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The iterated auxiliary particle filter

Pieralberto Guarniero, Adam M. Johansen and Anthony Lee∗
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Abstract

We present an offline, iterated particle filter to facilitate statistical inference in

general state space hidden Markov models. Given a model and a sequence of observa-

tions, the associated marginal likelihood L is central to likelihood-based inference for

unknown statistical parameters. We define a class of “twisted” models: each member

is specified by a sequence of positive functions ψ and has an associated ψ-auxiliary

particle filter that provides unbiased estimates of L. We identify a sequence ψ∗ that

is optimal in the sense that the ψ∗-auxiliary particle filter’s estimate of L has zero

variance. In practical applications, ψ∗ is unknown so the ψ∗-auxiliary particle filter

cannot straightforwardly be implemented. We use an iterative scheme to approximate

ψ∗, and demonstrate empirically that the resulting iterated auxiliary particle filter

significantly outperforms the bootstrap particle filter in challenging settings. Ap-

plications include parameter estimation using a particle Markov chain Monte Carlo

algorithm.
∗Pieralberto Guarniero (E-mail: p.guarniero@warwick.ac.uk), Adam M. Johansen (E-mail:
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1 Introduction

Particle filtering, or sequential Monte Carlo (SMC), methodology involves the simulation

over time of an artificial particle system (ξit; t ∈ {1, . . . , T} , i ∈ {1, . . . , N}). It is particu-

larly suited to numerical approximation of integrals of the form

Z :=

∫
XT

µ1 (x1) g1 (x1)
T∏
t=2

ft (xt−1, xt) gt (xt) dx1:T , (1)

where X = Rd for some d ∈ N, T ∈ N, x1:T := (x1, . . . , xT ), µ1 is a probability density

function on X, each ft a transition density on X, and each gt is a bounded, continuous and

non-negative function. Algorithm 1 describes a particle filter, using which an estimate of

(1) can be computed as

ZN :=
T∏
t=1

[
1

N

N∑
i=1

gt(ξ
i
t)

]
. (2)

Algorithm 1 A Particle Filter

1. Sample ξi1 ∼ µ1 independently for i ∈ {1, . . . , N}.

2. For t = 2, . . . , T , sample independently

ξit ∼
∑N

j=1 gt−1(ξjt−1)ft(ξ
j
t−1, ·)∑N

j=1 gt−1(ξjt−1)
, i ∈ {1, . . . , N}.
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Particle filters were originally applied to statistical inference for hidden Markov models

(HMMs) by Gordon et al. (1993), and this setting remains an important application. Let-

ting Y = Rd′ for some d′ ∈ N, an HMM is a Markov chain evolving on X × Y, (Xt, Yt)t∈N,

where (Xt)t∈N is itself a Markov chain and for t ∈ {1, . . . , T}, each Yt is conditionally in-

dependent of all other random variables given Xt. In a time-homogeneous HMM, letting P

denote the law of this bivariate Markov chain, we have

P (X1:T ∈ A, Y1:T ∈ B) :=

∫
A×B

µ (x1) g (x1, y1)
T∏
t=2

f (xt−1, xt) g (xt, yt) dx1:Tdy1:T , (3)

where µ : X → R+ is a probability density function, f : X × X → R+ a transition density,

g : X × Y → R+ an observation density and A and B measurable subsets of XT and YT ,

respectively. Statistical inference is often conducted upon the basis of a realization y1:T of

Y1:T for some finite T , which we will consider to be fixed throughout the remainder of the

paper. Letting E denote expectations w.r.t. P, our main statistical quantity of interest

is L := E
[∏T

t=1 g (Xt, yt)
]
, the marginal likelihood associated with y1:T . In the above, we

take R+ to be the non-negative real numbers, and assume throughout that L > 0.

Running Algorithm 1 with

µ1 = µ, ft = f, gt(x) = g(x, yt), (4)

corresponds exactly to running the bootstrap particle filter (BPF) of Gordon et al. (1993),

and we observe that when (4) holds, the quantity Z defined in (1) is identical to L, so

that ZN defined in (2) is an approximation of L. In applications where L is the primary

quantity of interest, there is typically an unknown statistical parameter θ ∈ Θ that governs

µ, f and g, and in this setting the map θ 7→ L(θ) is the likelihood function. We continue
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to suppress the dependence on θ from the notation until Section 5.

The accuracy of the approximation ZN has been studied extensively. For example, the

expectation of ZN , under the law of the particle filter, is exactly Z for any N ∈ N, and ZN

converges almost surely to Z as N → ∞; these can be seen as consequences of Del Moral

(2004, Theorem 7.4.2). For practical values of N , however, the quality of the approximation

can vary considerably depending on the model and/or observation sequence. When used

to facilitate parameter estimation using, e.g., particle Markov chain Monte Carlo (Andrieu

et al., 2010), it is desirable that the accuracy of ZN be robust to small changes in the model

and this is not typically the case.

In Section 2 we introduce a family of “twisted HMMs”, parametrized by a sequence of

positive functions ψ := (ψ1, . . . , ψT ). Running a particle filter associated with any of these

twisted HMMs provides unbiased and strongly consistent estimates of L. Some specific

definitions of ψ correspond to well-known modifications of the BPF, and the algorithm

itself can be viewed as a generalization of the auxiliary particle filter (APF) of Pitt and

Shephard (1999). Of particular interest is a sequence ψ∗ for which ZN = L with probability

1. In general, ψ∗ is not known and the corresponding APF cannot be implemented, so our

main focus in Section 3 is approximating the sequence ψ∗ iteratively, and defining final

estimates through use of a simple stopping rule. In the applications of Section 5 we find

that the resulting estimates significantly outperform the BPF, and exhibit some robustness

to both increases in the dimension of the latent state space X and changes in the model

parameters. There are some restrictions on the class of transition densities and the functions

ψ1, . . . , ψT that can be used in practice, which we discuss.

