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Abstract—A benchmark and time-effective computational 

method is needed to assess human gait events in real-life walking 

situations using few sensors to be easily reproducible. This study 

fosters a reliable gait event detection system that can operate at 

diverse gait speeds and on diverse real-life terrains by detecting 

several gait events in real-time. This detection only relies on the 

foot angular velocity measured by a wearable gyroscope mounted 

in the foot to facilitate its integration for daily and repeated use. 

To operate as a benchmark tool, the proposed detection system 

endows an adaptive computational method by applying a finite-

state-machine based on heuristic decision rules dependent on 

adaptive thresholds. Repeated measurements from eleven healthy 

subjects (28.27±4.17 years) were acquired in controlled situations 

through a treadmill at different speeds (from 1.5 km/h to 4.5 km/h) 

and slopes (0% to 10%). This validation also includes 

heterogenous gait patterns from nine healthy subjects (27±7.35 

years) monitored at three self-selected paces (from 1±0.2 m/s to 

2±0.18 m/s) during forward walking on flat, rough, and inclined 

surfaces and climbing staircases. The proposed method was 

significantly more accurate (p>0.9925) and time-effective 

(<30.53±9.88ms, p>0.9314) in a benchmarking analysis with a 

state-of-the-art method during 5657 steps. Heel Strike was the gait 

event most accurately detected under controlled (accuracy of 

100%) and real-life situations (accuracy>96.98%). Misdetection 

was more pronounced in Middle Mid-Swing (accuracy>90.12%). 

The lower computational load, together with an improved 

performance, makes this detection system suitable for quantitative 

benchmarking in the locomotor rehabilitation field. 

 
Index Terms— Human gait analysis, real-time gait event 

detection, adaptive computational methods, wearable inertial 

sensors, daily locomotion activities 

I. INTRODUCTION 

AIT event detection can potentially be applied in the 

rehabilitation field, namely, in the design of personalized 

gait therapies that tune therapeutic assistance in accordance to 

the patient-specific needs and attempt to foster a more efficient 

functional motor recovery [1]–[5].  

Different motion capture systems have been used to assess 

human gait events. Most commonly, this analysis is conducted 

in a motion analysis laboratory with force platforms and optical 
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motion systems. Nevertheless, these motion capture systems are 

non-portable [6], operate only in controlled environments [7], 

and are consequently not optimal to analyze consecutive gait 

cycles for long-term mobility scenarios [4]. 

Current research suggests that there is a need for assessing 

human locomotion in non-structured conditions. Technological 

advances in wearable sensors have approached this issue. 

Force-based systems, such as foot-switches or force sensitive 

resistors (FSRs), are generally considered the gold standard for 

detecting gait events [8]. However, these sensors (i) are prone 

to mechanical failure [1], (ii) can be unreliable when used by 

patients with drop-foot due to their shifting weight during 

standing [3], [9]–[12], and (iii) do not provide any information 

regarding the sub-phases of the swing phase [9], [12].  

To overcome some of the inherent limitations of force-based 

sensors, recent studies have explored the potentialities of 

inertial sensors, particularly isolated accelerometers [10], [11], 

[13], [14], isolated gyroscopes [6], [15]–[19], and inertial 

measurement units (IMUs)  [2], [4], [9], [20]–[23] for real-time 

gait event detection. Nonetheless, heel-strike vibrations [9], 

[14] may limit the use of accelerometers compared to 

gyroscopes. According to systematic review of Taborri et al. 

[1], gyroscopes provide better performance than other inertial 

quantities for monitoring human gait. There is no consensus 

regarding the best location for the gyroscope on the user’s body. 

Commonly, gyroscopes placed on the shank [4], [6], [9], [15]–

[18], [23] and on the foot [2], [4], [10], [11], [19], [20], [24] 

lead to the more reliable gait event detection. However, Aung 

et al. [11] demonstrated better performance with the sensor 

located on the foot rather than ankle or shank.  

