test acceptable solution for the inexact New-
ton method in Algorithm 3.2 has not been computed after 4 such attempts, then
the method reverts to the regularized inexact Newton method in Algorithm 3.3.
If an acceptable solution for Algorithm 3.3 has not been computed after 4 such
attempts, then the last computed inexact solution is used (without guarantees
for a successful line search). In either of these latter two cases, before a new
linear system is solved, the drop tolerances are multiplied by 3, though they are
never set higher than the default values given above.

5.2 Reduced Space Preconditioned GMRES

In the previous section, we have presented, a general purpose multilevel
algebraic incomplete L D LJ preconditioner to solve (4.5). Even though the
speedup compared to the exact IP method is remarkable, it could be improved
even further, if the linear solver is tailored to the KKT system. In this section,
we describe a linear solver, which takes advantage of the sparsity pattern of the
KKT system as well as the fact that in Krylov subspace methods there is no need
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to form or store the matrix explicitly but instead it suffices to compute a matrix
vector product. We also present several preconditioners including a very simple
but efficient preconditioner based on the Schur complement, preconditioners
following a multi-grid approach as well as preconditioners bases on ideas from
simultaneous sources in seismic imaging. Parts of the work presented here were
also described in [35]. The thesis author main contribution has been the simulta-
neous source preconditioning approach, the application of sparse approximate
inverse preconditioners, as well as the development and implementation of the
software, and performing the numerical experiments.

We now present out linear solver framework which is a reduced-space pre-
conditioned Krylov subspace method. It is similar to Lagrange-Newton-Krylov
methods presented in [55, Section 16.2] and [12, 13, 11]. The above methods,
however, differ in the globalization strategy. In [55] the technique is presented
for convex quadratic problems. Biros and Ghattas cope with nonconvexity by
a Gauss-Newton approximation to the reduced-space Hessian. The resulting
linear mapping is positive semidefinite and is preconditioned by the BFGS
method which corresponds also to a positive definite mapping. Furthermore,
these works do not include inequality constraints.

Here, we take advantage of exact Hessian matrices yielding fast local con-
vergence. To cope with indefiniteness of the reduced Hessian and inexactness
issues, we apply the SMART tests and Hessian modification. At each Newton
iteration, it is required to solve the linear system (4.5). The matrix blocks ∇2

yyL f

and ∇2
uuL f are symmetric and both ∇2

yyL f and Jy are block diagonal. Let D
denote a reordered KKT matrix from (4.5),

D �

��������
∇2

yyL f JJy 0 ∇2
yuL f KJ

y

Jy 0 0 Ju 0
0 0 ΣΞΣ 0 �Σ

∇2
yuL fJ JJu 0 ∇2

uuL f KJ
u

Ky 0 �Σ Ku 0

�������
,

where we omitted the Hessian modification for the ease of notation. This can
also be written as

D �

�
Q B
BJ P

�
,

with

Q �

�
∇2

yyL f JJy
Jy 0

�
, P �

���ΣΞΣ 0 �Σ

0 ∇2
uuL f KJ

u
�Σ Ku 0

��
, B �

�
0 ∇2

yuL f KJ
y

0 Ju 0

�
.

In many applications of practical interest the size of P is much smaller than the
size of Q. For this type of problems it is particularly attractive to pursue the
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solution of the original linear system by solving the Schur-complement system
with respect to the p2, 2q block of D, P, given by

G � P� BJQ�1B.

The particular structure of Q allows its inverse to be written explicitly as follows:

Q�1 �

�
0 J�1

y

J�Jy �J�Jy ∇2
yyL f J�1

y

�
, (5.3)

suggesting that solving linear systems with Q as the left-hand side matrix is triv-
ial provided that a very robust and efficient linear solver exists for the inversion
of Jy. So, assuming our original system reads�

Q B
BJ P

��
dyλE

dus

�
�

�
w1

w2

�
, (5.4)

where dJyλE denotes pdJy dJλE q and dJus for pdJs , dJu , dJλI q, we first transform it to�
Q B
0 P� BJQ�1B

��
dyλE

dus

�
�

�
w1

p2

�
(5.5)

with p2 � w2 � BJQ�1w1, which is then solved by using Algorithm 5.1. We
never form the dense Schur complement G in the third step of Algorithm 5.1
explicitly, but instead we use preconditioned GMRES.

Algorithm 5.1 Reduced-Space Preconditioned GMRES Solver (RSP-GMRES)
1: Solve Qp1 � w1
2: Form p2 Ð w2 � BJp1
3: Solve Gdus � p2, where G � P� BJQ�1B
4: Form p1 Ð w1 � Bdus
5: Solve QdyλE � p1

Note that the Schur complement

G � P� BJQ�1B �

���ΣΞΣ 0 �Σ

0 ∇2
uuL f � Z KJ

u � JJu J�Jy KJ
y

�Σ Ku �Ky J�1
y Ju 0

��

with

Z � �∇2
uyL f J�1

y Ju � JJu J�Jy ∇2
yuL f � JJu J�Jy ∇2

yyL f J�1
y Ju

is the reduced-space Lagrangian Hessian (4.13). Thus, with RSP-GMRES we
solve the linear system in the reduced-space while we still perform the line
search in the full-space.
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In the line search the objective function is evaluated repeatedly at trial points.
This is expensive in the reduced-space, where the objective function evaluation
involves solutions of possibly nonlinear PDEs. In the full-space approach, PDEs
do not need to be solved but it suffices to compute PDE residuals for the merit
function evaluation which is much cheaper than solving PDEs. In contrast to
the reduced-space approach, this reduced-space preconditioned IIP (RSP-IIP)
method allows for additional constraints also involving the state variable y.

Due to the block diagonal structure of Jy the PDEs can be solved simul-
taneously. Often the PDEs Akpyk, uq are linear in yk and the diagonal blocks
Jyk

, k � 1, . . . , NE are all the same. In such cases, we only need to compute and
store the factorization of a single block, provided that a direct sparse solver has
been employed, or if an iterative solver is used the preconditioner needs to be
constructed only once for each KKT system. Thus the presented approach shows
a linear run-time complexity with respect to the number of PDEs.

Moreover, the block diagonal structure of Jy is ideal for a distributed-
memory solution of the related linear systems. Each diagonal block along with
the corresponding right-hand sides, can be assigned to different nodes. Because
of the fact that all these linear systems share the same sparsity structure, factor-
ization and solution times are similar among all processors, which is essential
for high scalability. The remaining operators involve sparse matrix-vector
products and can be easily distributed and applied in parallel.

5.2.1 Reduced-Space Preconditioning

We now introduce different reduced-space preconditioners and compare
them on the basis of a challenging inverse medium problem for the Helmholtz
equation, which is described in more detail in Part III.

Block Preconditioner

The first preconditioner we apply in our RSP-GMRES solver is based on the
Schur complement and we set

MP � P.

This preconditioner is very simple and it is not even guaranteed that MP is reg-
ular. However, as we will see in the numerical experiments, it performs well
in practice. Since MP is sparse a direct solver can be used to factorize it. The
factorization is computed at the beginning of each linear system solve, and dur-
ing the GMRES iterations only cheap solutions of triangular systems need to be
performed. An advantage of this preconditioner is that it scales linearly with
the number of PDEs NE.
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Opt. step MP MSPAI
1 73 ( 3) 177 ( 3 )
2 150 ( 10) 254 (10 )
3 223 ( 17) 327 (17 )
4 271 ( 22) 393 (22 )
5 267 ( 23) 379 (39 )
6 453 ( 43) 578 (44 )
7 651 ( 65) 864 (74 )
8 670 ( 58) 805 (70 )
9 670 ( 60) 866 (76 )

10 858 ( 89) 1338 (123)
11 1123 (113) 1740 (169)
12 1220 (128) 2111 (206)
13 1181 (120) 2027 (200)
14 962 (100) 1189 (111)
15 1183 (124) 1724 (168)

Table 5.1: Run-time (s) and number of RSP-GMRES iterations for RSP-GMRES with
two different preconditioners to solve each KKT system of a Marmousi problem with one
PDE.

Sparse Approximate Inverse Preconditioner

More sophisticated preconditioners need to incorporate an approximation
of the dense term BJQ�1B. Our first approach is a sparse approximation of
this term. The fill-in is generated by the operators J�1

y and J�Jy in (5.3). We
approximate these inverse operators by sparse matrices [36], that is we find T1 �

J�1
y and T2 � J�Jy , then form

Q�1 � T3 �

�
0 T1

T2 �T2∇2
yyL f T1

�
,

and set MSPAI � P � BJT3B. Since P, B, and T3 are sparse, we can form and
factorize the small and sparse approximation MSPAI explicitly at the beginning
of each KKT system solve.

To compare the sparse approximate inverse preconditioner to the block pre-
conditioner, we generate KKT matrices for the inverse medium problem (9.1)
with ω � 20 and only a single PDE. The state variable is discretized with bilin-
ear Q1 elements on a mesh with h � 10 m and the model parameters also with
Q1 elements on a mesh with h � 40 m. The whole optimization run yields 15
KKT systems of size n � 4171999. Each linear system is solved with a MATLAB
implementation of RSP-GMRES with both preconditioners, MP and MSPAI , to
a tolerance of tol � 10�4. The sparse approximations T1 and T2 are computed
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by the SPAI2 library with default parameters except eps � 0.2. In table 5.1 we
see the run-time in seconds and the number of RSP-GMRES iterations in paren-
theses. For the first KKT systems both preconditioners perform equally well in
terms of the number of RSP-GMRES iterations. The costs of computing the pre-
conditioner MSPAI can be observed from the increased run-time. Starting from
optimization step 5, we even see an increase of the number of RSP-GMRES it-
erations. This may occur when sparse approximation is not exact enough. For
the matrix of optimization step 10, we computed the preconditioner also with
an increased SPAI parameter eps � 1, which indeed led to a reduction of the
run-time (1338 s to 1192 s) and iteration count (123 to 112 iterations). However,
the block preconditioner remains superior in both number of iterations as well
as run-time. An improvement in the sparse approximation up to eps � 5 did not
lead to better results.

Two Level Preconditioner

In the previous approach, we approximated the dense block BJQ�1B by a
sparse matrix. In the two level approach, we approximate this term with a dense
matrix, without forming it explicitly. This can be realized efficiently by use of
the following fact: If in (5.4), w1 � 0 and w2 � p2, then dus also solves the Schur
complement system (5.5) with some dyλE . Thus, to implement

MTL � P� B̃JQ̃�1B̃ � P� BJQ�1B

we set up the linear system

D̃TL �

�
Q̃TL B̃TL

B̃J
TL P

��
d̃yλE

d̃us

�
�

�
0
p2

�
. (5.6)

Even though the approximation MTL is dense, we only need to solve the sparse
linear system (5.6). To reduce the size of the preconditioner compared to the
original linear system (2.13), we follow a two level preconditioning approach;
we assemble a smaller KKT system with the same PDE parameter but coarser
state variable discretization. We increase the mesh size hTL � Ch � h and reduce
the finite element order pTL � p�∆p. This smaller system is then solved by the
multi-frontal direct solver Pardiso. For Ch � 1 and ∆p � 0 we precondition with
the same matrix which is equivalent to solving the Schur complement system
directly. In Table 5.2 we see total run-time of the linear solver and total number
of RSP-GMRES iterations (in parentheses) for different two level preconditioners
applied to the inverse medium problem (9.1) with one PDE and with ω � 20
and ω � 40. On the fine level, the state variable was discretized on a Nh � Nh

mesh with Nh � 10 m and biquadratic elements. For comparison, we also added

2http://cccs.unibas.ch/lehre/software-packages
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results when the linear system is solved with the direct solver Pardiso. To assure
the same optimization path for all preconditioners, we solved all KKT system
with a tolerance of 10�8.

Due to this very small tolerance, the direct solver outperforms the iterative
solver with block preconditioner by a factor of about 3. When incorporating
information about the constraining PDEs, the preconditioner becomes more ac-
curate and the number of RSP-GMRES iterations reduces remarkably. How-
ever, the preconditioner is now more expensive to apply and run-time reduces
by a different amount. For ω � 20 preconditioning with Ch � 2, ∆p � 0,
Ch � 4, ∆p � 0, or Ch � 1, ∆p � 1 (that is, precondition biquadratic elements
with bilinear ones), the two level preconditioner outperforms the block precon-
ditioner and is even faster than the direct solver. For the combination of h- and
p-coarsening, Ch � 2, ∆p � 1, leads to an increase in the iteration numbers and
thus the run-time increases. For ω � 40, only h-coarsening is effective, while for
the cases with ∆p � 0 the run-time increased significantly.

Linear solver
preconditioner ω � 20 ω � 40
Type Ch ∆p 14 opt. steps 16 opt. steps

Pardiso � - - - 10489 (14) 14734 (16)
RSP-GMRES MP - - 35037 (1430) 44775 (2299)
RSP-GMRES MTLP 1 1 7556 (190) 37947 (857)
RSP-GMRES MTLP 2 0 8827 (120) 10818 (151)
RSP-GMRES MTLP 4 0 7155 (219) 13907 (460)
RSP-GMRES MTLP 2 1 11960 (436) 57171 (2502)

Table 5.2: Run-time of linear solver and number of RSP-GMRES iterations (in paren-
theses) to solve Marmousi problems with one PDE with differently preconditioned RSP-
GMRES for varying temporal frequencies ω. The run-times for Pardiso are achieved
by preconditioning with Ch � 1 and ∆p � 0.

For a single PDE constraint with ω � 20 these numbers look promising.
However, there are three major drawbacks. A further increased ω would reduce
the efficiency of the two level preconditioner on the same mesh, as multi-grid ap-
proaches perform well only for small wave numbers for the Helmholtz equation.
The preconditioner necessitates solutions of smaller KKT systems. However, for
large-scale problems in 3D, it may not be affordable to factorize even this smaller
KKT system. Furthermore, the preconditioner also becomes increasingly expen-
sive with the numbers of PDEs NE and thus it cannot be parallelized efficiently.
Indeed, when the number of PDEs is increased, the preconditioner costs increase
as well. We applied two preconditioners with pCh, ∆pq � p1, 1q and p2, 0q to
the problem (9.1) with eleven PDEs and the KKT systems were solved until the
SMART tests accepted the solution, which corresponds to tol � 10�4. In Ta-
ble 5.3 we list run-times and total RSP-GMRES iteration counts for the problem
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state mesh preconditioner
# opt. run-time [s]
steps (# RSP-GMRES it.)

Q1, h � 20 m MP 10 825 (496)
Q1, h � 20 m MTL, Ch � 2, ∆p � 0 10 21198 (179)
Q2, h � 40 m MP 10 582 (482)
Q2, h � 40 m MTL, Ch � 1, ∆p � 1 10 22192 (164)

Table 5.3: Run-time of linear solver and number of RSP-GMRES iterations (in paren-
theses) to solve Marmousi problems with eleven PDEs with differently preconditioned
RSP-GMRES for ω � 20.

with different discretizations. The number of iterations indeed decreases by a
factor of more than two. However, the preconditioner is now very expensive to
apply and the run-time increases by a factor of 25 for linear finite elements with
h-coarsening and a factor of 14 for quadratic finite elements with p-coarsening.