This work builds upon a number of methodological advances, most notably the twisted

particle filter (Whiteley and Lee, 2014), the APF (Pitt and Shephard, 1999), block sampling

(Doucet et al., 2006), and look-ahead schemes (Lin et al., 2013). In particular, the sequence
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ψ∗ is closely related to the generalized eigenfunctions described in Whiteley and Lee (2014),

but in that work the particle filter as opposed to the HMM was twisted to define alterna-

tive approximations of L. For simplicity, we have presented the BPF in which multinomial

resampling occurs at each time step. Commonly employed modifications of this algorithm

include adaptive resampling (Kong et al., 1994; Liu and Chen, 1995) and alternative re-

sampling schemes (see, e.g., Douc et al., 2005). Generalization to the time-inhomogeneous

HMM setting is fairly straightforward, so we restrict ourselves to the time-homogeneous

setting for clarity of exposition.

2 Twisted models and the ψ-auxiliary particle filter

Given an HMM (µ, f, g) and a sequence of observations y1:T , we introduce a family of

alternative twisted models based on a sequence of real-valued, bounded, continuous and

positive functions ψ := (ψ1, ψ2, . . . , ψT ). Letting, for an arbitrary transition density f and

function ψ, f(x, ψ) :=
∫
X
f (x, x′)ψ (x′) dx′, we define a sequence of normalizing functions

(ψ̃1, ψ̃2, . . . , ψ̃T ) on X by ψ̃t(xt) := f (xt, ψt+1) for t ∈ {1, . . . , T − 1}, ψ̃T ≡ 1, and a

normalizing constant ψ̃0 :=
∫
X
µ (x1)ψ1 (x1) dx1. We then define the twisted model via the

following sequence of twisted initial and transition densities

µψ1 (x1) :=
µ(x1)ψ1(x1)

ψ̃0

, fψt (xt−1, xt) :=
f (xt−1, xt)ψt (xt)

ψ̃t−1 (xt−1)
, t ∈ {2, . . . , T}, (5)

and the sequence of positive functions

gψ1 (x1) := g (x1, y1)
ψ̃1 (x1)

ψ1 (x1)
ψ̃0, gψt (xt) := g (xt, yt)

ψ̃t (xt)

ψt (xt)
, t ∈ {2, . . . T}, (6)
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which play the role of observation densities in the twisted model. Our interest in this

family is motivated by the following invariance result.

Proposition 1. If ψ is a sequence of bounded, continuous and positive functions, and

Zψ :=

∫
XT

µψ1 (x1) gψ1 (x1)
T∏
t=2

fψt (xt−1, xt) g
ψ
t (xt) dx1:T ,

then Zψ = L.

Proof. We observe that

µψ1 (x1) gψ1 (x1)
T∏
t=2

fψt (xt−1, xt) g
ψ
t (xt)

=
µ(x1)ψ1(x1)

ψ̃0

g1 (x1)
ψ̃1 (x1)

ψ1 (x1)
ψ̃0 ·

T∏
t=2

f (xt−1, xt)ψt (xt)

ψ̃t−1 (xt−1)
gt (xt)

ψ̃t (xt)

ψt (xt)

= µ (x1) g1 (x1)
T∏
t=2

f (xt−1, xt) gt (xt) ,

and the result follows.

From a methodological perspective, Proposition 1 makes clear a particular sense in which

the L.H.S. of (1) is common to an entire family of µ1, (ft)t∈{2,...,T} and (gt)t∈{1,...,T}. The

BPF associated with the twisted model corresponds to choosing

µ1 = µψ, ft = fψt , gt = gψt , (7)

in Algorithm 1; to emphasize the dependence on ψ, we provide in Algorithm 2 the corre-

sponding algorithm and we will denote approximations of L by ZN
ψ . We demonstrate below

that the BPF associated with the twisted model can also be viewed as an APF associated
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with the sequence ψ, and so refer to this algorithm as the ψ-APF. Since the class of ψ-

APF’s is very large, it is natural to consider whether there is an optimal choice of ψ, in

terms of the accuracy of the approximation ZN
ψ : the following Proposition describes such

a sequence.

Algorithm 2 ψ-Auxiliary Particle Filter

1. Sample ξi1 ∼ µψ independently for i ∈ {1, . . . , N}.

2. For t = 2, . . . , T , sample independently

ξit ∼
∑N

j=1 g
ψ
t−1(ξjt−1)fψt (ξjt−1, ·)∑N
j=1 g

ψ
t−1(ξjt−1)

, i ∈ {1, . . . , N}.

Proposition 2. Let ψ∗ := (ψ∗1, . . . , ψ
∗
T ), where ψ∗T (xT ) := g(xT , yT ), and

ψ∗t (xt) := g (xt, yt)E

[
T∏

p=t+1

g (Xp, yp)

∣∣∣∣{Xt = xt}

]
, xt ∈ X, (8)

for t ∈ {1, . . . , T − 1}. Then, ZN
ψ∗ = L with probability 1.

Proof. It can be established that

g(xt, yt)ψ̃
∗
t (xt) = ψ∗t (xt), t ∈ {1, . . . , T}, xt ∈ X,

and so we obtain from (6) that gψ
∗

1 ≡ ψ̃∗0 and gψ
∗

t ≡ 1 for t ∈ {2, . . . , T}. Hence,

Zψ
∗

N =
T∏
t=1

[
1

N

N∑
i=1

gψ
∗

t

(
ξit
)]

= ψ̃∗0,

7



with probability 1. To conclude, we observe that

ψ̃∗0 =

∫
X

µ (x1)ψ∗1 (x1) dx1 =

∫
X

µ (x1)E

[
T∏
t=1

g (Xt, yt)

∣∣∣∣{X1 = x1}

]
dx1

= E

[
T∏
t=1

g (Xt, yt)

]
= L.

Implementation of Algorithm 2 requires that one can sample according to µψ1 and

fψt (x, ·) and compute gψt pointwise. This imposes restrictions on the choice of ψ in prac-

tice, since one must be able to compute both ψt and ψ̃t pointwise. In general models, the

sequence ψ∗ cannot be used for this reason as (8) cannot be computed explicitly. How-

ever, since Algorithm 2 is valid for any sequence of positive functions ψ, we can interpret

Proposition 2 as motivating the effective design of a particle filter by solving a sequence of

function approximation problems.

