29,735 research outputs found

    Scalable Inference for Markov Processes with Intractable Likelihoods

    Full text link
    Bayesian inference for Markov processes has become increasingly relevant in recent years. Problems of this type often have intractable likelihoods and prior knowledge about model rate parameters is often poor. Markov Chain Monte Carlo (MCMC) techniques can lead to exact inference in such models but in practice can suffer performance issues including long burn-in periods and poor mixing. On the other hand approximate Bayesian computation techniques can allow rapid exploration of a large parameter space but yield only approximate posterior distributions. Here we consider the combined use of approximate Bayesian computation (ABC) and MCMC techniques for improved computational efficiency while retaining exact inference on parallel hardware

    The iterated auxiliary particle filter

    Get PDF
    We present an offline, iterated particle filter to facilitate statistical inference in general state space hidden Markov models. Given a model and a sequence of observations, the associated marginal likelihood L is central to likelihood-based inference for unknown statistical parameters. We define a class of "twisted" models: each member is specified by a sequence of positive functions psi and has an associated psi-auxiliary particle filter that provides unbiased estimates of L. We identify a sequence psi* that is optimal in the sense that the psi*-auxiliary particle filter's estimate of L has zero variance. In practical applications, psi* is unknown so the psi*-auxiliary particle filter cannot straightforwardly be implemented. We use an iterative scheme to approximate psi*, and demonstrate empirically that the resulting iterated auxiliary particle filter significantly outperforms the bootstrap particle filter in challenging settings. Applications include parameter estimation using a particle Markov chain Monte Carlo algorithm

    Efficient Sequential Monte-Carlo Samplers for Bayesian Inference

    Full text link
    In many problems, complex non-Gaussian and/or nonlinear models are required to accurately describe a physical system of interest. In such cases, Monte Carlo algorithms are remarkably flexible and extremely powerful approaches to solve such inference problems. However, in the presence of a high-dimensional and/or multimodal posterior distribution, it is widely documented that standard Monte-Carlo techniques could lead to poor performance. In this paper, the study is focused on a Sequential Monte-Carlo (SMC) sampler framework, a more robust and efficient Monte Carlo algorithm. Although this approach presents many advantages over traditional Monte-Carlo methods, the potential of this emergent technique is however largely underexploited in signal processing. In this work, we aim at proposing some novel strategies that will improve the efficiency and facilitate practical implementation of the SMC sampler specifically for signal processing applications. Firstly, we propose an automatic and adaptive strategy that selects the sequence of distributions within the SMC sampler that minimizes the asymptotic variance of the estimator of the posterior normalization constant. This is critical for performing model selection in modelling applications in Bayesian signal processing. The second original contribution we present improves the global efficiency of the SMC sampler by introducing a novel correction mechanism that allows the use of the particles generated through all the iterations of the algorithm (instead of only particles from the last iteration). This is a significant contribution as it removes the need to discard a large portion of the samples obtained, as is standard in standard SMC methods. This will improve estimation performance in practical settings where computational budget is important to consider.Comment: arXiv admin note: text overlap with arXiv:1303.3123 by other author

    Scalable Planning and Learning for Multiagent POMDPs: Extended Version

    Get PDF
    Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable approach based on sample-based planning and factored value functions that exploits structure present in many multiagent settings. This approach applies not only in the planning case, but also in the Bayesian reinforcement learning setting. Experimental results show that we are able to provide high quality solutions to large multiagent planning and learning problems

    OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects

    Get PDF
    Counting circular objects such as cell colonies is an important source of information for biologists. Although this task is often time-consuming and subjective, it is still predominantly performed manually. The aim of the present work is to provide a new tool to enumerate circular objects from digital pictures and video streams. Here, I demonstrate that the created program, OpenCFU, is very robust, accurate and fast. In addition, it provides control over the processing parameters and is implemented in an in- tuitive and modern interface. OpenCFU is a cross-platform and open-source software freely available at http://opencfu.sourceforge.net
    • …
    corecore