Simultaneous Source Preconditioner

The main drawback of the two level preconditioner is the increasing com-
plexity with respect to the number of PDEs NE due to the increasingly larger
matrix D̃TL. For linear PDEs this can be overcome by ideas from seismic data
processing [37], where single PDE constraints are replaced by a linear combi-
nation of them, thus reducing the number of state variables and equality con-

straints. More precisely, let w � pwijq
�NE,NE
i,j�1 denote the weights of source j for the

new PDE constraint i, i � 1, . . . , �NE, that is

f̃ i :�
NȨ

j�1

wij f j for i � 1, . . . , �NE

Then a new optimization problem

min
ỹ,u

Fpỹ, uq �
1
2

NȨ

k�1

}Vỹk � ˆ̃yk}
2 �

α

2
R puq (5.7)

s.t. Ãkpuqỹk � f̃ k for k � 1, . . . �NE,

u� ¤ u ¤ u�,

with fewer PDEs constraints yields a smaller KKT system

D̃SS �

�
Q̃ B̃
B̃J P̃

�
.

To compute the constraint Jacobian and Hessian block, the state variable ỹ and
adjoint variable λ̃ are necessary. According to the state equation (4.4b) and
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adjoint equation (4.4a) we set ỹi �
°NE

j�1 wijyj and Lagrange multipliers λ̃i �°NE
j�1 wijλj. Note that the problem (5.7) and the original problem (4.2) don’t share

the same solution, since
NȨ

k�1

JJkuλk �

�NȨ

k�1

J̃Jkuλ̃k

in general.
Following the approach in the two level preconditioner 5.2.1, we apply the

Schur complement of D̃SS �
�

Q̃ B̃
B̃J P

	
, that is

MSS � P� B̃J
SSQ̃�1

SS B̃SS

as preconditioner. In a different context in [37] weights wij are chosen randomly
with mean 0 in each iteration. Here, we fix the weights, since we want to precon-
dition the linear system and no averaging over different optimization steps can
occur. Furthermore, we would like to use a fixed preconditioner for a system to
reuse the preconditioners factorization.

We applied this preconditioner to the problem (9.1) at ω � 20 with 11 PDEs.
The linear systems were solved until the current inexact solution was accepted
by the SMART tests, which corresponds to tol � 10�3 � 10�4. In Table 5.4
we list number of optimization steps, overall run-time, and total number of
RSP-GMRES iterations. Here the additional matrix or vector index denotes
the weight matrix w, i.e. MSS,1{11 e denotes a preconditioner with �NE � 1 and
w1j � 1{11, j � 1, . . . 11, a “� “ in front of a vector denotes alternating signs in
the columns, e.g., MSS,�e is a simultaneous source preconditioner with w1j �

p�1qj j � 1, . . . , 11. By MSS,w3 we mean a preconditioner with the weights

w3 �
1
11

����1 1 �1 1
1 �1 1 �1

�1 0 �1

��
.

The weights in MSS,�e, MSS,�1{11 e, and MSS,w3 are chosen to have a mean close
to zero, as ideas from stochastic optimization suggest [37]. We see from Table 5.4
and Figure 5.1 that simultaneous sources indeed can reduce the number of RSP-
GMRES iterations. The preconditioner MSS,w3 performs best in this collection
since 3 PDE constraints are used and most information of the PDEs is incorpo-
rated in the preconditioner. Preconditioning with MSS,�e led to an increase of
RSP-GMRES iterations. Notably, the preconditioners increased the RSP-GMRES
iterations most at the end of the optimization run, where most RSP-GMRES it-
erations are needed. This may be promising for problems, where the number of
RSP-GMRES iterations are higher. However, in this example, the most efficient
preconditioner was the block preconditioner MP.
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Figure 5.1: RSP-GMRES for the parameter estimation problem (9.1) with 11 PDEs:
comparison of block preconditioner MP and simultaneous source preconditioners MSS,w
with varying weights wij.

preconditioner
# opt. run-time (s)
steps (# RSP-GMRES it.)

MP 10 825 (496)
MSS,1{11 e 10 3995 (434)
MSS,�e 10 17147 (2407)

MSS,�1{11 e 10 3682 (419)
MSSw3 10 7097 (355)

Table 5.4: RSP-GMRES for problem (9.1) with 11 PDEs, for ω � 20: number of
optimization steps, overall run-time, and number of RSP-GMRES iterations (in paren-
theses) with different simultaneous source preconditioners.



Chapter 6

Numerical Results

6.1 Software Implementation Aspects

The PDE-constrained optimization problems presented in this chapter and
in Part III contain several millions of optimization variables. To work with such
problems on a daily basis, fast and efficient implementations of various methods
are needed. Since the target platform is a Unix based parallel distributed mem-
ory architecture we mainly used libraries tailored to MPI-parallel execution.

All PDE-constrained optimization problems are implemented in the pro-
gramming language C++. The IP algorithms, both, exact and inexact, are im-
plemented in the open source optimization package IPOPT.3 This library is also
available in an MPI-parallel version. Its open source character allows for exten-
sions of internal software components, like we have done by the RSP-GMRES
solver in Section 5.2. For the easy use of the parallel IPOPT version, we also con-
tributed to the software package by an interface to the software package PETSc.

The major memory and computational expenses in PDE-constrained opti-
mization are related to linear algebra objects like matrices and vectors and oper-
ations on them. For the parallel representation of vectors and matrices we used
the open source library PETSc,4 which has proven efficiency and scalability in
many large-scale PDE applications [7].

The finite element discretization was implemented with the open source
library libMesh.5 This library can assemble into PETSc matrices and vectors.
It provides classes for distributed unstructured meshes with various element
types, h� and p�mesh refinement, and many more tools which are frequently
needed when working with finite elements. The interface to this library allows

3http://www.coin-or.org/Ipopt/
4http://www.mcs.anl.gov/petsc/
5http://libmesh.sourceforge.net/
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Figure 6.1: Interaction of different software components used to implement the PDE-
constrained optimization problems in Chapter 6 and in Part III

for application codes which are independent of the physical problem space di-
mension and also of the actual element order. The kernel of the matrix and
vector assembling code can be written in a very intuitive manner.

The computationally most expensive cost of the whole process is the solu-
tion of linear systems. Here we used the shared memory parallel sparse solver
library Pardiso,6 which can be considered as the ”working horse“ in these pro-
grams. This library implements a sparse direct solver which is used in the ex-
act IP algorithm and an algebraic multilevel incomplete L D LJ preconditioner
which is described in Section 5.1.

Figure 6.1 visualizes the interaction and calls of the software modules.
Modules with major contribution from the thesis author are marked in green.
The main routine creates an instance of a class which implements the PDE-
constrained optimization problem at hand. If just a forward simulation is
queried, its ”SolveFwd“ routine is called to solve the forward problem with
given PDE parameters.

Normally the programs are called to solve an optimization problem. Then
an optimizer object is generated which implements a standard reduced-space
optimization algorithm (projected reduced gradient, projected limited memory
BFGS or projected Polak-Ribière) or an IPOPT-solver. The standard algorithms
are currently only available for problem (9.1). For an IPOPT optimization in-
stance an IPOPT-PETSc interface is instantiated to convert assembled PETSc ma-

6http://www.pardiso-project.org/
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Figure 6.2: Scaling of forward problem matrix assembly: Run-time to assemble a single
simulation matrix Apuq in (7.7) with 2061082 degrees of freedom.

trices and PETSc vectors into the distributed matrix and vector format in IPOPT

(a distributed triplet format). Also the concepts of control and state variables
and of PDE constraints and auxiliary constraints are implemented in this inter-
face class. The object is then accessed by IPOPT to evaluate the objective func-
tion, constraints, and their derivatives. IPOPT generates the matrices and vectors
to set up the KKT system (4.5). It calls a linear solver, which in this thesis is
either a RSP-GMRES solver, an algebraic multilevel incomplete LDLJ precon-
ditioned SQMR method, or a shared memory parallel sparse direct solver. The
latter two are implemented in the Pardiso library. Also the RSP-GMRES solver
calls Pardiso to solve PDEs, PDE adjoints, or the preconditioner. At the current
state, we did not implement a distributed parallel linear solver yet. However,
RSP-GMRES is easily parallelizable which is subject to future work.

We would like to emphasize, that the generated software programs are more
than a compilation of the above libraries. Especially when it is about the fi-
nite element discretization, there are many issues we are confronted with and
all of them need to be resolved in order to successfully solve a large-scale opti-
mization problem. Finite element libraries are mainly tailored to simulation of
PDEs instead of the solution of PDE-constrained optimization problems. One of
those issues is, e.g., the occurrence of two different finite element meshes. For
example, in the optimal boundary control problem in 6.2.2 a single mesh was
used and additional degrees of freedom were added to the boundary nodes to
discretize the control variable.

Another strategy is followed in the inverse medium problem in Part III,
where a class for a general finite element discretized function is implemented.



70 CHAPTER 6. NUMERICAL RESULTS

Two instances are created, one for the control and one for the state variable, both
with different meshes and different finite elements. For fast assembly, we con-
centrate on the case where each element of the state variable mesh is part of a
single element of the control mesh. Otherwise, it would be necessary to gener-
ate a joint mesh with elements generated by the intersection of control and state
mesh elements which can be very memory and time consuming in both run-
time and development time. To assure, that the vector components for control
and state variables of a certain element are available on a processor, the meshes
and degrees of freedom of the state and control variables cannot be distributed
independently. Instead, the control mesh is distributed first by the graph par-
titioning library METIS [46] and afterwards the state mesh is distributed such
that each state element is saved on the same processor as its corresponding con-
trol element. To achieve this, a class ”AlignedPartitioner” was derived from the
”Paritioner” class in libMesh and an instance was passed to the mesh before
its ”DoFMap” distributes the degrees of freedom. Resolving those problems
and implementing a solution involves an understanding of the libraries’ internal
structure and one has to work through the details of the library implementation.

As mentioned above, we implemented the PDE-constrained problems us-
ing these MPI-parallel libraries to be able to evaluate the objective function, the
constraints, and their derivatives on distributed memory computers. As a san-
ity check we show in Figure 6.2 weak scaling of the matrix assembly for a 3D
problem of (7.7) with a regular control mesh of only 103 hexahedral Q1 elements
and a state mesh consisting of 961000 tetrahedral P2 elements leading to 5631442
degrees of freedoms. The experiments were made on a shared memory 16 core
machine and the codes scales very well, as expected.

6.2 Algebraic Multilevel Incomplete LDLJ Preconditioner

In this section we present numerical results, mainly on PDE-constrained op-
timization problems, for the IIP method described in Chapter 3 in combination
with SQMR preconditioned by the general purpose algebraic multilevel incom-
plete LDLJ decomposition from Section 5.1. For these experiments, we use re-
vision 1954 of the branches/parallel development branch in IPOPTs svn repos-
itory. The linear systems are solved using the iterative linear system solvers
and preconditioners implemented in the Pardiso software package version 4.1.1.
The finite element discretization of the PDEs in Sections 6.2.2 and 6.2.3 was im-
plemented using the open-source libmesh library [48], revision 3881 in its trunk
branch, together with the PETSc library [6] version 3.1-p3. The 3D meshes for
the example in Section 6.2.3 are generated with the tetgen software.7

7http://tetgen.berlios.de/
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In IPOPT, we use the default parameter settings with a termination tolerance
of εtol � 10�6, together with the parameter choices given in the previous sec-
tions. The iterative linear solver in Pardiso uses the SQMR algorithm [30] with
the preconditioner described above.

The numerical experiments in this section illustrate the performance of our
implementation on a large nonlinear optimization test set and on two PDE-
constrained problems. Overall, we show that the method is robust and provides
improved computation times compared to the default IPOPT algorithm as prob-
lem sizes grow large. The results were obtained on 8-core Intel Xeon machines
with 2.33 GHz clock speed and 32 GB RAM, running Ubuntu Linux with GNU
4.4.1 compilers. To avoid tainted CPU times caused by memory bus contention,
we ran only one serial process at a time.

6.2.1 Standard Nonlinear Programming Test Sets

To assess the robustness of the algorithm we compare its performance with
the exact IP method in Chapter 2.2 implemented in IPOPT on problems from
the CUTEr test set [33, 34] for which AMPL models [28] are available.8 We in-
clude all feasible problems that have at least one degree of freedom, are not
unbounded, and which do not have inequality constraints with both lower and
upper bounds in the formulation (the latter is a purely superficial limitation of
our current implementation).

Since these problems are not very large, we changed the setting for the
Pardiso preconditioner so that the multi-level strategy continues until the Schur
complement matrix reaches the size 10 (instead of the default 5000). This has
the effect that we will always obtain a multilevel iterative preconditioner for
matrices that have more than 10 equations. Allowing a CPU time limit of 30
minutes and a limit of 3000 IPOPT iterations, the default algorithm in IPOPT

[80] using a direct factorization with PARDISO and a filter line-search procedure
is able to find a point satisfying the termination criteria in 592 out of a total
of 617 optimization problems, giving a success rate of 96%. Note that some
of the problems do not satisfy the regularity assumptions made for the global
convergence analysis in [79]. Failures are also due to exceeding the iteration
limit (12 cases), and to numerical issues caused by ill-conditioning. The CPU
time limit was not reached for any problem by the default algorithm.

Algorithm 3.1 terminated successfully for 549 problems (89% success rate),
exceeding the iteration limit in 12 and the CPU time limit in 20 cases. In the
majority of the remaining cases, the algorithm broke down because no suitable
preconditioner could be computed and the iterative linear system solver did
not converge. We note that for 142 problems, the algorithm switched to Algo-
rithm 3.3 at some point.

8http://orfe.princeton.edu/˜rvdb/ampl/nlmodels/cute/
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We also compare this performance with that of the original algorithm in [24],
which always uses Algorithm 3.3 (i.e., it decomposes the step computation) in
every IPOPT iteration. That method was successful for only 518 problems, yield-
ing a success rate of 84%. The iteration limit was exceeded in 18 cases, and the
CPU time limit was hit for 33 problems. This demonstrates that an increase in
robustness was obtained for our implementation with the addition of the switch-
ing strategy described in chapter 3. Specifically, the switching strategy increased
the percentage of successful solves from 84% to 89%.

We also note that our algorithm is able to solve the counterexample from [77]
in 20 iterations, reverting to Algorithm 3.3 twice (for one iteration each time),
following the adaptive step computation strategy described in Chapter 3. By
contrast, the algorithm fails if steps are always computed using Algorithm 3.2
because the step sizes αk converge to zero, as expected from the analysis in [77].

6.2.2 Optimal Boundary Control

Our first PDE-constrained optimization problem is an optimal control prob-
lem motivated by the “heating with radiation boundary conditions” example in
Section 1.3.1 of [74]:

min
u,y

»
Γ

u da

s.t.

�∆y � 0 in Ω, (6.1a)
By
Bn

� αpu� y4q on Γ, (6.1b)

y ¥ ymin
j in Ωj for j � 1, . . . , NS,

u ¥ 0 on Γ.