Alternatives to the BPF have been considered before (see, e.g., the “locally optimal”

proposal in Doucet et al. 2000 and the discussion in Del Moral 2004, Section 2.4.2). The

family of particle filters we have defined using ψ are unusual, however, in that gψt is

a function only of xt rather than (xt−1, xt); other approaches in which the particles are

sampled according to a transition density that is not f typically require this extension of

the domain of these functions. This is again a consequence of the fact that the ψ-APF can

be viewed as a BPF for a twisted model. This feature is shared by the fully adapted APF of

Pitt and Shephard (1999), when recast as a standard particle filter for an alternative model

as in Johansen and Doucet (2008), and which is obtained as a special case of Algorithm 2

when ψt(·) ≡ g(·, yt) for each t ∈ {1, . . . , T}. We view the approach here as generalizing

that algorithm for this reason.

It is possible to recover other existing methodological approaches as BPFs for twisted
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models. In particular, when each element of ψ is a constant function, we recover the

standard BPF of Gordon et al. (1993). Setting ψt (xt) = g (xt, yt) gives rise to the fully

adapted APF. By taking, for some k ∈ N and each t ∈ {1, . . . , T},

ψt (xt) = g (xt, yt)E

(t+k)∧T∏
p=t+1

g (Xp, yp)

∣∣∣∣{Xt = xt}

 , xt ∈ X, (9)

ψ corresponds to a sequence of look-ahead functions (see, e.g., Lin et al., 2013) and one can

recover idealized versions of the delayed sample method of Chen et al. (2000) (see also the

fixed-lag smoothing approach in Clapp and Godsill 1999), and the block sampling particle

filter of Doucet et al. (2006). When k ≥ T − 1, we obtain the sequence ψ∗. Just as ψ∗

cannot typically be used in practice, neither can the exact look-ahead strategies obtained

by using (9) for some fixed k. In such situations, the proposed look-ahead particle filtering

strategies are not ψ-APFs, and their relationship to the ψ∗-APF is consequently less clear.

We note that the offline setting we consider here affords us the freedom to define twisted

models using the entire data record y1:T . The APF was originally introduced to incorporate

a single additional observation, and could therefore be implemented in an online setting,

i.e. the algorithm could run while the data record was being produced.

3 Function approximations and the iterated APF

3.1 Asymptotic variance of the ψ-APF

Since it is not typically possible to use the sequence ψ∗ in practice, we propose to use an

approximation of each member of ψ∗. In order to motivate such an approximation, we

provide a Central Limit Theorem, adapted from a general result due to Del Moral (2004,
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Chapter 9). It is convenient to make use of the fact that the estimate ZN
ψ is invariant

to rescaling of the functions ψt by constants, and we adopt now a particular scaling that

simplifies the expression of the asymptotic variance. In particular, we let

ψ̄t(x) :=
ψt(x)

E [ψt (Xt) | {Y1:t−1 = y1:t−1}]
, ψ̄∗t (x) :=

ψ∗t (x)

E [ψ∗t (Xt) | {Y1:t−1 = y1:t−1}]
.

Proposition 3. Let ψ be a sequence of bounded, continuous and positive functions. Then

√
N

(
ZN
ψ

Z
− 1

)
d−→ N (0, σ2

ψ),

where,

σ2
ψ :=

T∑
t=1

{
E
[
ψ̄∗t (Xt)

ψ̄t (Xt)

∣∣∣∣ {Y1:T = y1:T

}]
− 1

}
. (10)

We emphasize that Proposition 3, whose proof can be found in the Appendix, follows

straightforwardly from existing results for Algorithm 1, since the ψ-APF can be viewed as

a BPF for the twisted model defined by ψ. For example, in the case ψ consists only of

constant functions, we obtain the standard asymptotic variance for the BPF

σ2 =
T∑
t=1

{
E
[
ψ̄∗t (Xt) | {Y1:T = y1:T}

]
− 1
}
.

From Proposition 3 we can deduce that σ2
ψ tends to 0 as ψ approaches ψ∗ in an appropriate

sense. Hence, Propositions 2 and 3 together provide some justification for designing particle

filters by approximating the sequence ψ∗.
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3.2 Classes of f and ψ

While the ψ-APF described in Section 2 and the asymptotic results just described are

valid very generally, practical implementation of the ψ-APF does impose some restrictions

jointly on the transition densities f and functions in ψ. Here we consider only the case

where the HMM’s initial distribution is a mixture of Gaussians and f is a member of F ,

the class of transition densities of the form

f (x, ·) =
M∑
k=1

ck(x)N ( · ; ak (x) , bk (x)) , (11)

where M ∈ N, and (ak)k∈{1,...,M} and (bk)k∈{1,...,M} are sequences of mean and covari-

ance functions, respectively and (ck)k∈{1,...,M} a sequence of R+-valued functions with∑M
k=1 ck(x) = 1 for all x ∈ X. Let Ψ define the class of functions of the form

ψ(x) = C +
M∑
k=1

ckN (x; ak, bk) , (12)

where M ∈ N, C ∈ R+, and (ak)k∈{1,...,M}, (bk)k∈{1,...,M} and (ck)k∈{1,...,M} are a sequence

of means, covariances and positive real numbers, respectively. When f ∈ F and each

ψt ∈ Ψ, it is straightforward to implement Algorithm 2 since, for each t ∈ {1, . . . , T}, both

ψt(x) and ψ̃t−1(x) = f(x, ψt) can be computed explicitly and fψt (x, ·) is a mixture of nor-

mal distributions whose component means and covariance matrices can also be computed.

Alternatives to this particular setting are discussed in Section 6.
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3.3 Recursive approximation of ψ∗

The ability to compute f(·, ψt) pointwise when f ∈ F and ψt ∈ Ψ is also instrumental in

the recursive function approximation scheme we now describe. Our approach is based on

the following observation.

Proposition 4. The sequence ψ∗ satisfies ψ∗T (xT ) = g (xT , yT ), xT ∈ X and

ψ∗t (xt) = g (xt, yt) f
(
xt, ψ

∗
t+1

)
, xt ∈ X, t ∈ {1, . . . , T − 1}. (13)

Proof. The definition of ψ∗ provides that ψ∗T (xT ) = g (xT , yT ). For t ∈ {1, . . . , T − 1},

g (xt, yt) f
(
xt, ψ

∗
t+1

)
= g (xt, yt)

∫
X

f (xt, xt+1)E

[
T∏

p=t+1

g (Xp, yp) | {Xt+1 = xt+1}

]
dxt+1

= g (xt, yt)E

[
T∏

p=t+1

g (Xp, yp) | {Xt = xt}

]
= ψ∗t (xt) .