Most of the available computational methods that use 

measurements from the gyroscope for gait segmentation are 

based on the definition of heuristic thresholds through a rule-

based finite state machine (FSM) [4], [6], [10], [15], [16], [18], 

[23]. The threshold-based FSM proposed by Catalfamo et al. 

[6] was able to detect 98% of HS and TO events performed by 

healthy children in indoor and outdoor inclined and flat 

scenarios. Kotiadis et al. [22] showed that using the gyroscope 

and accelerometer data as inputs of the FSM resulted in the 
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proper detection of HS, TO, and HO events on flat surface and 

staircase walking. Furthermore, Storm et al. [23] demonstrated 

that the threshold-based FSM can accurately segment (accuracy 

of 100%) the HS and TO events performed by healthy subjects 

free-walking in an indoor and outdoor urban environment.  

The increased popularity of the FSM is mainly explained by 

its low computational demand and easy application [16]. 

Nevertheless, it has been reported that its performance can be 

affected by the high inter-subject [19] and inter-step variability 

[20]. To surpass the limited generalization when processing 

new datasets, previous studies [5], [9], [25], [26] introduced an 

updating layer for tailoring the thresholds endowed in the 

heuristic rules with the most recent state of the gait pattern.  

Nonetheless, to the authors’ knowledge, the assessments of 

gait events that have been proposed in the literature have been 

conducted in controlled environments (i.e., trials performed on 

treadmill or static walkways) and level-ground walking [2], [3], 

[5], [10], [14], [15], [19], [27]. When applied to real-life 

situations, the gait analyses reported in the literature have 

mostly been restricted to two or three gait events [6], [8], [14], 

[16], [18], [23]. Furthermore, evaluations have reported few 

repeated measures with different subjects, which is a 

problematic for evaluation of the reproducibility of the 

proposed computational methods under real-life applications. 

The absence of a quantitative computational benchmark for the 

assessment of human gait events is a concern in the 

rehabilitation research community.   

Considering this current state-of-the-art, there is a need to 

find time-effective, reliable, inter-subject and inter-step 

versatile computational solutions that describe human gait in 

both controlled and real-life situations using few wearable 

sensors in an attempt to be easily reproducible under different 

contexts. In this sense, this study aims to provide a reliable gait 

event detection system that is able to operate during different 

daily locomotion activities, and is able to detect, in real-time, 

several human gait events: Heel Strike (HS), Foot Flat (FF), 

Middle Mid-Stance (MMST), Heel-Off (HO), Toe-Off (TO) 

and Middle Mid-Swing (MMSW). The detection of these 

events constitutes a novel state-of-the-art contribution, as 

analyses have typically been centered on the detection of HS, 

TO and MMSW events. As human gait is quite dynamic in real-

life, the challenge of this work has been to develop and validate 

the performance of a tool that is suitable for varying gait speeds, 

changing surfaces and varying surface inclinations, even when 

the healthy subject is walking barefoot or with footwear. The 

adaptability to different real-life walking conditions represents 

an additional contribution to the current challenges. Few studies 

have performed gait event detection in real-life situations; 

Catalfamo et al. [6] considered inclined surfaces (indoor and 

outdoor environments) while Formento et al. [16] included 

trials in staircases. To ensure such adaptability, our approach 

extends to previous teamwork [26] by applying a robust FSM 

triggered by adaptive thresholds in heuristic decision rules.  

Moreover, based on the reliable performance identified by 

Taborri et al. [1], this computational method only uses the 

single-axis of a wearable gyroscope (compact and low power 

consumption sensor) placed on the user’s feet. We sought to 

minimize the number of sensors in an attempt to provide a low-

cost solution that was easily reproducible in real-life and did not 

disturb the human motion. The developed method demands a 

low computational load that allows for its implementation in 

embedded processing systems and to reduce the system latency. 