Here, y denotes temperature in a domain Ω � R3, and the term By
Bn denotes the

outward-pointing normal derivative of the temperature on the boundary Γ of
Ω. The boundary condition (6.1b) expresses the radiation heat loss according to
the Stefan-Boltzmann law with a Stefan’s constant α ¡ 0, where the control u
dictates heat that can be resupplied on Γ. The goal is to minimize the amount of
heat supplied while attaining a temperature of at least ymin

i within NS subregions
Ωj � Ω. Following the common finite element approach, we multiply (6.1a)
with a test function v P H1pΩq and apply Green’s formula together with (6.1b).
The weak formulation of the PDE is then to find y P H1pΩq such that

0 � �

»
Ω

∆yv dx �
»

Ω
∇y �∇v dx� α

»
Γ
py4 � uq v da @v P H1pΩq. (6.2)

We generate a regular mesh of tetrahedrons, each with volume h3{24 for a
discretization parameter h ¡ 0, and use the standard linear finite element basis
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functions tϕiui�1,...,nh . Projecting (6.2) onto the generated finite dimensional sub-
space Vh by approximating y with yh �

°
i ypiqϕi and u by uh �

°
i upiqϕi (the

latter requires discretized values upiq only corresponding to the boundary Γ), we
solve the finite-dimensional problem

min
upiq,ypiq

¸
i

upiq
»

Γ
ϕi da

s.t.

0 �
»

Ω

¸
i

ypiq∇ϕi �∇ϕj dx

� α

»
Γ

�
p
¸

i

ypiqϕiq
4 �

¸
i

upiqϕi

�
ϕj da for j � 1, . . . , nh (6.3a)

ypiq ¥ ymin
j for j P t1, . . . , NSu and i P tî | Dx P Ωj : ϕîpxq � 1u (6.3b)

upiq ¥ 0.

We choose α � 1 and Ω � p0, 1q3 and define two regions to be heated, Ω1 �

r0.1, 0.2s � r0.05, 0.3s � r0, 0.1s and Ω2 � r0.8, 1s � r0.75, 1s � r0.7, 1s, with associ-
ated threshold temperatures of ymin

1 � 2.5 and ymin
2 � 2. In (6.3b), we used the

fact that a nodal finite element basis was chosen, so that maxxPΩ ϕipxq � 1, and
for all x P Ω we have

°
i ϕipxq � 1. Since ∇ϕi �∇ϕj � Op1{h2q and

³
E dx � Oph3q

for a tetrahedron E, we multiply (6.3a) by 10�2{h in our implementation, to en-
sure that the gradients of these constraints do not vanish as h Ñ 0. Similarly, the
objective function was scaled internally by the factor 10�2{ph2q.

We executed our implementation of the optimization algorithm for four
choices of the discretization level. As initial point, we chose y � yinit with
yinit � 1.1pymin

1 � ymin
2 q and u � pyinitq

4. Table 6.1 shows the discretization
parameter (h), number of optimization variables (#var), number of simple
bound constraints (#bds), number of equality constraints (#eq), and number of
inequality constraints (#ineq) for various instances of this example. Tables 6.2
and 6.3 provide performance measures in the form of number of iterations
(it), final objective value ( f px�q), CPU seconds (CPUs), and CPU seconds per
iteration (CPUs/it) for exact IP and for the IIP method. The last column in
Table 6.3 shows the overall CPU time speedup of the inexact algorithm com-
pared to the default method. Figure 6.3 shows the optimal solution for the finest
discretization h � 0.02.

We clearly see a significant gain in computation speed that becomes more
pronounced as the problem size increases. For the largest problem with a dis-
cretization parameter h � 0.02, the speedup is a factor of 7.85.

The tables list the average CPU time per iteration, but it should be noted
that the step computation requires considerably more time towards the end of
the optimization procedure than at the beginning. Taking the h � 0.02 case as
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Figure 6.3: Optimal state (left) and control (right) for the boundary control example.
The regions Ω1 (top) and Ω2 (bottom) are visualized as a box. It is interesting to note
that the corners of the regions Ω1 and Ω2 are heated most, instead of the inner part of
its surface.

h #var #bds #eq #ineq
0.05 47263 5724 42461 0
0.04 89453 9183 81951 0
0.03 199389 16498 186319 0
0.02 670153 42313 640151 0

Table 6.1: Problem sizes for instances of the boundary control example.
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h it f px�q CPUs CPUs/it
0.05 29 40.6349 675.85 23.31
0.04 33 39.9458 2806.16 85.04
0.03 34 37.7909 16330.56 480.31
0.02 46 40.9115 304780.45 6625.66

Table 6.2: Performance measures for the exact IP algorithm applied to the boundary
control example.

h it f px�q CPUs CPUs/it speedup
0.05 33 40.6349 374.17 11.34 1.81
0.04 33 39.9458 646.77 19.60 4.34
0.03 37 37.7909 4495.83 121.51 3.63
0.02 47 40.9115 38824.33 826.05 7.85

Table 6.3: Performance measures for the IIP method applied to the boundary control
example.

an example, in the first 22 IPOPT iterations the preconditioners (each computed
in less than one minute) have fill-in factors of at most 3 and SQMR requires
only between 35 and 200 iterations, leading to times of less than 4 minutes for
each step computation. However, in the last IPOPT iterations, the dropping tol-
erances have to be tightened (down to about 3 � 10�4 and 3 � 10�5, respectively).
At the tightest level of these tolerances, the preconditioner (computed in up to
9 minutes) has a fill-in factor of almost 10 and still SQMR requires more than
1000 iterations, leading to times up to 35 minutes at this level. Even though our
results demonstrate significant improvements due to the use of iterative linear
system solvers, this illustrates that finding preconditioners that are less depen-
dent on the conditioning of the saddle point matrix in (4.5) as µ approaches zero
is still an area of active research (see, e.g., [3, 9]).

6.2.3 Server Room Cooling

Our second example is motivated by the real-life problem of cooling com-
puter equipment in a server room. In our simplified model, we assume that
(cold) air is blown into the room from air conditioners (AC), and that (hot)
air leaves the room at exhausts (Ex); see Figure 6.4. Inside the domain lies
equipment with hot surfaces that need to be cooled by sufficient airflow passing
alongside.

For simplicity, we suppose that air is incompressible, has no internal friction,
and that all velocities are far below the speed of sound. Under these assump-
tions, we can model air velocity as the gradient of a potential ypxq satisfying the
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Ω

ΓW

AC1 ΓAC1

AC2

ΓAC2

AC3

ΓAC3

Ex1ΓEx1

Eq1

ΓT

ΓT

ΓW ΓW

Eq2

ΓT

ΓT

ΓW ΓW

Figure 6.4: Illustration of the geometry of the server room cooling model projected onto
the x3 � 0 axis. Cool air is pumped into the room via the AC units on the boundary
in order to cool the hot surfaces of the equipment ΓT. Air flows out of the room via the
exhaust at ΓEx1 .

Laplace equation

�∆y � 0 in Ω (6.4)

for a domain Ω � R3. Appropriate boundary conditions for the walls (and non-
heat producing surfaces of the equipment) ΓW , cold air inlets ΓACi , exhausts ΓExi ,
and heat producing surfaces of the equipment ΓT, respectively, are

By
Bn

� 0 on ΓW ,

By
Bn

� �uACi ΨΓACi
on ΓACi ,

By
Bn

� �uExi ΨΓExi
on ΓExi ,

By
Bn

� 0 on ΓT;

(6.5)

see also Figure 6.4. Here, By
Bn denotes the outward-pointing normal derivative of

the potential, and ΨΓACi
pxq (i � 1, . . . , NAC) and ΨΓExi

pxq (i � 1, . . . , NEx) define
airflow velocity profiles on the surfaces of the air conditioners and exhausts,
respectively. Similarly, uACi P R and uExi P R denote control parameters for the
maximal flow rates at these air inlets and outlets. The weak formulation of (6.4)
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with (6.5) is to find y P H1pΩq such that

0 � �

»
Ω

∆yv dx

�

»
Ω
∇y �∇v dx�

NAÇ

i�1

»
ΓACi

uACi ΨΓACi
v da

�
NEx̧

i�1

»
ΓExi

uExi ΨΓExi
v da @v P H1pΩq.

(6.6)

It is important to note that (6.6) has a solution only if the controls satisfy the
mass balance equation

NAÇ

i�1

»
ΓACi

uACi ΨΓACi
da�

NEx̧

i�1

»
ΓExi

uExi ΨΓExi
da � 0, (6.7)

and in that case (6.6) only determines the potential y P H1pΩq up to an additive
constant. Therefore, a normalization condition will be introduced below.

As a constraint, we require that the air speed at the heat-producing surfaces
has a minimum velocity so that heat is carried away. More precisely, recalling
that the velocity is the gradient of the potential function y, we impose a point-
wise state constraint

}∇ypxq}2
2 ¥ y2

min for all x P ΓT (6.8)

with a constant ymin ¡ 0.
To obtain the discretized problem, we generate an irregular mesh of tetrahe-

drons, each with maximal volume h3, again choose a finite-dimensional subset
Vh � H1pΩqwith a basis tϕiui�1,...,nh , and express the finite-dimensional approx-
imation yh �

°
i ypiqϕi of y with coefficients y P Rnh . Defining u � puAC, uExq

as the vector consisting of all control parameters, the discretized PDE (6.6) then
becomes

Ay� Bu � 0,

where A denotes the stiffness matrix Api,jq �
³

Ω ∇ϕi �∇ϕjdx, and B � rBAC BExs

implements the boundary conditions with Bpi,jq
AC � �

³
ΓACj

ΨΓACj
ϕi da and Bpi,jq

Ex �³
ΓExj

ΨΓACj
ϕi da.

Thus, the finite-dimensional optimization problem is

min
yi ,ui ,ū

¸
β juACj
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s.t.

Ay� Bu� γeū � 0, (6.9a)

γeJy� γ̄ū � 0, (6.9b)

eJBu � 0, (6.9c)»
Γe

∇yhpxq �∇yhpxq da� y2
min

�»
Γe

da


¥ 0 for Γe � ΓT, (6.9d)

u ¥ 0

with weights βi ¡ 0 in the objective function and e � p1, . . . , 1qJ P Rnh . Here,
(6.9c) is a compact way of writing (6.7), and (6.9d) is the discretized version
of (6.8), which is posed for all element faces Γe contained in a heat producing
surface ΓT. Note that the constraint (6.9d) is nonlinear and nonconvex. Again,
in our implementation of the above problem, we scaled the constraints (6.9a) and
(6.9d) by factors 10�2{h and 10�1{h, respectively, to ensure that the gradients of
those functions do not vanish as h Ñ 0.

To overcome the ill-posedness of the PDE, an auxiliary variable ū P R has
been added to the problem statement. Equation (6.9a) includes the discretized
PDE, where the term γeū acts as a constant virtual source or sink all over Ω.
Since we impose the mass conservation in (6.9c) explicitly, this term eventually
yields ū � 0. Furthermore, an integral-type equation is imposed in (6.9b). In-
deed, eJy can be understood as a discretization of

³
Ω y dµ for some measure µ

depending on the finite-element discretization and is eventually set to zero in
(6.9b) since ū � 0, therefore normalizing the velocity potential y. Arguing al-
ternatively from a linear algebra point of view, while the linear system Ay � b
determining the state variables y is singular with e being an eigenvector corre-
sponding to the eigenvalue 0, it can be shown that the linear system�

A γe
γeJ �γ̄

��
y
ū

�
�

�
b
0

�

is non singular and provides a solution satisfying Ay � b.
For our experiments we choose βi � 1, γ � 1, γ̄ � 108, ymin � 1, ΓAC1 � t0u�

r0.4, 0.6s � r0.2, 0.4s, ΓAC2 � r0.4, 0.6s � t0u � r0.2, 0.4s, ΓAC3 � r0.4, 0.6s � t1u �
r0.2, 0.4s, and ΓEx1 � t1u � r0.4, 0.6s � r0.6, 0.8s. The equipment is placed so that
ΩEq1 � r0.2, 0.7s � r0.2, 0.4s � r0, 0.8s and ΩEq2 � r0.2, 0.6s � r0.6, 0.8s � r0, 0.8s
with the remaining boundary components ΓT and ΓW defined accordingly as
illustrated in Figure 6.4. The airflows at the inlets and outlets are assumed to
have quadratic profiles, e.g., on ΓACi � tap1qu � rap2q, bp2qs � rap3q, bp3qs we choose

ΨΓpxq �
4pxp2q � ap2qqpbp2q � xp2qq

pbp2q � ap2qq2 �
4pxp3q � ap3qqpbp3q � xp3qq

pbp3q � ap3qq2 .
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Figure 6.5: Optimal solution of the server room cooling optimization example. On
the left, we see the streamlines of the airflow, going from the main AC on the left to the
exhaust on the right. On the right, we have a bottom view of the domain Ω, where the
colors have been chosen to be dark if the air velocity is close to the threshold ymin � 1.
One can clearly see a region at the wall of the larger piece of equipment, at which the
velocity is close to critical, indicating the location of the active constraints (6.9d) in ΓT.

Due to the nooks in Ω created by the equipment, numerical experiments
with linear finite elements showed only linear L2 convergence of the PDE solu-
tion as h Ñ 0. However, since (6.8) involves the gradient of the state variable,
superlinear convergence is crucial. Thus, we have chosen quadratic finite ele-
ments and observed quadratic convergence for the PDE solution. Specifically,
for three choices of the mesh size parameter h � 0.2, 0.1, 0.05, we computed the
state variables from (6.9a)–(6.9b) for fixed values of the control parameters. Then
we refined the mesh, corresponding to a value of h{2, and recomputed the state
variables. The L2-differences for the refined and original mesh were calculated
as 3.87 � 10�3, 1.04 � 10�3 and 2.50 � 10�4. Thus we observed factors of 3.7 and 4.2
for a bisection in h, which indicates quadratic convergence.

Table 6.4 shows problem size information for various instances of this prob-
lem. As the starting point for our experiments, we calculated the solution of
(6.9a)–(6.9c) for uACi � 20. Tables 6.5 and 6.6 provide performance measures
for the default IPOPT algorithm and for our implementation, respectively, where
now we break down the optimal objective values into those for the control vari-
ables uACi for each of the three air conditioners. Also here we see a clear re-
duction in computation time achieved by using the inexact algorithm, without
a loss in solution accuracy. Specifically, the computation time for the largest in-
stance with more than 6001000 variables was reduced from more than 6 days to
8.2 hours, a speedup by a factor of 17.89. Figure 6.5 shows the optimal solution
for the finest discretization.