Let (ξ1:N
1 , . . . , ξ1:N

T ) be random variables obtained by running a particle filter. We pro-

pose to approximate ψ∗ by Algorithm 3, for which we define ψT+1 ≡ 1. This algorithm

mirrors the backward sweep of the forward filtering backward smoothing recursion which,

if it could be calculated, would yield exactly ψ∗.
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Algorithm 3 Recursive function approximations

For t = T, . . . , 1:

1. Set ψit ← g (ξit, yt) f (ξit, ψt+1) for i ∈ {1, . . . , N}.

2. Choose ψt as a member of Ψ on the basis of ξ1:N
t and ψ1:N

t .

One choice in step 2. of Algorithm 3 is to define ψt using a non-parametric approxima-

tion such as a Nadaraya–Watson estimate (Nadaraya, 1964; Watson, 1964). Alternatively,

a parametric approach is to choose ψt as the minimizer in some subset of Ψ of some function

of ψt, ξ1:N
t and ψ1:N

t . Although a number of choices are possible, we focus in Section 5 on

a simple parametric approach that is computationally inexpensive.

3.4 The iterated auxiliary particle filter

The iterated auxiliary particle filter (iAPF), Algorithm 4, is obtained by iteratively running

a ψ-APF and estimating ψ∗ from its output. Specifically, after each ψ-APF is run, ψ∗

is re-approximated using the particles obtained, and the number of particles is increased

according to a well-defined rule. The algorithm terminates when a stopping rule is satisfied.
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Algorithm 4 An iterated auxiliary particle filter with parameters (N0, k, τ)

1. Initialize: set ψ0 to be a sequence of constant functions, l← 0.

2. Repeat:

(a) Run a ψl-APF with Nl particles, and set Ẑl ← ZNl

ψl .

(b) If l > k and sd(Ẑl−k:l)/mean(Ẑl−k:l) < τ , go to 3.

(c) Compute ψl+1 using a version of Algorithm 3 with the particles produced.

(d) If Nl−k = Nl and the sequence Ẑl−k:l is not monotonically increasing, set Nl+1 ←
2Nl. Otherwise, set Nl+1 ← Nl.

(e) Set l← l + 1 and go back to 2a.

3. Run a ψl-APF and return Ẑ := ZNl
ψ

The rationale for step 2(d) of Algorithm 4 is that if the sequence Ẑl−k:l is monotonically

increasing, there is some evidence that the approximations ψl−k:l are improving, and so

increasing the number of particles may be unnecessary. However, if the approximations

Ẑl−k:l have both high relative standard deviation in comparison to τ and are oscillating

then reducing the variance of the approximation of Z and/or improving the approximation

of ψ∗ may require an increased number of particles. Some support for this procedure can be

obtained from the log-normal CLT of Bérard et al. (2014): under regularity assumptions,

logZN
ψ is approximately a N (−δ2

ψ/2, δ
2
ψ) random variable and so P

(
ZN
ψ′ ≥ ZN

ψ

)
≈ 1 −

Φ
([
δ2
ψ′ − δ2

ψ

]
/
[
2
√
δ2
ψ + δ2

ψ′

])
, which is close to 1 when δ2

ψ′ � δ2
ψ.
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4 Approximations of smoothing expectations

Thus far, we have focused on approximations of the marginal likelihood, L, associated with a

particular model and data record y1:T . Particle filters are also used to approximate so-called

smoothing expectations, i.e. π(ϕ) := E [ϕ(X1:T ) | {Y1:T = y1:T}] for some ϕ : XT → R. Such

approximations can be motivated by a slight extension of (1),

γ(ϕ) :=

∫
XT

ϕ(x1:T )µ1 (x1) g1 (x1)
T∏
t=2

ft (xt−1, xt) gt (xt) dx1:T ,

where ϕ is a real-valued, bounded, continuous function. We can write π(ϕ) = γ(ϕ)/γ(1),

where 1 denotes the constant function x 7→ 1. We define below a well-known, unbiased and

strongly consistent estimate γN(ϕ) of γ(ϕ), which can be obtained from Algorithm 1. A

strongly consistent approximation of π(ϕ) can then be defined as γN(ϕ)/γN(1).

The definition of γN(ϕ) is facilitated by a specific implementation of step 2. of Algo-

rithm 1 in which one samples

Ait−1 ∼ Categorical

(
gt−1(ξ1

t−1)∑N
j=1 gt−1(ξjt−1)

, . . . ,
gt−1(ξNt−1)∑N
j=1 gt−1(ξjt−1)

)
, ξit ∼ ft(ξ

Ai
t−1

t−1 , ·),

for each i ∈ {1, . . . , N} independently. Use of, e.g., the Alias algorithm (Walker, 1974,

1977) gives the algorithm O(N) computational complexity, and the random variables

(Ait; t ∈ {1, . . . , T − 1}, i ∈ {1, . . . , N}) provide ancestral information associated with each

particle. By defining recursively for each i ∈ {1, . . . , N}, Bi
T := i and Bi

t−1 := A
Bi

t
t−1 for

t = T, . . . , 2, the {1, . . . , N}T -valued random variable Bi
1:T encodes the ancestral lineage

of ξiT (Andrieu et al., 2010). It follows from Del Moral (2004, Theorem 7.4.2) that the
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approximation

γN(ϕ) :=

[
1

N

N∑
i=1

gT (ξiT )ϕ(ξ
Bi

1
1 , ξ

Bi
2

2 , . . . , ξ
Bi

T
T )

]
T−1∏
t=1

(
1

N

N∑
i=1

gt(ξ
i
t)

)
,

is unbiased and strongly consistent, and a strongly consistent approximation of π(ϕ) is

πN(ϕ) :=
γN(ϕ)

γN(1)
=

1∑N
i=1 gT (ξiT )

N∑
i=1

ϕ
(
ξ
Bi

1
1 , ξ

Bi
2

2 , . . . , ξ
Bi

T
T

)
gT (ξiT ). (14)

The ψ∗-APF is optimal in terms of approximating γ(1) ≡ Z and not π(ϕ) for general ϕ.