Heterogenous and repeated measures from healthy subjects 

were used to investigate the timing and precision performance 

of the adaptive computational method in comparison to those of 

force sensors. These measures were also used to perform a 

direct comparison between the proposed rule-based method and 

the machine learning method proposed by  Mannini [19] in the 

detection of HS, FF, HO, and TO events. To the best knowledge 

of the authors, no other study in the literature has developed a 

real-time gait segmentation strategy based only on a single-axis 

of a gyroscope that is able to detect several gait events (HS, FF, 

MMST, HO, TO, and MMSW) across different real-life 

situations. Lastly, the article proposes a detection tool that acts 

as a quantitative and computational benchmark for assessing 

human gait events, which is currently not available.  

II. METHODS 

A. Wearable Sensory System  

To fulfill the portability and real-time constraints, the 

proposed gait event detection system relies on a gyroscope 

embodied on the InertialLAB system to measure the angular 

velocity at 100 Hz and a high-performance microcontroller to 

run the adaptive computational method (STM32F4-Discovery 

with an AMR® Cortex® -M4 32-bit core).  

InertialLAB (Fig.1) is a wearable inertial sensory system that 

was designed for ambulatory human gait sensing in diverse 

walking situations, such as those tested in this study. It includes 

two inertial units placed on the instep of each foot, as illustrated 

in Fig. 1, and a central processing unit. Each inertial unit is 

based on the MPU6050, a low-cost IMU that combines a 

tridimensional accelerometer (± 8 g) and a tridimensional 

gyroscope (±2000 º/s) for the acquisition of feet kinematic data. 

For data acquisition, we selected the STM32F4-Discovery 

microcontroller with an attached USB flash drive to store the 

collected data. We used the I2C communication protocol to 

connect each inertial unit to the central unit using USB cables 

(easy plug and unplug solution for real-life gait sensing). 

InertialLAB is powered by a standard 2000 mAh power-bank.  

 
Fig. 1.  Set-up of the InertialLAB and its location in a healthy user. 
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For the purposes of ergonomics, easy donning and doffing, 

and portability, each inertial unit is fixed in cases and attached 

to the feet by adjustable ribbons (see Fig. 1). This procedure 

also allows for secure fastening to the body part with minimum 

sensor motion relative to the foot, thus avoiding fluctuations in 

the IMU angular velocity signal. The USB cables are in spiral 

form to meet the anthropometry requirements of covering 10th-

to-90th percentile of male/female target population.  

To ensure the repeatability of the sensor’s alignment, the 

sensor was always positioned by the same person, who 

carefully positioned a visual mark on the sensor cases so that 

the gyroscope was aligned with the navicular and/or cuneiform 

bones (instep of the foot). This gyroscope’s alignment enables 

the direct measurement of the foot angular velocity along the 

sagittal plane (the sensor’s z-axis, as depicted in Fig. 1).  

B. Adaptive Computational Method  

This section focuses on the design and implementation of the 

adaptive gait segmentation algorithm considering the ground 

surfaces and speed changes. 

Definition of heuristic decision rules  

First, we verified that the foot angular velocity presented a 

constant waveform on level-ground, inclined surfaces and 

staircases (see Appendix I). Thus, heuristic rules can be 

designed for the reliable detection of the human gait events. 

Previous studies have shown that this kinematic feature aligned 

with the sagittal plane is more versatile for real-time gait 

detection across different ground surfaces [1], [28]. 

For the definition of the heuristic decision rules, we 

segmented the angular velocity signal into six moments that 

correspond to the six gait events to be assessed: HS, FF, MMST, 

HO, TO, and MMSW. To determine the exact moments of HS, 

HO and TO events, two FSRs were placed on the heel and toe 

(see Fig. 6). HO and TO events were set as the decreasing 

moment (when the FSR signal decreases by 70% relative to its 

maximum) of the heel and toe FSR signal, respectively, 

whereas the HS event consisted of the increasing instant (when 

the FSR signal is 70% higher than its minimum) of the heel 

FSR. We set the ground truths for FF, MMST, and MMSW 

events based on direct visual inspection of the video-based 

angular velocity with the IMU angular velocity, both were 

overlapped and synchronized by overlay tools of an open-

source tracker. Fig. 2 depicts each gait event associated with the 

foot angular velocity signal. 