In this example, the default settings for the preconditioner thresholds were
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h #var #bds #eq #ineq
0.04 38582 4 38579 869
0.03 88398 4 88395 1528
0.02 285510 4 285507 3409
0.015 663886 4 663883 6110

Table 6.4: Problem sizes for instances of the server room cooling example.

h it f px�q AC1 AC2 AC3 CPUs CPUs/it
0.04 23 15.4372 15.102 0.335 0.0 1019.16 44.31
0.03 21 15.5283 15.235 0.293 0.0 4511.48 214.83
0.02 33 15.5694 15.311 0.258 0.0 69427.33 2103.86
0.015 32 15.6509 15.428 0.223 0.0 528320.22 16510.01

Table 6.5: Performance measures for the default algorithm applied to the server room
cooling example.

h it f px�q AC1 AC2 AC3 CPUs CPUs/it speedup
0.04 20 15.4372 15.102 0.335 0.0 622.31 31.12 1.64
0.03 24 15.5283 15.235 0.293 0.0 1710.30 71.26 2.64
0.02 28 15.5694 15.311 0.258 0.0 10008.50 357.45 6.94
0.015 27 15.6509 15.428 0.223 0.0 29526.53 1093.58 17.89

Table 6.6: Performance measures for the inexact algorithm applied to the server room
cooling example.

sufficient in each iteration, so that no tightening occurred. For the h � 0.015 case,
the computation time for the preconditioner ranged from 164 to 234 seconds
(with an average of 204 seconds), the number of SQMR iterations was 204–1129
with an average of 396, and the time spent in SQMR ranged from 365 to 2018
seconds (with an average of 719 seconds). While there is some variation, we did
not observe such a clear degeneration of computation time per iteration towards
the end of the optimization as we saw for the example in 6.2.2.

6.3 Numerical Results for RSP-IIP with Block Precondi-

tioner

We now present numerical results on PDE-constrained optimization prob-
lems for the IIP method from Chapter 3, where the linear systems (4.5) were
solved by the RSP-GMRES method described in Section 5.2. As the comparison
in that chapter showed best efficiency using the block preconditioner MP, here
we run all numerical experiments with this preconditioner.

To demonstrate the effectiveness of the IIP method with RSP-GRMES, we
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shall now apply it to four different PDE-constrained optimization problems. In
the first two examples from optimal control, the control variable u appears on
the right-hand side of the PDE constraint and attempts to steer the system’s state
y towards a desired state ŷ. In the last example from parameter estimation, the
spatially distributed model parameter u appears inside the differential operator
itself, which typically leads to a nonconvex inverse problem. Here, additional
knowledge about the true model û, such as inequality constraints or multiple
measurements, not only reduces the number of false local minima, but also mit-
igates the effect of noise in the observations ŷ.

In all examples, we follow the “discretize-then-optimize” approach, where
the objective function and the PDE-constraints are first approximated numer-
ically before applying our IIP method to the resulting finite-dimensional non-
linear optimization problem. To determine the new search direction at each
Newton iteration, we apply to the (linear) KKT system (4.5) the RSP-GMRES
method preconditioned with the block preconditioner MP, described in Section
5.2; in particular, prior to the GMRES iteration, the PDE block matrix Jy in (5.3)
is factorized.

Once the GMRES iterate meets the desired tolerance, it is evaluated by the
SMART tests. If the termination tests in Algorithm 3.2 or Algorithm 3.3 accept
the new search direction, the optimization method proceeds with the step length
computation; see steps 7 and 13 of Algorithm 3.1. If a Hessian modification
is required, the Hessian block of the KKT system is modified as in (4.5)—see
also step 6 of Algorithm 3.2 and Step 10 of Algorithm 3.3—and the RSP-GMRES
method is restarted. If none of the previous cases apply, the desired relative
residual is reduced by a factor of 10 while the RSP-GMRES iteration and SMART
acceptance procedure are repeated. Due to Lemma 3.2 in [24] this process will
eventually terminate.

Both the IIP algorithm and the exact IP method, later used for the sake
of comparison, have been implemented in the IPOPT open-source optimization
package (rev. 2094). Unless noted otherwise, we always set the first desired rela-
tive residual to 10�2 and use default parameter values elsewhere for the inexact
algorithm.

The RSP preconditioner is implemented in C++ and uses a linear solver
based on an LU-factorization from the Pardiso software package (version 4.1.2.);
again we use default settings unless noted otherwise. The IIP algorithm stops
once the optimality conditions (2.10) are satisfied within a tolerance of 10�8 in
the maximum norm.

All comparisons were preformed on an Intel Xeon architecture with 128 GB
main memory using Intel’s compiler version 10.1 under CentOS 5.8.
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Figure 6.6: Corner load problem: optimal control u�, optimal state y�, and desired state
ŷ with Nh � 64.

6.3.1 2D Distributed Control

To illustrate the efficiency of our RSP-IIP approach, in particular with respect
to the mesh size h, we now consider a PDE-constrained quadratic program for
which a multigrid based preconditioned projected conjugate gradient (PPCG)
method was developed in [57]. Note that the PPCG algorithm requires a positive
definite Hessian on the null space of the Jacobian in (4.5); therefore, it cannot be
applied to more difficult nonconvex problems, as we shall discuss in Sections
6.3.2–6.3.3.

Hence, we consider the following convex optimal control problem, either
with a “corner load” or a “centered load” desired state ŷ:

min
y,u

Fpy, uq �
1
2
||y� ŷ||2L2pΩq �

α

2
||u||2L2pΩq

s.t. �∆y � u in Ω � p0, 1q2,

y � g on BΩ,

with α � 0.02. For the corner load problem we set g � ŷ|BΩ, where

ŷpx1, x2q �

#
p2x1 � 1q2p2x2 � 1q2 if px1, x2q P

�
0, 1

2

�2
,

0 otherwise,

whereas for the centered load problem we let g � 0 and

ŷpx1, x2q � exp
�
�
px1 � 0.5q2 � px2 � 0.5q2

0.1252



.

The state and control variables y, u are discretized on a regular Nh � Nh grid
with Q1 finite elements.

Next, we apply the RSP-IIP method with µinit � 10�11 to both problems and
compare run-times and iteration counts with those from the MATLAB implemen-
tation of the PPCG algorithm in [58]. The KKT systems (4.5) are solved itera-
tively either with PPCG or RSP-GMRES until the relative residual has reached
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Table 6.7: Corner load problem: Run-time (s) and iteration count (in parentheses) for
PPCG and RSP-GMRES, with varying tolerance tol and mesh size Nh �Nh, leading to
a KKT system of size n. All optimization problems were solved within a single (inexact)
optimization step.

Nh n PPCG RSP-GMRES
tol � 10�6 tol � 10�12 tol � 10�6 tol � 10�12

4 18 0.04 p3q 0.05 p4q 0.01 p3q 0.01 p5q
8 98 0.05 p3q 0.05 p4q 0.01 p3q 0.01 p5q

16 450 0.05 p2q 0.06 p4q 0.02 p3q 0.02 p5q
32 1’922 0.07 p2q 0.10 p4q 0.05 p3q 0.05 p5q
64 7’938 0.17 p1q 0.27 p3q 0.24 p3q 0.24 p5q

128 32’258 0.73 p1q 1.30 p3q 1.30 p3q 1.37 p5q
256 130’050 4.41 p1q 7.89 p3q 6.33 p3q 6.68 p5q
512 522’242 23.0 p1q 40.7 p3q 30.2 p3q 31.9 p5q

Table 6.8: Centered load problem: Run-time (s) and iteration count (in parentheses) for
PPCG and RSP-GMRES with varying tolerance tol and mesh size Nh � Nh leading to
a KKT system of size n. All optimization problems were solved within a single inexact
optimization step.

Nh n PPCG RSP-GMRES
tol � 10�6 tol � 10�12 tol � 10�6 tol � 10�12

4 18 0.04 p2q 0.04 p3q 0.01 p3q 0.01 p3q
8 98 0.05 p2q 0.05 p3q 0.01 p3q 0.01 p5q

16 450 0.05 p2q 0.05 p3q 0.02 p3q 0.02 p5q
32 1’922 0.07 p2q 0.08 p3q 0.05 p3q 0.05 p5q
64 7’938 0.22 p2q 0.26 p3q 0.24 p3q 0.31 p5q

128 32’258 0.99 p2q 1.24 p3q 1.30 p3q 1.37 p5q
256 130’050 5.54 p2q 7.20 p3q 6.35 p3q 6.70 p5q
512 522’242 27.2 p2q 35.7 p3q 30.3 p3q 31.8 p5q

a desired tolerance tol � 10�6 or 10�12. Regardless of problem size, the IIP al-
gorithm, though inexact, always found a solution within a single optimization
step, thus demonstrating the remarkable accuracy of its search direction.

In Tables 6.7 and 6.8 we compare run-times and iteration counts (in parenthe-
ses) of the PPCG and the RSP-IIP method to solve the KKT system for varying
mesh size and tolerance. In all cases, the number of iterations remains indepen-
dent of Nh; hence, our RS preconditioner also exhibits optimal h-independent
behavior. The run-times of both algorithms are comparable, while the iteration
counts differ by at most two. Recall, however, that the PPCG method cannot
be applied to more general nonconvex problems, possibly with inequality con-
straints, as we shall discuss in the following.
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6.3.2 2D Boundary Control Problem

Next, to demonstrate the robustness of the RSP-IIP method with respect to
increasing mesh size and number of PDE constraints, we consider a 2D bound-
ary control problem (example 5.7 in [51]) with multiple nonlinear PDEs and in-
equality constraints. Since the PPCG algorithm no longer applies here, we shall
compare the RSP-IIP method to the exact IP method from [80] and to the IIP
method with preconditioned SQMR from Section 6.2 instead, where the KKT
systems are solved by the sparse direct solver Pardiso [63]. By exploiting the
sparsity structure of the KKT system, the RSP-IIP method achieves a significant
speedup over the exact IP method, even more so as the KKT system increases.
Hence, we consider the optimal boundary control problem:

min
y,u

Fpy, uq �
1

2NE

NȨ

k�1

||yk � ŷk||
2
L2pΩq �

α

2
||u||2L2pBΩq

s. t. �∆yk � yk � y3
k � 0 in Ω � p0, 1q2,

Byk

Bn
� ku on BΩ � p0, 1q2,

(6.10a)

1.8 ¤ u ¤ 2.5, (6.10b)

where
ŷk � kp2� x1px1 � 1q � x2px2 � 1qq, k � 1, . . . , NE,

and α � 0.01. Here (6.10a) describes the interaction of normalized quantum
mechanical wave functions of electrons yk in a superconductor on the basis of
a simplified Ginzburg-Landau model [73]. For each k � 1, . . . , NE the corre-
sponding PDE constraint (6.10a) is discretized with standard second-order finite
differences on a regular Nh � Nh grid.

In Figure 6.7 the optimal control u� and optimal state y� are shown for a
single PDE constraint, that is, NE � 1 and Nh � 100. Both are initialized as
u � 2.15 and y � ŷk, respectively. Note that the bounds (6.10b) on u are partially
active and the KKT system thus becomes increasingly ill-conditioned as µ Ñ 0
because of the barrier term in (4.3). Next, in Figure 6.8 we show the number of
RSP-GMRES iterations (�) and the relative residual of each iterate accepted by
the SMART test (�) for varying NE and Nh. Independently of NE or the mesh size
Nh � Nh, the RSP-IIP method always converges within 20 optimization steps,
while the RSP-GMRES iterates satisfy the SMART test within only five iterations.

In Table 6.9 we list for varying Nh and NE the size of the resulting KKT sys-
tem n, the total run-time, and the number of optimization steps for the RSP-
IIP and the exact IP method. The number of optimization steps needed by the
RSP-IIP method exceeds at most by four that of the exact IP method; it barely
increases as the KKT system grows one thousandfold. By taking advantage of
the KKT system’s sparsity structure, the RSP-IIP method achieves a speedup of
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Figure 6.7: 2D boundary control: optimal state and control for NE � 1 PDE constraint
discretized on a Nh � Nh mesh with Nh � 100.

36, and even more so with growing problem size. As the run-time per IIP it-
eration scales linearly with respect to the number of PDE constraints NE while
the number of optimization steps barely increases, we obtain essentially linear
run-time complexity. Moreover, if the different diagonal blocks in Jy and JJy in
(4.9), all independent of one another, were solved in parallel, the total execution
time would essentially become constant and thus independent of NE.

To compare the iterative linear solvers RSP-GMRES to the iterative linear
solver from Section 6.2, we see in Table 6.10 the same quantities for smaller prob-
lems for the RSP-IIP and for the IIP method with an SQMR solver preconditioner
an inverse based multilevel incomplete LDLJ decomposition. The number of
optimization steps for both IIP methods differs only slightly by at most two it-
erations. With growing problem size, we observe an increasing difference in
run-time. While the RSP-GMRES solver takes advantage of the problem inher-
ent block structure, the general purpose SQMR method needs increasingly more
memory to compute an efficient preconditioner.

6.3.3 2D and 3D Parameter Estimation

We now consider two problems from groundwater modeling [38, 76], the
first in two and the second in three space dimensions, where the log conductiv-
ity upxq needs to be estimated from noisy measurements of the fluid pressure,
ypxq. Since the influence of noise can be further reduced by including mea-
surements from multiple sources, practical applications often lead to multiple
PDE constraints. Then, the (optimal) linear complexity achieved by the RSP-
IIP algorithm with respect to the number of PDE constraints NE becomes a key
ingredient for its efficiency.

Thus, we let Ω � p0, 1qd, d � 2, 3, and consider the spatially distributed
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Figure 6.8: 2D boundary control: number of RSP-GMRES iterations (�) and relative
residual (�) at SMART acceptance for varying number of PDE constraints NE and mesh
sizes Nh � Nh. Note the different scales on the left and right axes.

parameter estimation problem

min
y,u

Fpy, uq �
1

2NE64

NȨ

k�1

||vpykq � ŷk||
2
`2 �

α

2

�
Vpuq � β||u||2L2pΩq

	
s.t. �∇ � pexppuq∇ykq � qk in Ω, k � 1, . . . , NE,

yk � 0 on BΩ,

(6.11)

� 2 ¤ u ¤ 2.

Here, the true log conductivity is

ûpxq � exp
�
�
||x̃a � x||2

0.05



� exp

�
�
||x̃b � x||2

0.05



,
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Table 6.9: 2D boundary control problem: size of the KKT system n, number of opti-
mization steps and total run-time for the RSP-IIP method, and the exact IP algorithm
for varying numbers of PDE constraints NE and mesh size Nh � Nh.

Problem size RSP-IIP exact IP
Nh NE n # IIP steps run-time (s) # IP steps run-time (s)
50 5 26’000 13 3 12 3
50 10 51’000 15 7 13 10
50 20 101’000 18 17 14 10

200 5 404’000 13 78 12 125
200 10 804’000 15 173 13 697
200 20 1’604’000 17 382 14 3’829
800 5 6’416’000 13 1’661 13 10’479
800 10 12’816’000 16 4’106 14 68’750
800 20 25’616’000 18 9’132 14 335’470

Table 6.10: 2D boundary control problem: size of the KKT system n, number of opti-
mization steps, and total run-time for the RSP-IIP method and the IIP algorithm with
the preconditioned SQMR method from Section 6.2 for varying numbers of PDE con-
straints NE and mesh size Nh � Nh.

Problem size RSP-IIP PSQMR-IIP
Nh NE n # IIP steps run-time (s) # IIP steps run-time (s)
25 3 4’250 11 0.4 11 0.4
25 5 6’750 12 0.6 13 1.3
50 3 16’000 11 1.7 13 4.7
50 5 26’000 13 3.2 13 8.6

100 3 62’000 12 9.5 13 52.0
100 5 102’000 13 16.8 14 113.0
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Figure 6.9: 2D log conductivity estimation: true model and optimal solution with NE �
10 PDE constraints on a Nh � Nh mesh with Nh � 100.
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Table 6.11: 2D log conductivity estimation: size of the KKT system n, number of
optimization steps and total run-time for the RSP-IIP method for varying number of
PDE constraints NE, and mesh size Nh � Nh.

