1,437 research outputs found

    Gait event detection in controlled and real-life situations: repeated measures from healthy subjects

    Get PDF
    A benchmark and time-effective computational method is needed to assess human gait events in real-life walking situations using few sensors to be easily reproducible. This paper fosters a reliable gait event detection system that can operate at diverse gait speeds and on diverse real-life terrains by detecting several gait events in real time. This detection only relies on the foot angular velocity measured by a wearable gyroscope mounted in the foot to facilitate its integration for daily and repeated use. To operate as a benchmark tool, the proposed detection system endows an adaptive computational method by applying a finite-state machine based on heuristic decision rules dependent on adaptive thresholds. Repeated measurements from 11 healthy subjects (28.27 +/- 4.17 years) were acquired in controlled situations through a treadmill at different speeds (from 1.5 to 4.5 km/h) and slopes (from 0% to 10%). This validation also includes heterogeneous gait patterns from nine healthy subjects (27 +/- 7.35 years) monitored at three self-selected paces (from 1 +/- 0.2 to 2 +/- 0.18 m/s) during forward walking on flat, rough, and inclined surfaces and climbing staircases. The proposed method was significantly more accurate (p > 0.9925) and time effective ( 0.9314) in a benchmarking analysis with a state-of-the-art method during 5657 steps. Heel strike was the gait event most accurately detected under controlled (accuracy of 100%) and real-life situations (accuracy > 96.98%). Misdetection was more pronounced in middle mid swing (accuracy > 90.12%). The lower computational load, together with an improved performance, makes this detection system suitable for quantitative benchmarking in the locomotor rehabilitation field.This work has been supported in part by the Fundacao para a Ciencia e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015, by the Reference Project under Grant UID/EEA/04436/2013, and part by the FEDER Funds through the COMPETE 2020-Programa Operacional Competitividade e Internacionalizacao (POCI)-with the Reference Project under Grant POCI-01-0145-FEDER-006941, and in part by Spanish Ministry of Economy and Competitiveness Grant RYC-2014-16613

    Inertial Sensor Estimation of Initial and Terminal Contact during In-Field Running.

    Full text link
    Given the popularity of running-based sports and the rapid development of Micro-electromechanical systems (MEMS), portable wireless sensors can provide in-field monitoring and analysis of running gait parameters during exercise. This paper proposed an intelligent analysis system from wireless micro-Inertial Measurement Unit (IMU) data to estimate contact time (CT) and flight time (FT) during running based on gyroscope and accelerometer sensors in a single location (ankle). Furthermore, a pre-processing system that detected the running period was introduced to analyse and enhance CT and FT detection accuracy and reduce noise. Results showed pre-processing successfully detected the designated running periods to remove noise of non-running periods. Furthermore, accelerometer and gyroscope algorithms showed good consistency within 95% confidence interval, and average absolute error of 31.53 ms and 24.77 ms, respectively. In turn, the combined system obtained a consistency of 84-100% agreement within tolerance values of 50 ms and 30 ms, respectively. Interestingly, both accuracy and consistency showed a decreasing trend as speed increased (36% at high-speed fore-foot strike). Successful CT and FT detection and output validation with consistency checking algorithms make in-field measurement of running gait possible using ankle-worn IMU sensors. Accordingly, accurate IMU-based gait analysis from gyroscope and accelerometer information can inform future research on in-field gait analysis

    Applications of MEMS Gyroscope for Human Gait Analysis

    Get PDF
    After decades of development, quantitative instruments for human gait analysis have become an important tool for revealing underlying pathologies manifested by gait abnormalities. However, the gold standard instruments (e.g., optical motion capture systems) are commonly expensive and complex while needing expert operation and maintenance and thereby be limited to a small number of specialized gait laboratories. Therefore, in current clinical settings, gait analysis still mainly relies on visual observation and assessment. Due to recent developments in microelectromechanical systems (MEMS) technology, the cost and size of gyroscopes are decreasing, while the accuracy is being improved, which provides an effective way for qualifying gait features. This chapter aims to give a close examination of human gait patterns (normal and abnormal) using gyroscope-based wearable technology. Both healthy subjects and hemiparesis patients participated in the experiment, and experimental results show that foot-mounted gyroscopes could assess gait abnormalities in both temporal and spatial domains. Gait analysis systems constructed of wearable gyroscopes can be more easily used in both clinical and home environments than their gold standard counterparts, which have few requirements for operation, maintenance, and working environment, thereby suggesting a promising future for gait analysis