 
Fig. 2.  Angular velocity of the right foot along the sagittal plane (sensor’s z-
axis) (continuous line) and representation of six human gait events (HS, FF, 

MMST, HO, TO, and MMSW) during one gait cycle performed by a healthy 

subject. 

We also considered the literature regarding the gyroscope 

signal in the sagittal plane, as follows. For the FF and MMST 

events, the foot is flat to the ground, and consequently, the 

angular velocity is almost steady at 0º/s until the HO event [7], 

[29]. Sabatini et al. [7] and Pappas et al. [29] stated that the HO 

event occurs, approximately, after the zero-crossing of the 

gyroscope signal. According to [7], [29], [30], the gyroscope 

signal reaches the global minimum at the TO event. Studies [7], 

[20], [30] also report that during the swing phase, the peak value 

of the main feature appearing in the gyroscope signal is a rather 

broad positive pulse, which occurs at the moment of mid-swing 

(i.e., MMSW event). These results are in accordance with the 

gait events identified in this study and presented in Fig. 2.  

We defined six different decision rules for the detection of 

each gait event, as indicated in Table I. The decision rules are 

based on curve tracing techniques, such as adaptive thresholds 

crossing, local extrema detection (i.e., maximum and minimum 

angular velocity), and the evaluation of signal derivatives. 

Generically, we defined: HS as the first instant in which the 

angular velocity is within a range empirically determined to be 

close to the null angular velocity (HS_thrmean ± HS_thrstd = -0.5 

± 0.05) after the maximum value has occurred; FF was defined 

as when the signal becomes approximately constant (n samples 

with the 1st derivative almost null) after the detection of the 1st 

minimum; MMST was defined as n samples after FF occurred 

(n corresponds to the duration of the last valid MMST); HO was 

defined as when the velocity becomes negative after a constant 

period; TO was the 2nd minimum detected by an adaptive 

threshold (MINthr in Fig. 2), and  MMSW was determined as the 

maximum detected above an adaptive threshold (MAXthr in Fig. 

2). The rules also have a condition that depends on stride time 

(STRIDE_TIME in Fig. 2), which establishes adaptative 

intervals where the events shall occur and increases the 

robustness of the algorithm to changes in gait speed. The 

adaptive stride time computation will be presented next. 

Adaptability and Finite State Machine 

Our approach considers adaptability as a pivotal future for 

developing a benchmark method for gait analysis. To address 

the variation in gait pattern, the proposed method inspects 

changes in the duration and amplitude of angular velocity since 

both parameters can change with variations in gait speed. This 

information is used to adjust the adaptive thresholds of decision 

rules (MAXthr and MINthr) and the intervals in which the 

events must occur (conditions dependent on STRIDE_TIME).  

Fig. 3 shows the flow chart of the proposed computational 

method, which is formed by six steps executed via STM32F4-

Discovery in each interaction at 100 Hz (the same frequency as 

the gyroscope data acquisition). Initially, the parameters (e.g., 

STRIDE_TIME, MAXthr, and MINthr) used in these steps were 

set a priori based on an exhaustive empirical inspection. The 

computational method only starts the detection of gait events 

after the occurrence of the maximum peak of angular velocity.  
The algorithm starts with the acquisition of angular velocity 

in the sagittal plane through the gyroscope of InertialLAB. 

Since the algorithm uses real-time peak detection, it was 

necessary to smooth the gyroscope data through a digital 1st 
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order low-pass filter (exponential smoothing). Posteriorly, the 

filtered sample was analyzed in 3 different stages to make the 

FSM adaptable for different real-life walking situations. The 

first stage determines the 1st derivative by detecting when the 

velocity increases (positive signal), decreases (negative signal) 

or becomes approximately zero.  