Nh NE n # IIP steps run-time (s)
100 5 151’005 9 25
100 10 251’005 9 38
100 20 451’005 9 60
200 5 602’005 9 109
200 10 1’002’005 9 155
200 20 1’802’005 9 256
400 5 2’404’005 11 579
400 10 4’004’005 9 649
400 20 7’204’005 9 1’073

with x̃a � p0.25, 0.25qJ, x̃b � p0.75, 0.75qJ in 2D or x̃a � p0.25, 0.25, 0.25qJ, x̃b �

p0.75, 0.75, 0.75qJ in 3D, respectively. To generate the synthetic measurements
ŷk, k � 1, . . . , NE, we numerically solve the forward problem for a given source
qk, and add 1% white noise to its solution. In 2D, the source terms are given by

q4l�1pxq � sinpν1plq 2πx1q sinpν2plq 2πx2q,
q4l�2pxq � cospν1plq 2πx1q sinpν2plq 2πx2q,
q4l�3pxq � sinpν1plq 2πx1q cospν2plq 2πx2q,
q4l�4pxq � cospν1plq 2πx1q cospν2plq 2πx2q,

with pν1p1q, ν2p1qq � p1, 1q, pν1p2q, ν2p2qq � p1, 2q, pν1p3q, ν2p3qq � p2, 1q,
pν1p4q, ν2p4qq � p1, 3q, pν1p5q, ν2p5qq � p2, 2q, . . . and similarly in 3D by triple
products of trigonometric functions. For each k, the corresponding pressure
field ykpxq is measured at 64 fixed locations irregularly distributed throughout
Ω; those measurements are then collected in the vector vpykq.

In (6.11) each elliptic PDE is discretized on a regular grid using Q0 finite
elements for the model variable u and Q1 finite elements for the state variable yk.
As a measure of variation in the piecewise constant log conductivity coefficient,
we include the penalty term

Vpuq � h2d
»
Fh

JuK2ds,

where Fh denotes all interelement boundaries and JuK denotes jumps across in-
terfaces.

First, we consider the 2D case and apply our RSP-IIP method to (6.11) with
α � 10�7 and β � 0. As an initial guess, we always set u identically to zero and
yk to the corresponding forward solutions. Figure 6.9 shows the optimal solution
for NE � 10 PDE constraints on an Nh � Nh mesh with Nh � 100. Indeed, the
optimal model approximately follows the true model, while the measurements’
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Figure 6.10: 3D log conductivity estimation: optimal model u� computed by the RSP-
IIP method applied to (6.11) with NE � 6 PDE constraints on a 25� 25� 25 grid.

misfits act as point sources in the adjoint problem for the Lagrange multiplier
λ. In Table 6.11 we list the number of optimization steps and total run-time for
varying mesh size Nh � Nh and number of PDE constraints, NE, thereby result-
ing in KKT systems up to n � 7.2 � 106 in size. Remarkably, every problem was
solved within merely 11 optimization steps, independently of Nh and NE, while
the total run-time increases only linearly with NE.

Since the PDE in (6.11) is linear in the state variable y, as is often the case,
the submatrices Jyk

in (4.9) are all identical; hence, the RSP-GMRES solver only
needs to factorize a single PDE block matrix, such as Jy1

.
Next, we consider the 3D case, and apply the RSP-IIP method to (6.11) with

α � 10�7 and β � 1. Figure 6.10 shows slices of a typical optimal model u� for
NE � 6 PDE constraints on an Nh � Nh � Nh mesh with Nh � 25, which also ex-
hibits a maximum about p0.25, 0.25, 0.25q and a minimum about p0.75, 0.75, 0.75q.
In Table 6.12 we list the number of optimization steps and total run-time for
varying NE and mesh sizes Nh � Nh � Nh. Again, all problems were solved
within merely 15 optimization steps, while the number of optimization steps
barely increases with growing mesh size. Moreover, the RSP-IIP method effi-
ciently takes advantage of the added information from increasingly many PDE
constraints, as the number of optimization steps actually decreases for increas-
ing NE. For comparison we also list number of optimization steps and run-time
for the IIP method with the general purpose preconditioned SQMR from Sec-
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Table 6.12: 3D log conductivity estimation: size of the KKT system n, number of
optimization steps and total run-time for the RSP-IIP method and for the IIP method
with preconditioned SQMR from Section 6.2 for a varying number of PDE constraints
NE, and mesh size Nh � Nh � Nh. A ’-’ denotes for early terminated runs due to long
run-time.

Problem size RSP-IIP PSQMR-IIP
Nh NE n # IIP steps run-time (s) # IIP steps run-time (s)
20 4 110’305 11 59 19 286
20 8 174’305 11 80 13 324
20 16 302’305 11 129 10 527
20 32 558’305 9 202 10 932
40 4 856’605 15 1’452 15 9’351
40 8 1’368’605 12 1’345 14 15’380
40 16 2’392’605 12 1’913 13 20’612
40 32 4’440’605 12 3’102 13 29’454
60 4 2’862’905 15 10’180 � �
60 8 4’590’905 14 11’491 � �
60 16 8’046’905 14 14’331 � �
60 32 14’958’905 13 18’595 � �
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Figure 6.11: 3D log conductivity estimation: average run-time per optimization step
of the RSP-IIP method as a function of the number of PDE constraints NE for an Nh �
Nh � Nh mesh with Nh � 40, 60.
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tion 6.2. We see a significant speedup for the RSP-IIP method, even more so
with increasing problem sizes.

In Figure 6.11 we again observe the linear average run-time complexity of
the RSP-IIP method with respect to NE for two different Nh � Nh � Nh meshes.
Remarkably, the total run-time is even sublinear due to the mild decrease in the
number of optimization steps with increasing NE. There we also follow the evo-
lution of the number of RSP-GMRES iterations (’�’) and the relative residual of
the accepted search direction (’�’) at each optimization step. The relative resid-
ual of the accepted iterate, never below 10�6, typically lies above 10�2. Hence,
the SMART tests do not demand increasingly accurate solutions from the RSP-
GMRES solver during the optimization process. Although the number of RSP-
GMRES iterations typically increases in the course of any optimization run, all
KKT systems were solved within 25 RSP-GMRES iterations, independently of
Nh or NE.

6.4 Conclusion

In Part I we presented descriptions of primal-dual IP methods for large-scale
nonconvex optimization where the search directions are computed exactly by
a sparse direct linear system solver or inexactly by means of an iterative linear
system solver.

For the IIP method a general purpose algebraic multigrid preconditioned
SQMR method was applied to the KKT systems. Numerical experiments on
a large set of test problems and on two PDE-constrained optimization prob-
lems have also been presented. These results demonstrate the robustness of the
approach and illustrate the significant speedup the IIP algorithm attains when
compared to the exact IP method. As mentioned at the end of Section 6.2.2, we
have observed a decrease in effectiveness of the preconditioner as the barrier
parameter approaches zero.

Next we introduced a reduced-space preconditioned GMRES (RSP-GMRES)
solver and tested several reduced-space preconditioners, including a block pre-
conditioner, a sparse approximation of the inverse, a two-level preconditioner,
and a preconditioner based on simultaneous source ideas for a challenging in-
verse medium problem for the Helmholtz equation. While the two-level pre-
conditioner efficiently reduced the iteration numbers, its application becomes
expensive, even more so for an increasing number of PDEs. The simultaneous
source preconditioner circumvents this drawback but does not reduce the iter-
ation numbers effectively. Thus, astonishingly, the simple block preconditioner,
has proven most efficient.

We have evaluated the RSP-IIP method on the bases of three instances in
2D and 3D. These examples include distributed control and boundary control
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Figure 6.12: 3D log conductivity estimation: number of RSP-GMRES iterations (�)
and relative residual (�) at SMART acceptance for varying number of PDE constraints
NE, and mesh sizes Nh � Nh � Nh. Note the different scales on the left and right axes.

with a nonlinear PDE constraint, and parameter estimation for the Laplace
equation with inequality constraints on the controls or parameters. The RSP-
GMRES solver takes advantage of the KKT matrix internal structure which
yields a significant speedup for example 6.3.2. For the proposed RSP-GMRES
solver we have shown h-independent preconditioning properties. In compari-
son with an optimal preconditioner 6.3.1 we observed similar iteration counts.
For the boundary control problem considered in 6.3.2, the number of reduced-
space preconditioned GMRES iterations per linear system did not increase with
finer meshes despite the presence of active inequality constraints. Thus, the
h-independent preconditioning properties have been observed repeatedly. A
comparison revealed the advantages of the block structure exploitation ap-
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proach in RSP-GMRES compared to the general purpose preconditioned SQMR
method and even for small problems a speedup factor of 10 was observed,
increasing for growing problem sizes.

In the context of parameter estimation, linear run-time complexity is of major
importance for noise robust multiple experiment problems. This optimal run-
time behavior has been observed for the parameter estimation problem for the
Laplace equation in 6.3.3 in 2D and 3D. Since the PDEs are independent of one
another, RSP-IIP can be parallelized easily. For linear PDEs, only a single PDE
block needs to be factorized, which even reduces the constant in the run-time
complexity.





Part III

Inverse Medium Problem for the
Helmholtz Equation





Chapter 7

Formulation of an Inverse

Medium Problem for the

Helmholtz Equation

In the previous chapter we have seen how IP methods can be applied to
large-scale nonconvex PDE-constrained optimization problems and evaluated
an exact IP method and an inexact IP method with different inexact solver and
preconditioners. In this part, we concentrate on a special PDE-constrained opti-
mization problem, namely, an inverse medium problem for the Helmholtz equa-
tion.

In Chapter 7 we derive the block matrices and vectors of the optimality con-
ditions (4.5) in detail and study regularization and nonconvexity issues in more
detail. In Section 7.1 we first derive the Helmholtz equation from the wave equa-
tion and consider its finite element discretization in Section 7.2. This is than used
to formulate the discretized optimization problem, where each block of the KKT
system (4.5) is computed explicitly.

7.1 Derivation of the Helmholtz Equation

Waves are ubiquitous in medical and engineering applications because they
can travel over long distances while retaining much of their shape; hence, they
are natural carriers of information. When a wave encounters an inhomogene-
ity, it is partly scattered in the surrounding medium. From that scattered wave,
usually recorded at remote sensors, the nature, location, and shape of the ob-
stacle hidden inside the medium can be reconstructed, as in computer tomogra-
phy, ultrasound and seismic imaging, nondestructive testing, and remote sens-
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ing. We formulate the inverse medium problem as a PDE-constrained opti-
mization problem, where the underlying wave field solves the (time-harmonic)
Helmholtz equation. In this chapter, we first derive the Helmholtz equation
from the wave equation and consider its numerical discretization.

We consider a scalar valued wave ỹpx, tq for which the wave equation

B2ỹpx, tq
Bt2 �∇ �

�
upxq2∇ỹpx, tq

�
� f̃ px, tq (7.1)

holds. Here, upxq is called the wave speed. In the regime of parameter estima-
tion, upxq is not particularly constant, and to emphasize this we call u the wave
speed profile. If f̃ is of the form

f̃ px, tq � fωpxqe�iωt (7.2)

with temporal frequency ω, the ansatz

ỹpx, tq � ypxqe�iωt (7.3)

yields the Helmholtz equation

�ω2ypxq �∇ � pupxq2∇ypxqq � fωpxq. (7.4)

Every arbitrary right-hand side can be expressed as a superposition of right-
hand sides of the form (7.2) by a Fourier transform. Due to linearity the solution
of (7.1) can also be computed as a superposition of the corresponding solutions
of (7.4). The obvious advantage is that (7.4) has one dimension less, since it is
time independent.

Here, we state the Helmholtz equation in divergence form. In the literature
we often find the Helmholtz equation in the form ∆y� kpxq2ypxq � fωpxq, where
k � ω{u is the wave number. For a constant wave speed profile, they are equiv-
alent. However, since we are confronted with nonconstant wave speed profiles,
we stick to the formulation in (7.4).

Note that in (7.4) the Laplace operator �∇ � py2∇dq is coercive and we sub-
tract the coercive operator ω2d. Thus, the Helmholtz operator is not coercive
any more. This fact makes it particularly difficult to solve the Helmholtz equa-
tion. Often in the literature we find the Helmholtz equation also with a differ-
ent sign in front of the operator ω2d, and it is then referred to as the “good”
Helmholtz equation. In this thesis, we always refer to the noncoercive “bad”
Helmholtz equation. Despite the real valued solution of (7.1) the solution of
(7.4) is complex valued due to the ansatz function in (7.3).

7.2 Finite Element Discretization of the Helmholtz Equa-

tion

We consider a finite subregion Ω, embedded in a 2D or 3D unbounded
medium. Inside Ω, the wave field then satisfies the Helmholtz equation (7.4). In
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this thesis f pxq consists of a collection of point sources at locations xs P Ω. Since
all sources are assumed to be inside the computational domain Ω, the waves
are purely outgoing as they reach the artificial boundary BΩ. To prevent spu-
rious reflections from it, we impose the Sommerfeld-type first-order absorbing
boundary condition [8]

Bypxq
Bn

� i
ω

upxq
, ypxq x P BΩ (7.5)

for simplicity. We now separate the real and imaginary parts of y � yr � iyi

and formulate the complex-valued PDE (7.4) with (7.5) as a system of two real-
valued PDEs

�∇ � pupxq2∇yrpxqq �ω2yr � fωr in Ω
Byr

Bn
� �

ω

upxq
yi on BΩ,

�∇ � pupxq2∇yipxqq �ω2yi � fωi in Ω
Byi

Bn
�

ω

upxq
yr on BΩ.

(7.6)

Following the standard finite element approach, the weak formulation of 7.6 is
then to find yr, yi P H1pΩq such that»

Ω
u2∇yr �∇vr �ω2 yr vr dx�ω

»
BΩ

u yi vr do �
»

Ω
fr vr dx,»

Ω
u2∇yi �∇vi �ω2 yi vi dx�ω

»
BΩ

u yr vi do �
»

Ω
fi vi dx

for all vr, vi P H1pΩq. To discretize the wave speed profile model and the state
variable, we subdivide Ω into triangles or quadrangles Tu

i , i � 1, ...NT u and may
subdivide these model elements further into triangles or quadrangles Ty

j , j �
1, ...NT y . Then a standard Galerkin finite element discretization of (7.6) with
globally continuous, piecewise polynomial Lagrange basis functions ϕ

pjq
y pxq, j �

1, . . . , Ny, ϕ
pjq
u pxq, j � 1, . . . , Nu leads to the conditions

cpu, yq � Apuq y� f (7.7)

�

�
Kpuq �ω2M ωBpuq

ωBpuq �Kpuq �ω2M

��
yr
yi

�
�

�
f r

� f i

�
� 0.