Asymptotic variance expressions akin to Proposition 3, but for πNψ (ϕ), can be derived using

existing results (see, e.g., Del Moral and Guionnet, 1999; Chopin, 2004; Künsch, 2005; Douc

and Moulines, 2008) in the same manner. These could be used to investigate the influence

of ψ on the accuracy of πNψ (ϕ) or the interaction between ϕ and the sequence ψ which

minimizes the asymptotic variance of the estimator of its expectation.

Finally, we observe that when the optimal sequence ψ∗ is used in an APF in conjunction

with an adaptive resampling strategy (see Algorithm 5 below), the weights are all equal,

no resampling occurs and the ξit are all i.i.d. samples from P (Xt ∈ · | {Y1:T = y1:T}). This

at least partially justifies the use of iterated ψ-APFs to approximate ψ∗: the asymptotic

variance σ2
ψ in (10) is particularly affected by discrepancies between ψ∗ and ψ in regions

of relatively high conditional probability given the data record y1:T , which is why we have

chosen to use the particles as support points to define approximations of ψ∗ in Algorithm 3.
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5 Applications and examples

The purpose of this section is to demonstrate that the iAPF can provide substantially

better estimates of the marginal likelihood L than the BPF at the same computational

cost. This is exemplified by its performance when d is large, recalling that X = Rd. When

d is large, the BPF typically requires a large number of particles in order to approximate

L accurately. In contrast, the ψ∗-APF computes L exactly, and we investigate below

the extent to which the iAPF is able to provide accurate approximations in this setting.

Similarly, when there are unknown statistical parameters θ, we show empirically that the

accuracy of iAPF approximations of the likelihood L(θ) are more robust to changes in θ

than their BPF counterparts.

Unbiased, non-negative approximations of likelihoods L(θ) are central to the particle

marginal Metropolis–Hastings algorithm (PMMH) of Andrieu et al. (2010), a prominent

parameter estimation algorithm for general state space hidden Markov models. An instance

of a pseudo-marginal Markov chain Monte Carlo algorithm (Beaumont, 2003; Andrieu and

Roberts, 2009), the computational efficiency of PMMH depends, sometimes dramatically,

on the quality of the unbiased approximations of L(θ) (Andrieu and Vihola, 2015; Lee and

Łatuszyński, 2014; Sherlock et al., 2015; Doucet et al., 2015) delivered by a particle filter

for a range of θ values. The relative robustness of iAPF approximations of L(θ) to changes

in θ, mentioned above, motivates their use over BPF approximations in PMMH.
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5.1 Implementation details

In our examples, we use a parametric optimization approach in Algorithm 3. Specifically,

for each t ∈ {1, . . . , T}, we compute numerically

(m∗t ,Σ
∗
t , λ
∗
t ) = argmin(m,Σ,λ)

N∑
i=1

[
N
(
ξit;m,Σ

)
− λψit

]2
, (15)

and then set

ψt(xt) := N (xt;m
∗
t ,Σ

∗
t ) + c(N,m∗t ,Σ

∗
t ), (16)

where c is a positive real-valued function, which ensures that fψt (x, ·) is a mixture of den-

sities with some non-zero weight associated with the mixture component f(x, ·). This is

intended to guard against terms in the asymptotic variance σ2
ψ in (10) being very large or

unbounded. We chose (15) for simplicity and its low computational cost, and it provided

good performance in our simulations. For the stopping rule, we used k = 5 for the ap-

plication in Section 5.2, and k = 3 for the applications in Sections 5.3–5.4. We observed

empirically that the relative standard deviation of the likelihood estimate tended to be

close to, and often smaller than, the chosen level for τ . A value of τ = 1 should therefore

be sufficient to keep the relative standard deviation around 1 as desired (see, e.g., Doucet

et al., 2015; Sherlock et al., 2015). We set τ = 0.5 as a conservative choice for all our

simulations apart from the multivariate stochastic volatility model of Section 5.4, where we

set τ = 1 to improve speed. We performed the minimization in (15) under the restriction

that Σ was a diagonal matrix, as this was considerably faster and preliminary simulations

suggested that this was adequate for the examples considered.

We used an effective sample size based resampling scheme (Kong et al., 1994; Liu and

Chen, 1995), described in Algorithm 5 with a user-specified parameter κ ∈ [0, 1]. The
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Algorithm 5 ψ-Auxiliary Particle Filter with κ-adaptive resampling

1. Sample ξi1 ∼ µψ1 independently, and set W i
1 ← gψ1 (ξi1) for i ∈ {1, . . . , N}.

2. For t = 2, . . . , T :

(a) If ESS(W 1
t−1, . . . ,W

N
t−1) ≤ κN , sample independently

ξit ∼
∑N

j=1W
j
t−1f

ψ
t (ξjt−1, ·)∑N

j=1W
j
t−1

, i ∈ {1, . . . , N},

and set W i
t ← gψt (ξit), i ∈ {1, . . . , N}.

(b) Otherwise, sample ξit ∼ fψt (ξit−1, ·) independently, and set W i
t ← W i

t−1g
ψ
t (ξit) for

i ∈ {1, . . . , N}.

effective sample size is defined as ESS(W 1, . . . ,WN) :=
(∑N

i=1W
i
)2

/
∑N

i=1 (W i)
2, and the

estimate of Z is

ZN :=
∏

t∈R∪{T}

[
1

N

N∑
i=1

W i
t

]
, R :=

{
t ∈ {1, . . . , T − 1} : ESS(W 1

t , . . . ,W
N
t ) ≤ κN

}
.

where R is the set of “resampling times”. This reduces to Algorithm 2 when κ = 1 and to

a simple importance sampling algorithm when κ = 0; we use κ = 0.5 in our simulations.

The use of adaptive resampling is motivated by the fact that when the effective sample size

is large, resampling can be detrimental in terms of the quality of the approximation ZN .