The second stage covers the minimum/maximum 

calculation, which is used to detect HS (after maximum), 

MMSW (maximum), FF (after 1st minimum) and TO (2nd 

minimum), given their dependency on the local extrema. To 

ensure a robust local extrema detection (i.e., the detection of 

maximum and minimum angular velocity), in real-time, we 

considered different criteria based on adaptive thresholds and 

the signal derivative evaluation (gyroDER in Fig. 3). As 

illustrated in Fig. 3, a maximum angular velocity was only 

detected when the angular velocity was higher than the adaptive 

threshold (MAXthr), the previous signal derivative is a positive 

value and the current signal derivative is negative soon after the 

gyroDER is approximately zero (less than 0.01 rad/s – value set 

empirically). We set the last condition to a value near zero 

instead of a zero value (theoretically a constant derivative that 

corresponds to local extrema) to address the signal fluctuations 

or noise around the detection of local extrema, as shown in Fig. 

4.a). These fluctuations can change the signal derivative, and 

consequently, incorrectly detect local extrema. This allows for 

detection only major variations, which are usually associated 

with local peaks. We applied a similar approach to detect the 

angular velocity minima, using the adaptive threshold (MINthr).  

As indicated in Fig. 3, the Max/Min detection stage also 

updates the MAXthr and MINthr thresholds using the three 

previous valid strides. MAXthr and MINthr were defined as 

60% of the mean value of the 3 previous detected maxima and 

minima, respectively. For all walking conditions, the MAXthr 

and MINthr thresholds were initialized to 0.7 rad/s and -2 rad/s, 

respectively. Both the initial values and the percentages defined 

to update the adaptive thresholds were empirically found after 

an exhaustive inspection of the angular velocity from distinct 

gait patterns. This constitutes an adaptability point that allows 

for the proper behavior of the proposed computational method 

under changes in gait speed. It is important to note that if there 

are not three valid strides, the thresholds are updated using a 

prior valid stride until this criterion is met. In the beginning, the 

computational method uses the thresholds set as initial 

conditions.  

 

TABLE I 

DECISION RULES WITH ADAPTIVE THRESHOLDS IN GENERIC FORM 

Condition Decision Rule State 

1 
(gyron > MAXthr) AND (derivativen < 0) AND (derivativen−1 > 0) AND 

(gyroindex − MAXindex ∈ [0.7 ∗ STRIDE_TIMEPrev; 1.3 ∗ 𝑆TRIDE_TIMEPrev]) 

MAX / 

MMSW 

2 
((HS_thrmean − HS_thrstd < gyron <  HS_thrmean + HS_thrstd)OR 1st_gyro_min ) AND 1st_gyro_max  AND 

(gyroindex − MAXindex ∈ [0; 0.4 ∗ STRIDE_TIMEPrev])) 
HS 

3 
(derivativen  ≈ 0) AND |derivativen| ≤ 0.2 AND 1st_gyro_min AND 

(gyroindex − MAXindex ∈ [0.15 ∗ STRIDE_TIMEPrev; 1.0 ∗ STRIDE_TIMEPrev])) 
FF 

4 MMST_counter > (HOindexPrev − FFindexPrev)/2 MMST 

5 
(gyron < 0) AND (derivativen < 0) AND (derivativen−1 < 0)AND (derivativen > 0.9 ∗

derivativen−1) AND (gyroindex − MAXindex ∈ [0.3 ∗ STRIDE_TIMEPrev; 1.0 ∗ STRIDE_TIMEPrev])) 
HO 

6 
(gyron < MINthr) AND (derivativen = 0) AND (derivativen−1 < 0) AND 

(gyroindex − MAXindex ∈ [0.5 ∗ STRIDE_TIMEPrev; 1.1 ∗ STRIDE_TIMEPrev]) 
TO 

 
Fig. 3.  Flow chart of the proposed adaptive computational method. 
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Fig. 4. Foot angular velocity: a) derivative (dev) behavior in the maximum detection; b) stride time calculation considering rising or declining periods. 