Here, both the wave field and the wave speed profile are expanded in the finite
element basis as yrh �

°
j ypjqr ϕ

pjq
y , yih �

°
j ypjqi ϕ

pjq
y , uh �

°
i upjqϕpjqu . The stiffness

matrix Kpuq, the mass matrix M, the boundary matrix Bpuq, and the load vector
f r are defined as

pKpuqqpi,jq �
»

Ω
u2

h∇ϕ
pjq
y �∇ϕ

piq
y dx, pMqpi,jq �

»
Ω

ϕ
pjq
y ϕ

piq
y dx,

pBpuqqpi,jq �
»
BΩ

uh ϕ
pjq
y ϕ

piq
y do,

�
f r
�ptq

� ϕ
ptq
y pxsq,
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Figure 7.1: Convergence of implemented parallel simulation: left: fixed nonconstant
model parameter; right: numerical and theoretical convergence of bilinear Q1 and bi-
quadratic Q2 elements.

where xs denotes the location of the point source. We set f i � 0. By splitting
the integrals into elementwise contributions, the matrix entries can be efficiently
computed in parallel.

This has been implemented in C++, using the finite element library libMesh

together with the distributed memory parallel library PETSc. As a sanity check,
we see in figure 7.1 a convergence graph for bilinear Q1 and biquadratic Q2

elements for the state variable y. The model u was discretized with bilinear
elements on a fixed mesh with mesh width h � 0.1. The model is depicted in
Figure 7.1 on the left. Only the right-hand side, we set a point source at p0.1, 0.1q.
To check convergence, the L2 difference on a subdomain Ω̂ � p0.2, 1q � p0, 1q be-
tween the simulation result and a reference solution, computed with biquadratic
elements, h � 0.05 was computed using 4 MPI processes. The point for h �

6.25 � 10�3 with Q2 elements does not lie on the line for 3rd order convergence,
since the solutions are compared to a reference solution as described above in-
stead of an analytic solution.

We also applied adaptive mesh refinement techniques to the state variable
discretization. Here, the mesh was refined such that a certain number of ele-
ments per wavelength was achieved. In Figure 7.2 we see the wave speed model
and the imaginary part of the wave field generated by a point source at p1.4, 0.1q
with ω � 20. The state variable mesh was refined such that 10 points per wave
length are achieved, that is

10 � h ¤ λpxq � 2π
cpxq
ω

. (7.8)

If an element did not fulfill this rule, it is refined by halving its size. Global con-
tinuity is enforced by extra constraints on the hanging nodes. In Figure 7.2 we
see a mesh with 551362 degrees of freedom. A regular mesh with fixed h � hmin

needs 961761 degrees of freedom to fulfill rule (7.8). Note that an optimization
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Figure 7.2: Adaptive mesh refinement for the state variable. The mesh was refined to
follow the 10-points-per-wavelength rule, where the local wavelength was estimated by
(7.8) with the wave speed profile depicted in 7.2(a). The mesh is finer in the lower right
region with smaller wave speed and shorter wavelength.

variable and the KKT system contains several real and imaginary parts each of
which is of this size.

7.3 Formulation as PDE-Constrained Problem

In the previous section we have derived the Helmholtz equation and its
standard finite element discretization. In this section, we formulate the inverse
medium problem for the Helmholtz equation and derive the terms in (4.5) in
detail.

The setup for the inverse medium problem consists of multiple point sources
at positions xsk , k � 1, . . . , NE each of which generates a wave field yk according
to the Helmholtz equation (7.4). Each wave is recorded at positions xmi , i �
1, . . . Nm yielding, after Fourier transformation, a vector ŷk P R2Nm of real and
imaginary parts. To reduce the danger of false solutions, we follow two strate-
gies. The first one is a continuation approach along the temporal frequency ω.
We start from low frequencies, where more global information is contained, to
higher frequencies with increased local information but also more false solu-
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tions. The second strategy restricts the search space by inequalities, as they are
often available for applications like seismic imaging. To tackle ill-posedness,
a regularization term Rpuq is added to the objective function. We will discuss
regularization in more detail in Section 8.1. The optimization problem reads

min
y,u

Fpy, uq �
1
2

NȨ

k�1

||vpykq � ŷk||
2
`2 �

α

2
Rpuq

s.t.�∇ � pu2∇ykq �ω2yk � δk in Ω,
Byk

Bn
� i

ω

u
yk on BΩ,

u� ¤ u ¤ u�.

In the full-space approach, the optimization variable x consists of all wave fields
together with the model parameters, x � py1, . . . , yNE

, uq. The goal is to de-
termine the wave speed profile u that minimizes the measurements’ mismatch.
This leads to the nonconvex programming problem

min
yPRNy ,uPRNu

Fpy, uq �
1
2

NȨ

k�1

}Vyk � ŷk}
2
`2 �

α

2
Rpuq (7.9)

s.t. Apuq yk � f k for k � 1, . . . NE,

u� ¤ u ¤ u�.

Here, V denotes the evaluation matrix

Vyk �

�
Ṽ 0
0 Ṽ

��
yrk
yik

�
with Ṽ pijq

� ϕ
pjq
y pxmiq

at receiver locations xm. To setup the Newton system (4.5), the constraint Jaco-
bians need to be assembled, that is,

Jyk
� Apuq for k � 1, . . . NE,

with Apuq from (7.7) and

Juk �

�
Kru

Kiu

�
with pKruqst � 2

»
Ω

uh ϕ
ptq
u ∇ykrh∇ϕ

psq
y dx�ω

»
BΩ

ykih ϕ
ptq
u ϕ

psq
y do,

and Kiu correspondingly. Here, ykrh and ykih denotes the discretization of the real
and imaginary part of field yk. Since the PDE is linear, ∇2

ykyk
L f � VJV in (4.5)

consists only of the objective function’s Hessian. To denote the Hessian blocks
∇2

uykr
L f and ∇2

uykr
L f we introduce the discretized Lagrangian multipliers

λkrhpxq :�
ny̧

s�1

pλkrq
psq ϕ

psq
y pxq and λkihpxq :�

ny̧

s�1

pλkiq
psq ϕ

psq
y pxq,
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where λkr, λki denote the Lagrange multiplier vectors for the real and imaginary
part of the kth PDE constraint. With this, the Hessian blocks can be written
explicitly as�

∇2
uuL f

	
st
�

α

2
∇2

uuR� 2
»

Ω
ϕ
psq
u ϕ

ptq
u p∇ykrh �∇λkrh �∇ykih �∇λkihq dx

and ∇2
uyk

L f �
�
∇2

uykr
L f ∇2

uyki
L f

	
with

�
∇2

uykr
L f

	
st
� 2

»
Ω

uh ϕ
psq
u ∇ϕ

ptq
y �∇λkrh dx�ω

»
BΩ

ϕ
psq
u ϕ

ptq
y λkih do, and�

∇2
uyki

L f
	

st
� 2

»
Ω

uh ϕ
psq
u ∇ϕ

ptq
y �∇λkih dx�ω

»
BΩ

ϕ
psq
u ϕ

ptq
y λkrh do.





Chapter 8

Numerical Studies

In this chapter we will discuss several issues of the inverse medium problem
for the Helmholtz equation on the basis of an easy 2D example. The true wave
speed profile (model) û and the real and imaginary part of y2 for ω � 60 is
depicted in Figure 8.1. The wave speed profile mimics a layered material with
two regions of different wave speed inscribed. The locations of point sources xs

and receivers xm are marked in Figure 8.1 as stars and circles respectively.

Figure 8.1: True model û and real and imaginary part of y2 for a model problem at
ω � 60.

8.1 Ill-Posedness and Regularization

In problem (9.1) the objective functional is extended by a regularization term
α
2 Rpuq. In this section, we explain, the idea of regularization and explore some
regularization terms numerically.

According to Hadamars definition the problem to find z such that Kpzq � d
is well-posed, if the following three assertions hold:

1. For each right-hand side d, there exists a solution z.
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2. For each right hand-side d, the solution z is unique.

3. The solution z depends continuously on d.

For most instances of PDE-constrained optimization problems, assertion 3 does
not hold in the continuous function space setting. In the context of our inverse
medium problem, we seek a function u to minimize }vpApuq�1 f q� ŷ}2, with the
Helmholtz operator A. That is, we need to solve the nonlinear normal equation

Kpu, ŷq � 0 (8.1)

which is a continuous version of (4.10). Even if we had data ŷ on the whole
boundary for infinitely many illuminating waves this equation would still be
ill-posed. In the continuous setting, the linearization of K is a compact operator,
and thus it has singular values converging to 0. Thus, its inverse is unbounded
and solution components in subspaces with small singular values can be ampli-
fied arbitrarily. This principal problem cannot be circumvented by adding more
measurements.

After discretization, we are confronted with two issues. The first is inherent
to the approximated unbounded inverse operator yielding unstable methods
which become worse for increasingly finer meshes. The second issue is simply
based on the fact that there may be not enough measurements to determine all
model parameters uniquely. This nontrivial null space then strongly depends
on the geometry of source and receiver locations. The latter problem could be
resolved by increasing the number of measurements, but this is not always pos-
sible in practice. Either way, additional information needs to be used to yield
good reconstruction results.

Next, we will explore numerically the nature of the inherent ill-posedness.
High spatial frequency components in u do not influence the wave yk severely.
Thus, measurements ŷk are not sensitive to such perturbations. We evaluated for
ω � 20 and Nm � 40 receivers the reduced-space objective in perturbation direc-
tions with increasingly higher spatial frequency. More specifically, we consider
an interpolation of

upβ; νq � û� β{2 sinp2πνx1q sinp2πνx2q

and evaluate the reduced-space objective

F̃Nmpβ; νq � Fpypupβ, νqq, upβ, νqq.

In Figure 8.2 we plot F̃Nmpβ; νq for ω � 20, Nm � 40, β P r�1, 1s, and ν �

1, 2, . . . 64. We observe a decreasing sensitivity for high spatial frequency pertur-
bations ν. To quantify this, the second derivative of F̃ is listed in Table 8.1. The
sensitivity reduces by a factor of 6 � 10�5 for a spatial frequency increase from
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Figure 8.2: Objective function for model perturbations with frequency ν.

ν � 1 to ν � 64. The same experiments have been repeated with Nm � 11280
receivers. Now the number of model parameters nu � 101201 is exceeded by the
number of measurement points from real and imaginary parts of five waves and
we still see a sensitivity reduction of 1.3 � 10�4.

ν 1 4 16 64
F̃240p0; νq 1.2 � 100 1.8 � 10�1 5.4 � 10�3 2.9 � 10�4

F̃211280p0; νq 3.8 � 101 6.0 � 100 1.3 � 10�1 5.0 � 10�3

Table 8.1: Sensitivities for different number of measurement points for model perturba-
tions of varying spatial frequencies ν.

To tackle ill-posedness, several strategies are common [49]. One strategy is
the reduction of the model space dimension. The most efficient approach of
these strategies consists in a subspace generated by eigenvectors of the reduced
Hessian (4.13) with eigenvalues larger than a certain threshold. However, the
computation of eigenvalues and eigenvectors of the reduced Hessian is very
expensive. Furthermore, since the problem is nonlinear, the reduced Hessian at
the optimal point is not available at the beginning of the computation. Another
approach to reduce the model space dimension is based in a coarse discretization
of u. In this general purpose approach the model space is not tailored to the
problem and fine model details are not contained in the low-dimensional model
space. If additional information about the model is available, e.g., position and
shape of regions with similar wave speed, then a low-dimensional model space
can be generated which also contains all detailed features. This will be used
later to generate very low-dimensional model spaces.
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True wave
speed profile

0.8

2.0

}û} � 1.25
m̄ � 2.7 � 10�3

α � 0

0.8

2.0 }u�h � ûh} � 2.2 � 10�1

m � 5.2 � 10�3

∇R � 0
∇m � 5.2 � 10�2

R∇
α� � 10�2

0.8

2.0 }u�h � ûh} � 5.3 � 10�2

m � 3.1 � 10�2

∇R � 3.1 � 10�3

∇m � 3.1 � 10�3

RTV
α� � 10�3, εTV � 27

0.8

2.0 }u�h � ûh} � 3.8 � 10�2

mpuq � 2.5 � 10�3

∇R � 4.0 � 10�4

∇m � 4.0 � 10�4

RGauss
α� � 10�1, σ � 27

0.8

2.0 }u�h � ûh} � 4.8 � 10�2

mpuq � 2.6 � 10�3

∇R � 8.4 � 10�4

∇m � 9.5 � 10�4

Cluster
nu � 20

0.8

2.0 }u�h � ûh} � 1.2 � 10�2

mpuq � 1.4 � 10�2

∇R � 0
∇m � 8.6 � 10�2

Cluster
nu � 20

0.8

2.0 }u�h � ûh} � 6.5 � 10�2

mpuq � 2.8 � 10�2

∇R � 0
∇m � 1.1 � 10�2

Table 8.2: Reconstruction results of the inverse medium problem for the Helmholtz
equation with different regularization strategies.
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A different strategy is the modification of the normal equation operator (8.1)
by adding a regularization term, which yields a well-posed problems. Those
strategies are usually summarized as Tikhonov regularization. In the optimiza-
tion context, this is realized by adding a regularization term to the objective
function. The strategy can also be considered as incorporating an a priori model
probability distribution [45] or penalizing certain characteristics of models. In
many applications of the inverse medium problem we can assume that the true
model consists of different regions where u does not vary much and can be well
approximated by a smooth function. Furthermore, since the objective function
is not sensitive to high frequency perturbations they are contained mainly in
subspaces with small eigenvalues. To penalize these high oscillatory models the
gradient is included in the regularization term, e.g.,

R∇puq � }G∇u}2
L2pΩq.

Here G P Rd, d � 2, 3, is a weighting factor for gradient directions. For example
in seismic imaging one can expect a layered material, where the layers are hor-
izontal, and thus gradients in the vertical direction should not be penalized as
much as gradients in horizontal directions. Models, e.g., in seismic imaging of-
ten are not even differentiable or they exhibit locally large gradients, which are
over-penalized by R∇. To circumvent this with a differentiable regularization
term, approaches like total variation (TV)

RTVpuq �
»

Ω

b
|G∇u|2 � ε dx

or the Huber norm [5] can be applied. These regularization functions are convex.
In this thesis, we also apply a regularization term which is nonconvex,

RGausspuq �
»

Ω
1� expp�|G∇u|2{σ2q dx.

The idea of RGauss is to increase penalization only for small gradients. Once the
algorithm has detected a large gradient or an edge in the model, the penalization
of this edge only weakly depends on the actual value of the gradient or jump.

There are several techniques for the choice of the regularization parameter α,
e.g., approaches based on filter factors or L-curve analysis. However, in practice
the regularization parameter is often determined by numerical experimentation.

For a fair comparison of the different regularization terms in the sequel of
this section, we apply the following heuristics for the choice of α. To avoid
overfitting, we first introduce an additional termination criterion for the opti-
mization method based on noise estimation. At the solution, we then impose a
criterion to balance the regularization term to the misfit term. The optimization
may then be restarted with an adapted regularization parameter.
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The additional optimization termination criterion is based on the knowledge
of measurement noise ξ. In the absence of noise, we had ideally Vyk �

ˆ̂yk. With
noise ŷk � ˆ̂yk � ξ the expectation of the misfit m :�

°NE
k�1 }Vyk �

ˆ̂yk � ξ}2 is

Epmq � Ep}ξ}2q.