    Gait rehabilitation monitor

    Get PDF
    This work presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation, by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), Bluetooth compatible from Shimmer, an Android smartphone for collecting and primary processing of data and persistence in a local database. Low computational load algorithms based on Euler angles and accelerometer, gyroscope and magnetometer signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms to help segmentation of the remotely collected signals by the System app to identify gait strides and extract relevant features to feed, train and test a classifier to predict gait abnormalities in gait sessions. A set of drivers from Shimmer manufacturer is used to make the connection between the app and the set of IMUs using Bluetooth. The developed app allows users to collect data and train a classification model for identifying abnormal and normal gait types. The system provides a REST API available in a backend server along with Java and Python libraries and a PostgreSQL database. The machine-learning type is Supervised using Extremely Randomized Trees method. Frequency, time and time-frequency domain features were extracted from the collected and processed signals to train the classifier. To test the framework a set of gait abnormalities and normal gait were used to train a model and test the classifier.Este trabalho apresenta uma estrutura móvel acessível, simples e não intrusiva, que permite a monitorização e a assistência remota de pacientes durante a reabilitação da marcha, por médicos e fisioterapeutas que monitorizam a reabilitação da marcha do paciente. O sistema inclui um conjunto de 2 IMUs (Inertial Mesaurement Units) Shimmer3 da marca Shimmer, compatíveís com Bluetooth, um smartphone Android para recolha, e pré-processamento de dados e armazenamento numa base de dados local. Algoritmos de baixa carga computacional baseados em ângulos Euler e sinais de acelerómetros, giroscópios e magnetómetros foram desenvolvidos e utilizados para a classificação e identificação de diversas perturbações da marcha. Estes algoritmos incluem o alinhamento e sincronização dos dados dos sensores IMUs usando uma referência temporal comum, além de algoritmos de detecção de passos e strides para auxiliar a segmentação dos sinais recolhidos remotamente pelaappdestaframeworke identificar os passos da marcha extraindo as características relevantes para treinar e testar um classificador que faça a predição de deficiências na marcha durante as sessões de monitorização. Um conjunto de drivers do fabricante Shimmer é usado para fazer a conexão entre a app e o conjunto de IMUs através de Bluetooth. A app desenvolvida permite aos utilizadores recolher dados e treinar um modelo de classificação para identificar os tipos de marcha normais e patológicos. O sistema fornece uma REST API disponível num servidor backend recorrendo a bibliotecas Java e Python e a uma base de dados PostgreSQL. O tipo de machine-learning é Supervisionado usando Extremely Randomized Trees. Features no domínio do tempo, da frequência e do tempo-frequência foram extraídas dos sinais recolhidos e processados para treinar o classificador. Para testar a estrutura, um conjunto de marchas patológicas e normais foram utilizadas para treinar um modelo e testar o classificador

    An Approach for Identifying Gait Events Using Wavelet Denoising Technique and Single Wireless IMU

    Get PDF
    A new approach is proposed to identify gait events in non-laboratory environments with a single inertial measurement unit (IMU) embedded inside shoe. The aim of our work is to develop a useful clinical tool for monitoring individuals walking disability and detect specific pathological gait patterns. Temporal parameters of gait are determined by classification of accelerations and angular velocities. Wavelets denoising of IMU signals allows for an important amount of information that is exploited in different manners for event identification. It was found that wavelet denoising enhanced specific turning points which could effectively identify gait events. The method is verified by comparing the results of video-based motion capture system and force plates as conventional standards. This portable gait-monitoring system allows for versatile application beyond gait laboratory
    corecore