5.2 Linear Gaussian model

A linear Gaussian HMM is defined by the following initial, transition and observation Gaus-

sian densities: µ(·) = N (·;m,Σ), f(x, ·) = N (·;Ax,B) and g(x, ·) = N (·;Cx,D), where
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m ∈ Rd, Σ, A,B ∈ Rd×d, C ∈ Rd×d′ and D ∈ Rd′×d′ . For this model, it is possible to imple-

ment the fully adapted APF (FA-APF) and to compute explicitly the marginal likelihood,

filtering and smoothing distributions using the Kalman filter, facilitating comparisons. We

emphasize that implementation of the FA-APF is possible only for a restricted class of

analytically tractable models, while the iAPF methodology is applicable more generally.

Nevertheless, the iAPF exhibited better performance than the FA-APF in our examples.

Relative variance of approximations of Z when d is large

We consider a family of Linear Gaussian models where m = 0, Σ = B = C = D = Id and

Aij = α|i−j|+1, i, j ∈ {1, . . . , d} for some α ∈ (0, 1). Our first comparison is between the

relative errors of the approximations Ẑ of L = Z using the iAPF, the BPF and the FA-APF.

We consider configurations with d ∈ {5, 10, 20, 40, 80} and α = 0.42 and we simulated a

sequence of T = 100 observations y1:T for each configuration. We ran 1000 replicates of the

three algorithms for each configuration and report box plots of the ratio Ẑ/Z in Figure 1.
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Figure 1: Box plots of Ẑ/Z for different dimensions using 1000 replicates. The crosses
indicate the mean of each sample.

For all the simulations we ran an iAPF with N0 = 1000 starting particles, a BPF with

N = 10000 particles and an FA-APF with N = 5000 particles. The BPF and FA-APF both

had slightly larger average computational times than the iAPF with these configurations.

The average number of particles for the final iteration of the iAPF was greater than N0

only in dimensions d = 40 (1033) and d = 80 (1142). For d > 10, it was not possible to

obtain reasonable estimates with the BPF in a feasible computational time (similarly for

the FA-APF for d > 20). The standard deviation of the samples and the average resampling

count across the chosen set of dimensions are reported in Tables 1–2.
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Table 1: Empirical standard deviation of the quantity Ẑ/Z using 1000 replicates

Dimension 5 10 20 40 80

iAPF 0.09 0.14 0.19 0.23 0.35
BPF 0.51 6.4 - - -

FA-APF 0.10 0.17 0.53 - -

Table 2: Average resampling count for the 1000 replicates

Dimension 5 10 20 40 80

iAPF 6.93 15.11 27.61 42.41 71.88
BPF 99 99 - - -

FA-APF 26.04 52.71 84.98 - -

Fixing the dimension d = 10 and the simulated sequence of observations y1:T with

α = 0.42, we now consider the variability of the relative error of the estimates of the

marginal likelihood of the observations using the iAPF and the BPF for different values

of the parameter α ∈ {0.3, 0.32, . . . , 0.48, 0.5}. In Figure 2, we report box plots of Ẑ/Z in

1000 replications. For the iAPF, the length of the boxes are significantly less variable across

the range of values of α. In this case, we used N = 50000 particles for the BPF, giving a

computational time at least five times larger than that of the iAPF. This demonstrates that

the approximations of the marginal likelihood L(α) provided by the iAPF are relatively

insensitive to small changes in α, in contrast to the BPF. Similar simulations, which we do

not report, show that the FA-APF for this problem performs slightly worse than the iAPF

at double the computational time.
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Figure 2: Box plots of Ẑ/Z for different values of the parameter α using 1000 replicates.
The crosses indicate the mean of each sample.

Particle marginal Metropolis–Hastings

We consider a Linear Gaussian model with m = 0, Σ = B = C = Id, and D = δId with

δ = 0.25. We used the lower-triangular matrix

A =



0.9 0 0 0 0

0.3 0.7 0 0 0

0.1 0.2 0.6 0 0

0.4 0.1 0.1 0.3 0

0.1 0.2 0.5 0.2 0


,

and simulated a sequence of T = 100 observations. Assuming only that A is lower trian-

gular, for identifiability, we performed Bayesian inference for the 15 unknown parameters
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{Ai,j : i, j ∈ {1, . . . , 5} , j ≤ i}, assigning each parameter an independent uniform prior on

[−5, 5]. From the initial point A1 = I5 we ran three Markov chains ABPF
1:L , AiAPF

1:L and AKalman
1:L

of length L = 300000 to explore the parameter space, updating one of the 15 parameters

components at a time with a Gaussian random walk proposal with variance 0.1. The chains

differ in how the acceptance probabilities are computed, and correspond to using unbiased

estimates of the marginal likelihood obtain from the BPF, iAPF or the Kalman filter, re-

spectively. In the latter case, this corresponds to running a Metropolis–Hastings (MH)

chain by computing the marginal likelihood exactly. We started every run of the iAPF

with N0 = 500 particles. The resulting average number of particles used to compute the

final estimate was 500.2. The number of particles N = 20000 for the BPF was set to have a

greater computational time, in this case ABPF
1:L took 50% more time than AiAPF

1:L to simulate.

In Figure 3, we plot posterior density estimates obtained from the three chains for 3 of

the 15 entries of the transition matrix A. The posterior means associated with the entries of

the matrix A were fairly close to A itself, the largest discrepancy being around 0.2, and the

posterior standard deviations were all around 0.1. A comparison of estimated Markov chain

autocorrelations for these same parameters is reported in Figure 4, which indicates little

difference between the iAPF-PMMH and Kalman-MH Markov chains, and substantially

worse performance for the BPF-PMMH Markov chain. The integrated autocorrelation

time of the Markov chains provides a measure of the asymptotic variance of the individual

chains’ ergodic averages, and in this regard the iAPF-PMMH and Kalman-MH Markov

chains were practically indistinguishable, while the BPF-PMMH performed between 3 and

4 times worse, depending on the parameter. The relative improvement of the iAPF over

the BPF does seem empirically to depend on the value of δ. In experiments with larger δ,

the improvement was still present but less pronounced than for δ = 0.25. We note that in

this example, ψ∗ is outside the class of possible ψ sequences that can be obtained using

24



the iAPF: the approximations in Ψ are functions that are constants plus a multivariate

normal density with a diagonal covariance matrix whilst the functions inψ∗ are multivariate

normal densities whose covariance matrices have non-zero, off-diagonal entries.
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Figure 3: Linear Gaussian model: density estimates for the specified parameters from the
three Markov chains.
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Figure 4: Linear Gaussian model: autocorrelation function estimates for the BPF-PMMH
(crosses), iAPF-PMMH (solid lines) and Kalman-MH (circles) Markov chains.
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5.3 Univariate stochastic volatility model