For real world measurements, the noise level can be estimated from sen-
sor specification or from data themselves. For our synthetic data, noise was
generated by uniform distribution relative to the simulated value, that is
ξt � pykqt η Up�1, 1q, η ¥ 0 with expectation value Epξ2

t q � 1{3 η2pykq
2
t . Thus,

we estimate the expected misfit as

sm �
1
3

η2
NȨ

k�1

}ŷk}
2. (8.2)

After each optimization step, the current misfit is checked, to see if

NȨ

k�1

}Vyk � ŷk}
2   ζ1 sm (8.3)

holds, for ζ1 ¡ 1. In this case, the reduced-space misfit with y � ypuq is com-
puted. If (8.3) still holds, the optimization problem with current regularization
parameter α is considered as solved since a smaller misfit would probably gen-
erate worse reconstruction results due to overfitting.

At a solution of (7.9), the condition (4.10) must hold. A dominant misfit
term in this sum then indicates a strong dependence on the error-prone mea-
surements. On the other hand, a dominant regularization gradient implies only
weak dependence on the measured data. Therefore, to estimate the regulariza-
tion parameter α, we demand that both terms are of the same order of magni-
tude. We check if

ζ2 ¤
}∇umpypuqq}

α{2}∇uR}
¤ ζ3, (8.4)

with 0   ζ2   1   ζ3, and if (8.4) holds we terminate the algorithm successfully.
Otherwise, α is increased or reduced towards the satisfaction of (8.4) and the
optimization algorithm is restarted to solve the optimization problem with the
new regularization parameter.

With this heuristic if the noise reduces to 0, η Ñ 0, it follows that
Ep}Vy� ŷk}

2q Ñ 0, Ep}∇m}2q � Ep}VJpVy� ŷkq}
2q Ñ 0 and thus, if }∇uR} is

bounded away from 0, we have that α Ñ 0, which is desirable if enough data
are given.

To test different regularization strategies we applied this heuristic with ζ1 �

2, ζ2 � 1{10, ζ3 � 10 to an inverse medium problem for the Helmholtz equation
at ω � 60 and 5% noise. Lower and upper bounds were fixed to u� � 0.8, u� �
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2.0. The barrier parameter was set to µ � 10�7 and the algorithm was initial-
ized with a three layered model with constant wave speed in each layer, 1, 1.5, 1
(true model: 1, 1.6, 1.2) and without the two hidden objects. The 1280 receivers
were placed equidistantly on the border. The results are summarized in Table
8.2. There, we depict the reconstructed model u�h and list the final model er-
ror }ûh � u�h}

2
L2pΩq, the final misfit mpypuqq, and the final gradient norms of the

misfit ∇m and regularization term α{2∇R. We seek the true profile in the up-
per line. There we see the estimated final misfit m̄ according to (8.2). If we do
not regularize (α � 0), the noise creates spurious highly oscillatory perturba-
tions and the reconstruction is not good. Gradient regularization terms damp
these oscillatory components and the reconstructions are much better. While
edges are smoothed too much by the R∇ term, they appear sharper for TV reg-
ularization RTV . The regularization term RGauss yields a reconstruction with
approximately the same quality as TV regularization.

Visually, the best result is generated if additional knowledge about regions
with similar wave speed can be incorporated. In the penultimate row in Table
8.2, we model the PDE parameter as a piecewise bilinear function in the five
regions including the three layers without the objects and the two circular ob-
jects themselves. Since high oscillatory perturbations are contained in the model
space and the number of measurement data points exceeds the number of model
parameters, there is no need for the Tikhonov regularization term and also the
heuristic described above was not applied. The wave speed in the regions are
reconstructed successfully. Since in practice the data to generate such reduced
model spaces may be error-prone, we also generated the five regions from the
solution with TV regularization and built the model space based on these re-
gions. The result is depicted in the lower row. To make results comparable, the
reduced gradient for the later two approaches is not computed with respect to
the model parameters but with respect to a discretized wave speed model as
was also reported for the other examples.

We have seen for several Tikhonov regularization terms how they perform
in the reconstruction of discontinuous models. The contribution of additional
knowledge in the form of regions with smooth model behavior is remarkable.
However, this information may not be available. TV regularization has shown
the best reconstruction result. Thus, for the latter test, we stick to TV regulariza-
tion if not otherwise stated.

8.2 Nonconvexity, Hessian Modification, and Frequency

Continuation

Due to the mixed product of the model u and the state variable y, the inverse
medium problem for the Helmholtz equation (9.1) is nonconvex. Thus a unique
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Figure 8.3: Reduced-space objective function in a two dimensional subspace with the
true solution in the origin

local solution cannot be guaranteed. Furthermore, the objective or merit func-
tion may increase in the Newton direction. These potential pitfalls can appear in
nonconvex optimization. Here we show that they really occur for the problem
considered in this chapter. We first show that the inverse medium problem for
the Helmholtz equation indeed is highly nonconvex. We discuss the issues that
arise from this fact, including convergence to false local solutions and Newton
directions with increasing merit function. We also show, how to overcome these
problems.

To have an insight into the nonconvexity of the problem, we first visualize
the reduced-space objective in a 2D subspace. We set

uhps, tq � ûh � spuh,1 � ûhq � tpuh,2 � ûhq,

where ûh is the true control which was used to generate the measurements ŷ
without noise, and uh,1, uh,2 are models as depicted on the axis. In Figure 8.3
we show the reduced-space objective function gps, tq � Fpypups, tqq, ups, tqq with
ω � 20, Nm � 40, and α � 0 on a 2D subspace and we clearly see that the
reduced-space objective function indeed is highly nonconvex. The local min-
ima in the presented 2D subspace are not necessarily local minima in the whole
model space, but still the graphic shows that nonconvexity cannot be neglected
for this problem.

To show nonconvexity issues for the problem at hand, we initialize the exact
IP algorithm with a model which is constant in the x1 direction and its x2 de-



8.2. NONCONVEXITY, HESSIAN MODIFICATION, AND FREQUENCY
CONTINUATION 113

0.8

2.0

(a) optimal model u�, no box constraints

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

(b) box constraints u�, u�, true model ûh, and
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Figure 8.4: Nonconvexity issues for the inverse medium problem for the Helmholtz
equation: (a) local false solution without box constraints, (b) initial model, true model,
reconstructed model, and model box constraints at x1 � 0.5, (c) reconstruction with box
constraints, (d) model after 300 iterations without Hessian modification.

pendence is depicted in Figure 8.4(b). We apply the exact IP method described
in Chapter 2 to the problem at ω � 60. The method converges in 20 iterations to
the false local minimum depicted in Figure 8.4(a). This shows the existence of
false (inexact) solutions. If we add knowledge in terms of inequality constraints,
also plotted in Figure 8.4(b), the method converges in 25 optimization steps to
the good solution in Figure 8.4(c), where the layers are reconstructed and the
two hidden objects can be observed.

As mentioned in Section 2.2, the exact algorithm computes a factorization to
solve the KKT system (2.13). This factorization is also used to check if the inertia
indicates a semidefinite of indefinite Hessian on the null space of the constraints
Jacobian. If necessary the Hessian block is then modified. In the optimization
run with optimal model, shown in Figure 8.4(c), this occurs in the optimization
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Figure 8.5: Reconstruction results in the frequency stepping strategy with ω �
10, 20, 40 and ω � 60.

steps 2 and 4–18. If the Hessian modification is not performed, the computed
Newton directions may or may not be accent directions for a merit function.
Without Hessian modification, in optimization steps 1–16 the line search algo-
rithm still finds a step length accepted by the filter. However, in iteration 17 this
is no longer possible. While the inexact algorithm terminates in the line search
phase with an error, the exact algorithm falls into a restoration phase for two op-
timization steps and follows the main IP algorithm afterwards. This then hap-
pens repeatedly. We terminated the optimization after 300 optimization steps.
The model in iteration 300 is shown in Figure 8.4(d). Neither the existence of the
two upper layers nor their wave speed can be estimated correctly, not to speak
about the two hidden objects.

Clearly, the above inclusion of a priori information through box constraints
can be combined with a standard frequency stepping strategy for improved ro-
bustness. In this parameter continuation method along the temporal angular
frequency ω we assume that for each ω the optimal model u� is a strict local
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minimum. It is implicitly defined by (4.4),

∇L f py, u, s, λ; ωq � 0

with Jacobian matrix
�
∇2L f | B∇L f

Bω

	
, where ∇2L f is the regular KKT matrix

from (4.5). Then the implicit function theorem states the existence of a continu-
ous path u� � u�pωq.

For illustration of the frequency stepping method, we consider the same
problem at ω � 10. Starting from an initial uniform background u � 1.25,
the IP method rapidly identified in 13 optimization steps the overall layered
structure of the medium, see Figure 8.5(a). To detect the two smaller buried ob-
jects, we now optimize at the higher frequencies ω � 20, 40 and 60, initializing
each optimization run with the solution obtained from the lower frequency. For
ω � 20, 40, and 60, the method converges in only 8, 11, and 6 optimization steps
to the reconstruction in Figures 8.5(b), 8.5(c), and 8.5(d). In the final reconstruc-
tion, we can see the wave speed and location of the three layers as well as the
two hidden objects.

8.3 Model Parametrization

As mentioned in Section 8.1 one possibility to overcome the inherent ill-
posedness as well as the problem of underdetermination due to insufficient
measurements is the reduction of the model parameter space dimension. In the
context of the RSP-IIP algorithm introduced in Chapter 3 and Section 5.2 this
has also the advantage that the Schur complement can become very small, e.g.,
several hundreds instead of tens or hundreds of thousands.

Here, we assume, that subregions Ωi � Ω � Rd, i � 1, . . . , Np are given
where the model u is smooth. Then, on each subregion, we model the wave
speed profile by only a few parameters. More specifically, we apply bilinear or
trilinear basis functions with coefficient vector p P RNp2d

. In the implementation,
we still have the model u discretized on a mesh and thus the corresponding
coefficients u � Bp can be computed easily. The derivatives with respect to the
new model parameters are computed as

∇pL f � BJ∇uL f , ∇2
ppL f � BJ∇2

uuL f B, and ∇2
ypL f � ∇2

yuL f B.

We would like to emphasize, that a region can be very general and it even
does not need to be connected. For an example with such a region, we remind
to the lower row in Table 8.2.

Here, we also apply the parametrization strategy to a 3D problem originated
from [14]. The true model is shown in Figure 8.6(a). It consists of the layers in
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Figure 8.6: Reconstruction for a 3D inverse medium problem for the Helmholtz equa-
tion at ω � 90. Prior knowledge was included into the model space consisting of trilin-
ear functions in each region.

Ω � p0, 1q3 with constant wave speed,

ûpx1, x2, x3q �

$''&''%
4.16667 if 1{2x1 � 5{2x2 � 3{8x3 � 1   0,

3.33333 if � 1{6x1 � 5{3x2 � 1{3x3 � 1 ¡ 0,

5 otherwise.

Three slices of û at x1 � 0, x1 � 1, and x2 � 1 are shown in Figure 8.6.
This example is especially appropriate for the reduced model space ap-

proach, since a model space with trilinear functions needs only 12 parameters.
The underlying full discretization with standard trilinear finite elements on
a regular grid involves 1321651 degrees of freedom instead. In the RSP-IIP
method, the reduced-space KKT system is only of size 60, including the blocks
for upper and lower box constraints and their Lagrange multipliers.

Five point sources with ω � 90 at locations xs1 � p0.2, 0.2, 0.1q, xs2 �

p0.2, 0.8, 0.1q, xs3 � p0.8, 0.2, 0.1q, xs4 � p0.8, 0.8, 0.1q, and xs5 � p0.5, 0.5, 0.7q are
simulated and the solution was evaluated at 113 measurement points on a grid
close to the upper boundary and also in four wells at the corners of Ω along the
z-axis. To simulate measurements, 1% percent noise has been added.

The RSP-IIP method was used to take advantage of the very small model
space dimension. The method converged after only 13 iterations to a model
which is shown in Figure 8.6(b). By the choice of the model space the three layers
are predefined. However, the algorithm correctly identifies the wave speed in
each layer as almost constant. Also the values are reconstructed nicely. The
overall error of the model is }u�h � ûh} � 2.5 � 10�2. It is depicted in Figure 8.6(c)
and also reflects the predefined regions, as expected.



Chapter 9

Real World Problem in Seismic

Imaging

Full waveform seismic inversion leads to some of the most challenging non-
linear PDE-constrained optimization problems. Here we consider the Marmousi
model [67, 81, 16], a standard benchmark in seismic imaging. It corresponds to
a vertical slice through the Cuanza basin in Angola [75, 44] delimited by the
domain Ω � p0.4 km, 6.4 kmq � p0 km, 1.6 kmq.

Given measurements, ŷk, k � 1, . . . , NE from NE � 11 seismic events
(“shots”), we shall attempt to reconstruct the true velocity profile ûpxq in
Ω—see Figure 9.1(a). The measurements are obtained for each point source δk

by recording the amplitude of the corresponding (complex-valued) wave field
yk at 367 observation points located at the surface and the two lateral boundaries
(vertical wells); those values are then collected in the vector vpykq. Hence, we
consider the PDE-constrained optimization problem:

min
y,u

Fpy, uq �
1
2

NȨ

k�1

||vpykq � ŷk||
2
`2 �

α

2
RTVpuq

s.t.�∇ � pu2∇ykq �ω2yk � δk in Ω,
Byk

Bn
� i

ω

u
yk on BΩ,

(9.1)

u� ¤ u ¤ u�.

Here again RTVpuq �
³

Ω

a
|∇u|2 � ε dx denotes TV regularization with ε � 18.75

and α � 10�4. Each wave field yk satisfies the Helmholtz equation (forward
problem) for a given velocity profile upxq and frequency ω ¡ 0. At the bound-
ary of the computational domain BΩ we impose a first-order Sommerfeld-like
absorbing boundary condition. To generate the synthetic data ŷk, we first solve
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Figure 9.1: Geophysical imaging: true Marmousi model û (in km/s) with upper and
lower bounds u�, u�.The stars indicate the location of the different point sources δk.

the forward problem on a fine mesh with mesh size h � 8 m using Q1 elements
for u and Q2 elements for yk; then we add 1% white noise to the recorded values.
The finite element discretization was implemented using libMesh [48] and PETSc

[7].
Since the problem is nonconvex, any local optimization method may con-

verge to a false solution. Prior knowledge, in practice often available as inequal-
ity constraints, reduces the search space and thereby prevents the algorithm
from becoming trapped too easily in a (false) local minimum. Here, the upper
and lower bounds u�, u� are determined from û by local mean and maximum,
or minimum, filtering [66], respectively, followed by 10% further expansion of
the feasible interval—see Figures 9.1(b) and (c).

As the number of extrema increases with frequency, we further reduced the
risk of ending up in a (false) local minimum through frequency stepping: start-
ing at a lower frequency ω, we progressively increase ω while initializing each
optimization run from the previous optimal model at lower frequency. In all
cases we set εtol � 10�4 in (2.12), as smaller values did not yield any further im-
provement in the reconstruction. Moreover, we discretize both u and yk with Q1

finite elements on a coarser mesh, thus avoiding any potential “inverse crime”.
Starting at the lowest frequency ω � 20, we now apply the RSP-IIP method

to (9.1) with mesh size h � 40 m for u and h � 20 m for yk. We initialize the
algorithm with µ � 10�3 and u � pu� � u�q{2 – see Figure 9.3. After only
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Figure 9.2: Geophysical imaging: number of RSP-GMRES iterations (�) and relative
residual (�) at SMART acceptance for ω � 20, 40, and 60. Note the different scales on
the left and right axes.