A simple stochastic volatility model is defined by µ(·) = N (·; 0, σ2/(1 − α)2), f(x, ·) =

N (·;αx, σ2) and g(x, ·) = N (·; 0, β2 exp(x)), where α ∈ (0, 1), β > 0 and σ2 > 0 are statis-

tical parameters (see, e.g., Kim et al., 1998). To compare the efficiency of the iAPF and

the BPF within a PMMH algorithm, we analyzed a sequence of T = 945 observations y1:T ,

which are mean-corrected daily returns computed from weekday close exchange rates r1:T+1

for the pound/dollar from 1/10/81 to 28/6/85. This data has been previously analyzed

using different approaches, e.g. in Harvey et al. (1994) and Kim et al. (1998).

We wish to infer the model parameters θ = (α, σ, β) using a PMMH algorithm and

compare the two cases where the marginal likelihood estimates are obtained using the iAPF

and the BPF. We placed independent inverse Gamma prior distributions IG (2.5, 0.025) and

IG (3, 1) on σ2 and β2, respectively, and an independent Beta (20, 1.5) prior distribution

on the transition coefficient α. We used (α0, σ0, β0) =
(
0.95,

√
0.02, 0.5

)
as the starting

point of the three chains: X iAPF
1:L , XBPF

1:L and XBPF′

L′ . All the chains updated one component

at a time with a Gaussian random walk proposal with variances (0.02, 0.05, 0.1) for the

parameters (α, σ, β). X iAPF
1:L has a total length of L = 150000 and for the estimates of

the marginal likelihood that appear in the acceptance probability we use the iAPF with

N0 = 100 starting particles. For XBPF
1:L and XBPF′

1:L′ we use BPFs: XBPF′

1:L is a shorter chain

with more particles (L = 150000 and N = 1000) while XBPF′

1:L′ is a longer chain with fewer

particles (L = 1500000, N = 100). All chains required similar running time overall to

simulate. Figure 5 shows estimated marginal posterior densities for the three parameters

using the different chains.
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Figure 5: Stochastic Volatility model: PMMH density estimates for each parameter from
the three chains.

In Table 3 we provide the adjusted sample size of the Markov chains associated with each

of the parameters, obtained by dividing the length of the chain by the estimated integrated

autocorrelation time associated with each parameter. We can see an improvement using

the iAPF, although we note that the BPF-PMMH algorithm appears to be fairly robust

to the variability of the marginal likelihood estimates in this particular application.

Table 3: Sample size adjusted for autocorrelation for each parameter from the three chains.
α σ2 β

iAPF 3620 3952 3830
BPF 2460 2260 3271
BPF’ 2470 2545 2871

Since particle filters provide approximations of the marginal likelihood in HMMs, the

iAPF can also be used in alternative parameter estimation procedures, such as simulated

maximum likelihood (Lerman and Manski, 1981; Diggle and Gratton, 1984). The use

of particle filters for approximate maximum likelihood estimation (see, e.g., Kitagawa,
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1998; Hürzeler and Künsch, 2001) has recently been used to fit macroeconomic models

(Fernández-Villaverde and Rubio-Ramírez, 2007). In Figure 6 we show the variability of

the BPF and iAPF estimates of the marginal likelihood at points in a neighborhood of the

approximate MLE of (α, σ, β) = (0.984, 0.145, 0.69). The iAPF with N0 = 100 particles

used 100 particles in the final iteration to compute the likelihood in all simulations, and

took slightly more time than the BPF with N = 1000 particles, but far less time than

the BPF with N = 10000 particles. The results indicate that the iAPF estimates are

significantly less variable than their BPF counterparts, and may therefore be more suitable

in simulated maximum likelihood approximations.
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Figure 6: log-likelihood estimates in a neighborhood of the MLE. Boxplots correspond to
100 estimates at each parameter value given by three particle filters, from left to right:
BPF (N = 1000), BPF (N = 10000), iAPF (N0 = 100).
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5.4 Multivariate stochastic volatility model

We consider a version of the multivariate stochastic volatility model defined for X = Rd by

µ(·) = N (·;m,U?), f(x, ·) = N (·;m+diag(φ) (x−m) , U) and g(x, ·) = N (·; 0, exp (diag (x))),

where m,φ ∈ Rd and the covariance matrix U ∈ Rd×d are statistical parameters. The ma-

trix U? is the stationary covariance matrix associated with (φ, U). This is the basic MSV

model in Chib et al. (2009, Section 2), with the exception that we consider a non diagonal

transition covariance matrix U and a diagonal observation matrix.

We analyzed two 20-dimensional sequences of observations y1:T and y′1:T ′ , where T = 102

and T ′ = 90. The sequences correspond to the monthly returns for the exchange rate with

respect to the US dollar of a range of 20 different international currencies, in the periods

3/2000–8/2008 (y1:T , pre-crisis) and 9/2008–2/2016 (y′1:T ′ , post-crisis), as reported by the

Federal Reserve System (available at http://www.federalreserve.gov/releases/h10/

hist/). We infer the model parameters θ = (m,φ, U) using the iAPF to obtain marginal

likelihood estimates within a PMMH algorithm. A similar study using a different approach

and with a set of 6 currencies can be found in Liu and West (2001).

The aim of this study is to showcase the potential of the iAPF in a scenario where, due to

the relatively high dimensionality of the state space, the BPF systematically fails to provide

reasonable marginal likelihood estimates in a feasible computational time. To reduce the

dimensionality of the parameter space we consider a band diagonal covariance matrix U

with non-zero entries on the main, upper and lower diagonals. We placed independent

inverse Gamma prior distributions with mean 0.2 and unit variance on each entry of the

diagonal of U , and independent symmetric triangular prior distributions on [−1, 1] on the

correlation coefficients ρ ∈ R19 corresponding to the upper and lower diagonal entries.