Table 9.1: Geophysical imaging: time frequency ω, problem size, size of the KKT system
n, number of IIP iterations, and run-times.

ω # States # Model Param. n # IIP steps run-time (s)
20 5.36 � 105 6.19 � 103 1.10 � 106 10 825
40 5.36 � 105 6.19 � 103 1.10 � 106 10 1’001
60 5.36 � 105 2.44 � 104 1.19 � 106 14 1’734

10 optimization steps, the RSP-IIP method converges to the optimal model u�,
displayed in Figure 9.3; the imaginary part of one typical wave field y2 is also
shown there. At such low frequency, the wave length is still large and hence
unable to detect smaller features in the medium—see also Figure 9.4. The total
run-time and problem size are summarized in Table 9.1. In Figure 9.2, we follow
the number of RSP-GMRES iterations required to solve the n � n system with
n � 1.1 � 106.

Next, we let ω � 40 and initialize the RSP-IIP algorithm with the optimal
model from the previous run at ω � 20. Again, we observe in Figure 9.2 an in-
crease in the number of RSP-GMRES iterations during the optimization process.
Although the problem size and the number of optimization steps are identical,
the overall larger number of RSP-GMRES iterations results in a slight increase
in total run-time—see Table 9.1.

Finally, we let ω � 60, µ � 10�5, and choose a finer mesh width h � 20 m for
the model parameter, too. As a consequence, the KKT system barely increases,
whereas the KKT Schur complement now increases by a factor four. Nonthe-
less, the RSP-IIP method converges in only 14 steps, while the number of RSP-
GMRES iterations never exceeds 300 iterations. The reconstructed model, shown
in Figure 9.3, now reproduces the sharp transitions in the velocity field from the
true model, with even smallest details revealed in Figure 9.4.
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Figure 9.3: Geophysical imaging: initial model for ω � 20, and reconstructed optimal
model for ω � 20, 40, and 60 (left); Imaginary part of the y2 for ω � 20, 40, and 60
(right). Compare with true model in Figure 9.1.
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121

For comparison we now also apply the exact IP method described in 2.2 to
(9.1) with ω � 40. The linear systems are solved using the direct solver Pardiso
with 4 OpenMP threads. The exact IP method converges in 9 optimization steps,
instead of 10 for the RSP-IIP method, yet its total run-time of 141993 s now results
in a fifteenthfold increase, despite the multithreaded hardware! This illustrates
that the SMART tests efficiently control the inexactness, thus leading to very few
additional optimization steps, while the RSP-GMRES solver takes advantage of
the sparsity structure of the KKT systems.





Part IV

Conclusions & Future Work





Chapter 10

Conclusion and Future Work

10.1 Conclusion

In this thesis the superiority of an IIP method over an exact IP method for
large-scale nonconvex PDE-constrained optimization problems with inequality
constraints has been demonstrated. A parallelizable RSP-IIP method is intro-
duced which takes advantage of the inherent sparsity pattern of the linear sys-
tems arising in PDE-constrained optimization problems.

In many applied sciences, PDEs model systems, which we aim to optimize
in a certain sense. These pose PDE-constrained optimization problems which
are in general large-scale and nonconvex. Inequality constraints are useful for
guiding the algorithm towards a good local solution or they are necessary to
account for application specific constraints. In this thesis, IIP methods have been
proven to be an efficient approach to solve these class of problems.

A detailed description of IP methods with both exact and inexact step com-
putations has been given. To handle nonconvexity, exact IP methods take ad-
vantage of the computed inertia, but suffer from fill-in. IIP methods circumvent
this by use of iterative solvers. To control model convexification and inexact-
ness, SMART tests are applied. They rate a linear solver iterate on the basis of
a merit function approximation and accept the search direction, request an iter-
ative solver for improvement, or indicate Hessian modification. With SMART
tests, global convergence guarantees are achieved. While the IIP method in [24]
needs to solve two sparse large-scale linear systems, the IIP method proposed
in Chapter 3 comes along with only a single linear system solution in most opti-
mization steps.

Efficiency and robustness of the proposed IIP method has been shown on the
basis of a large test set of general optimization problems and for various PDE-
constrained optimization problems. The IIP method with a general purpose
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preconditioned SQMR solver was assessed by solvable problems of the CUTEr
test set and a success rate of 89% has been achieved. An 3D optimal boundary
control problem with a nonlinear PDE and with box constraints on the state
variable has been solved for up to 7 � 105 optimization variables and a speedup
of about 8 with respect to the exact IP method was observed. For another 3D
example of placing exhausts and air conditioners optimally in a server room, a
speedup of 17 has been achieved. This shows that the permission of controlled
errors in the KKT system solution allows for fast iterative solvers. The mild
increase of optimization steps demonstrates that the fast local convergence of
the exact IP method is also observed for the IIP method.

We have introduced an RSP-GMRES linear solver into the IIP method, which
is tailored to the KKT sparsity pattern. Several preconditioners have been com-
pared based on various ideas from the negligence of the dense term in the Schur
complement, a sparse approximation of this dense term, a multilevel approxi-
mation, as well as a simultaneous source approximation. Despite its simplicity,
the negligence of the dense term turned out to be the most efficient precondi-
tioner. With this preconditioner the RSP-IIP method has confirmed the expected
linear run-time complexity with respect to the number of PDEs for 2D and 3D
parameter estimation problems. As the proposed RSP-IIP method is paralleliz-
able, this could even be improved to a method with a run-time complexity al-
most independent of the number of PDEs. For a convex distributed control
problem we compared RSP-IIP with a preconditioned projected CG method,
which is tailored to such optimal control problems. Despite inexactness, RSP-IIP
converged in a single optimization step. For the solution of the corresponding
KKT system we observed only a mild increase in the iteration counts and an h-
independent RSP-GMRES iteration number. This demonstrates h-independent
preconditioning properties of the proposed preconditioner.

The speedup factors for RSP-IIP methods with respect to the exact IP method
confirms its efficiency, which is superior to the IIP method with a general pur-
pose preconditioner. We assessed this method by a boundary control problem
with nonlinear constraining PDEs, yielding a speedup factor of 36 for a KKT
systems of size 25.6 � 106. For an inverse medium problem for the Helmholtz
equation we observed a speedup factor of 15, despite the parallel execution of
the direct linear solver on 4 OpenMP threads.

For this problem the matrix and vector entries have been derived in detail.
Here, a parallel code was developed and numerical examples confirmed scaling
of the MPI parallelism. Mesh adaption for the state variable has been presented
yielding a reduction of the number of optimization variables by a factor of 2 for
a real world problem. The reason for ill-posedness of the inverse medium prob-
lem has been demonstrated numerically and different regularization strategies
including three Tikhonov regularization terms and a regularization strategy by
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a priori knowledge of smooth profile regions were compared. For this compari-
son a heuristic for the regularization parameter adaption based on the estimated
misfit has been introduced. For this problem we evaluated the impact of non-
convexity and presented convergence to a local false solution in the absence
of inequality constraints. Also, the importance of Hessian regularization has
been demonstrated for a problem where the regular algorithm converges in 25
optimization steps. Without Hessian modification, the algorithm has not suc-
ceeded after 300 iterations and is still far away from a good reconstruction. The
combination of inequality constraints and a frequency continuation approach
yield good reconstruction results. For a 3D parameter estimation problem for
the Helmholtz equation, the RSP-IIP method was used taking further advan-
tage of a priori knowledge to regularize and also to reduce the size of the Schur
complement.

The combination of frequency stepping with inequality constraints to guide
the algorithm leads to good reconstruction results for a real world seismic imag-
ing problem. The problems have been solved efficiently by the RSP-IIP method
and the number of optimization steps for each run of three temporal frequencies
remained bounded below 15. However, the number of RSP-GMRES iterations
per KKT system increased within an optimization run.

10.2 Future Work and Research Directions

As summarized above, the IIP method was assessed by several PDE-
constrained optimization problems and especially the RSP-IIP method has
proven to be a highly efficient approach for nonconvex, large-scale PDE-
constrained optimization problems with inequalities. However, there are still
open questions that remain to be answered by future developments and some
of the ideas in this thesis might give a starting point for further enhancements.

This thesis concentrates on computational results and various PDE-con-
strained optimization problems have been considered. Given this generality
and the complexity of the algorithm, it is hard to actually prove theorems. For
instance, fast local convergence has been observed by comparison of iteration
numbers of the exact and inexact IP methods. While, for the exact IP method
superlinear local convergence is proven, for the inexact method this proof is
missing. As a basic idea of this local convergence proof, the IIP method may be
considered as an inexact Newton method similar to the approach followed in
[18]. Another subject of future research might be the behavior for increasingly
finer meshes. The results in this thesis has shown robustness of iteration num-
bers for h refinement; however, theoretical results are lacking. The implemented
optimization method uses different discrete norms and stability might become
an issue for other instances of PDE-constrained optimization problems. Since
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we have followed the discretize-then-optimize approach, all norms for a single
discretization problem are equivalent. With finer meshes, the equivalence con-
stants converge to 0 and 8, respectively. This poses the question, of whether the
number of optimization steps remains bounded for h Ñ 0.

Regularization in general is an active area of research. Regularization can
be considered as an a priori distribution in the PDE parameter space and tech-
niques from artificial intelligence, like a support vector machine, may be used to
model this a priori knowledge. For Tikhonov regularization, an automatic regu-
larization parameter adaption may be interesting to investigate. In Section 8.1 a
heuristic based on the estimated final misfit has been introduced. This approach
seems to be very interesting and can be extended to a reformulation of the opti-
mization problem. For instance one may maximize the regularization parameter
subject to an inner optimization problem. This inner optimization problem may
then minimize the difference of the achieved and estimated misfit instead of
minimizing the misfit itself. The KKT conditions of the inner optimization prob-
lem may then appear as equality constraints or, to allow inexact solutions, as
inequality constraints. In general, the idea of utilizing the estimated misfit and
possibly the misfit variance for optimality measure seems to be very interesting.

Even though many of the instances of the PDE-constrained optimization
problems are implemented to assemble and process in parallel, the main com-
putational expenses which consist in the solution of the linear system, is cur-
rently implemented only for shared memory parallelism by OpenMP. The RSP-
GMRES method can be parallelized to solve larger instances of PDE-constrained
problems. Since the PDEs in the Schur complement computation are decoupled,
the distribution of single PDEs for each MPI process is natural. If a sparse di-
rect solver is used for forward and adjoint solves, this data distribution leads
to very similar solution times in each process and a very good scaling is to be
expected. For assembling the vectors and matrices, another data distribution
according to the computation domain is more convenient, and it depends on the
problem at hand if the communication costs for vector and matrix redistribution
is beneficial. If the forward and adjoint problems are solved iteratively, which
is necessary for large-scale 3D problems, the solvers may need very different
iteration numbers for different PDE right-hand sides which causes unbalanced
work load. In this context, a distribution of the PDEs as for matrix and vector
assembly may be reconsidered. To control the inexactness of PDE solutions, the
SMART tests may be extended to distinguish requests for improved solutions
for the whole KKT system or for some PDE systems only.

We have applied the RSP-IIP method to various PDE-constrained optimiza-
tion problems. However, all instances for the RSP-IIP method contain inequal-
ity constraints on the PDE parameter only. Here, applying RSP-IIP to inequality
constraints also involving the state variable like the ones presented in Section
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6.2 is an interesting extension. We have seen that RSP-IIP can solve large-scale
PDE-constrained optimization problems very efficiently. However, in the in-
verse medium problem for ω � 60, there is a single optimization step with a
higher iteration count (about twice as high as the for the other KKT systems). For
increasingly higher temporal frequencies, this issue appears more often, which
poses the desire for more efficient preconditioners for the KKT system. In gen-
eral the question how to precondition KKT systems is an active area of research.
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entiation and nonlinear optimization for an inverse medium problem. In U. Nau-
mann and O. Schenk, editors, Combinatorial scientific computing, volume 12, chap-
ter 8, pages 203–231. Chapman & Hall, 2012. [cited at p. 8]

[44] T. Irons. Marmousi model, 2007. http://www.reproducibility.org/RSF/book/

data/marmousi/paperhtml/node1.html. [cited at p. 117]

[45] J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems, volume
160. Springer, 2004. [cited at p. 109]

[46] G. Karypis. Multi-constraint mesh partitioning for contact/impact computations.
In Proceedings of the 2003 ACM/IEEE conference on Supercomputing, page 56. ACM,
2003. [cited at p. 70]

[47] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.
[cited at p. 56]

[48] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A C++ library
for parallel adaptive mesh refinement/coarsening simulations. Engineering with
Computers, 22(3–4):237–254, 2006. [cited at p. 70, 118]

[49] A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems, volume
120. Springer, 2011. [cited at p. 107]

[50] R. V. Kohn and A. McKenney. Numerical implementation of a variational method
for electrical impedance tomography. Inverse Problems, 6(3):389, 1999. [cited at p. 5]

[51] H. Maurer and H. D. Mittelmann. Optimization techniques for solving elliptic
control problems with control and state constraints: Part 1. boundary control. Com-
putational Optimization and Applications, 16:29–55, 2000. 10.1023/A:1008725519350.
[cited at p. 84]

[52] D. Meyer. Newton-Krylov methods for inverse acoustic 1d wave propagation.
Master’s thesis, University Basel, 2010. [cited at p. 8]

[53] F. Natterer. Reflection imaging without low frequencies. Inverse Problems,
27(3):035011, 2011. [cited at p. 6]

[54] A. Neumaier. Complete search in continuous global optimization and constraint
satisfaction. Acta Numerica, 13(1):271–369, 2004. [cited at p. 6]

http://www.reproducibility.org/RSF/book/data/marmousi/paper_html/node1.html
http://www.reproducibility.org/RSF/book/data/marmousi/paper_html/node1.html


BIBLIOGRAPHY 135

[55] J. Nocedal and S. J. Wright. Numerical Optimization. Springer verlag, 1999.
[cited at p. 7, 20, 21, 58]

[56] G. Pratt, C. Shin, et al. Gauss–Newton and full Newton methods in frequency–
space seismic waveform inversion. Geophysical Journal International, 133(2):341–362,
2002. [cited at p. 6]

[57] T. Rees, H. S. Dollar, and A. J. Wathen. Optimal solvers for PDE-constrained opti-
mization. SIAM Journal on Scientific Computing, 32(1):271–298, 2010. [cited at p. 82]

[58] T. Rees, H. S. Dollar, and A. J. Wathen. Tyrone rees, 2010. [cited at p. 82]

[59] K. Roser. Optimierungsverfahren zur lösung der inversen Helmholtz-gleichung.
Master’s thesis, University Basel, 2011. [cited at p. 10]

[60] J. A. Samareh. A survey of shape parameterization techniques. In NASA CONFER-
ENCE PUBLICATION, pages 333–344. Citeseer, 1999. [cited at p. 4]
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