We place independent Uniform(0, 1) prior distributions on each component of φ and an

improper, constant prior density for m. This results in a 79-dimensional parameter space.
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As the starting point of the chains we used φ0 = 0.95 · 1, diag(U0) = 0.2 · 1 and for the 19

correlation coefficients we set ρ0 = 0.25 ·1, where 1 denotes a vector of 1s whose length can

be determined by context. Each entry of m0 corresponds to the logarithm of the standard

deviation of the observation sequence of the relative currency.

We ran two Markov chains X1:L and X ′1:L, corresponding to the data sequences y1:T

and y′1:T ′ , both of them updated one component at a time with a Gaussian random walk

proposal with standard deviations (0.2 · 1, 0.005 · 1, 0.02 · 1, 0.02 · 1) for the parameters

(m,φ, diag (U) , ρ). The total number of updates for each parameter is L = 12000 and

the iAPF with N0 = 500 starting particles is used to estimate marginal likelihoods within

the PMMH algorithm. In Figure 7 we report the estimated smoothed posterior densities

corresponding to the parameters for the Pound Sterling/US Dollar exchange rate series.

Most of the posterior densities are different from their respective prior densities, and we

also observe qualitative differences between the pre and post crisis regimes. For the same

parameters, sample sizes adjusted for autocorrelation are reported in Table 4. Considering

the high dimensional state and parameter spaces, these are satisfactory. In the later steps

of the PMMH chain, we recorded an average number of iterations for the iAPF of around

5 and an average number of particles in the final ψ-APF of around 502.

Table 4: Sample size adjusted for autocorrelation.
m£ φ£ U£ U£,e

pre-crisis 408 112 218 116
post-crisis 175 129 197 120
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Figure 7: Multivariate stochastic volatility model: density estimates for the parameters
related to the Pound Sterling. Pre-crisis chain (solid line), post-crisis chain (dashed line)
and prior density (dotted line). The prior densities for (a) and (b) are constant.

The aforementioned qualitative change of regime seems to be evident looking at the

difference between the posterior expectations of the parameter m for the post-crisis and

the pre-crisis chain, reported in Figure 8. The parameter m can be interpreted as the

period average of the mean-reverting latent process of the log-volatilities for the exchange

rate series. Positive values of the differences for close to all of the currencies suggest a
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generally higher volatility during the post-crisis period.
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Figure 8: Multivariate stochastic volatility model: differences between post-crisis and pre-
crisis posterior expectation of the parameter m for the 20 currencies.

6 Discussion

In this article we have presented the iAPF, an offline algorithm that approximates an

idealized particle filter whose marginal likelihood estimates have zero variance. The main

idea is to iteratively approximate a particular sequence of functions, and an empirical

study with an implementation using parametric optimization for models with Gaussian

transitions showed reasonable performance in some regimes for which the BPF was not

able to provide adequate approximations. We applied the iAPF to Bayesian parameter

estimation in general state space HMMs by using it as an ingredient in a PMMH Markov
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chain. It could also conceivably be used in similar, but inexact, noisy Markov chains;

Medina-Aguayo et al. (2015) showed that control on the quality of the marginal likelihood

estimates can provide theoretical guarantees on the behaviour of the noisy Markov chain.

The performance of the iAPF marginal likelihood estimates also suggests they may be

useful in simulated maximum likelihood procedures. In our empirical studies, the number

of particles used by the iAPF was orders of magnitude smaller than would be required by

the BPF for similar approximation accuracy, which may be relevant for models in which

space complexity is an issue.

In the context of likelihood estimation, the perspective brought by viewing the design

of particle filters as essentially a function approximation problem has the potential to sig-

nificantly improve the performance of such methods in a variety of settings. There are,

however, a number of alternatives to the parametric optimization approach described in

Section 5.1, and it would be of particular future interest to investigate more sophisticated

schemes for estimating ψ∗, i.e. specific implementations of Algorithm 3. We have used

nonparametric estimates of the sequence ψ∗ with some success, but the computational cost

of the approach was much larger than the parametric approach. Alternatives to the classes

F and Ψ described in Section 3.2 could be obtained using other conjugate families, (see,

e.g., Vidoni, 1999). We also note that although we restricted the matrix Σ in (15) to be di-

agonal in our examples, the resulting iAPF marginal likelihood estimators performed fairly

well in some situations where the optimal sequence ψ∗ contained functions that could not

be perfectly approximated using any function in the corresponding class. Finally, the stop-

ping rule in the iAPF, described in Algorithm 4 and which requires multiple independent

marginal likelihood estimates, could be replaced with a stopping rule based on the variance

estimators proposed in Lee and Whiteley (2015). For simplicity, we have discussed particle

filters in which multinomial resampling is used; a variety of other resampling strategies (see
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Douc et al., 2005, for a review) can be used instead.

A Expression for the asymptotic variance in the CLT

Proof of Proposition 3. We define a sequence of densities by

πψk (x1:T ) :=

[
µψ1 (x1)

∏T
t=2 f

ψ
t (xt−1, xt)

]∏k
t=1 g

ψ
t (xt)∫

XT

[
µψ1 (x1)

∏T
t=2 f

ψ
t (xt−1, xt)

]∏k
t=1 g

ψ
t (xt) dx1:T

, x1:T ∈ XT ,

for each k ∈ {1, . . . , T}. We also define πψk (xj) :=
∫
πk(x1:j−1, xj, xj+1:T )dx−j for j ∈

{1, . . . , T}, where x−j := (x1, . . . , xj−1, xj+1, . . . , xN). Combining equation (24.37) of Doucet

and Johansen (2011) with elementary manipulations provides,

σ2
ψ =

T∑
t=1

[∫
X

πψT (xt)
2

πψt−1(xt)
dxt − 1

]

=
T∑
t=1

[∫
X

ψ∗t (xt)

ψt(xt)
πψT (xt)dxt ·

∫
X
ψt (xt) π

ψ
t−1(xt)dxt∫

X
ψ∗t (xt) π

ψ
t−1(xt)dxt

− 1

]

=
T∑
t=1

{
E
[
ψ∗t (Xt)

ψt (Xt)

∣∣∣{Y1:T = y1:T}
]
E [ψt (Xt) | {Y1:t−1 = y1:t−1}]
E [ψ∗t (Xt) | {Y1:t−1 = y1:t−1}]

− 1

}
,

and the expression involving the rescaled terms ψ̄∗t and ψ̄t then follows.
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