A second adaptability point occurs in the STRIDE_TIME 

calculation stage. The current stride duration is used to 

adaptively compute STRIDE_TIME parameter based on the last 

three valid strides. For the first three strides, the initial 

conditions are used until a valid STRIDE_TIME is obtained. To 

compute a valid stride, we looked for rising periods (as shows 

Fig. 4.b)) where the angular velocity was higher than 0.4 rad/s 

with a positive derivative, and at this moment a duration at least 

45% of the previous stride has passed (betweenRisesCounter in 

Fig. 3). Alternatively, a valid stride can be determined using the 

same approach with declining periods (in this case the 

parameter betweenFallsCounter in Fig. 3 would be considered). 

Both approaches update the STRIDE_TIME.  

As indicated previously, STRIDE_TIME is used in the 

adaptive computational method to establish the adaptive ranges 

where the events must occur. These statistical decision limits, 

listed in Table I, were determined by trial and error after an 

empirical analysis that included multiple walking conditions. 

For each decision rule, an initial condition was set based on the 

percentage of the gait cycle assigned in the literature for a 

healthy gait [31]. Subsequently, these initial conditions were 

empirically tuned, resulting in the multiplication factors listed 

in Table I. The tuning procedure ended when the proposed 

algorithm reached similar results (i.e., error rate up to 20%) to 

those of the ground truths. This strategy tailors the algorithm to 

properly operate at distinct gait speeds and allows the FSM to 

restart when an event is not detected (exit condition - E). It is 

worth mentioning that with this stage, in addition to assess the 

human gait events, the proposed computational method is able 

to determine the real-time stride duration.   

The last stage implements the FSM through the switch 

statement presented in Fig. 5. The proposed FSM presents six 

states, one for each gait event (MAX/MMSW, HS, FF, MMST, 

HO, TO), and two additional states (default state - DEF, and 

reset state - R). The decision rules defined in Table I (1-6) and 

the exit condition (E) are used to trigger the state transitions. As 

indicated in Fig. 5, the 1st state to run is the R state. Here, all 

variables are reset and the initial conditions (empirically tuned) 

are set. Next is a transition to the DEF state. The FSM only 

leaves the DEF state when rule 1 is true (maximum), transiting 

to MAX/MMSW. Note that this rule only allows for the 

transition to the MAX state in the first detection. In the 

remaining situations, it detects the MMSW since the maximum 

of the angular velocity corresponds to this event. The FSM is 

also adaptive in the calculation of the threshold for the MMST 

(MMST_counter).  

At last, the developed tool can also address situations in 

which the user stands for a period of time without walking. In 

this case, the information from previous steps will not be used 

since the gait pattern was changed. Thus, the algorithm resets 

after a pre-defined time (at least 5.0* STRIDE_TIME). When 

this occurs, this computational method sets all empirical 

parameters to the values defined in the initial conditions.  

 
Fig. 5. FSM used to detect the gait events.  

C. Validation of gait event detection system  

We validated the adaptive computational method using 

repeated measures of healthy gait patterns recorded in 

controlled and real-life situations, as depicted in Fig. 6. Twenty 

subjects were involved in two protocols, one for each condition. 

The subjects signed a written informed consent to participate in 

this study and were randomly divided into the two protocols.  

The detected and reference gait events were stored as text 

files on a USB flash drive attached to InertialLAB for a 

subsequent validation through Matlab® (2016a, The 

Mathworks, Natick, MA, USA). To establish the ground truths, 

we used a reference measurement system to detect true gait 

events at 100 Hz. To achieve this, we integrated two FSRs in 

the heel and toe (see Fig. 6) that enabled the identifications of 

HS, HO and TO events, as previously described. The FF, 
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MMST, and MMSW events were found through visual 

inspection by a gait analysis expert and based on the 

information reported in the literature [7], [20], [30].  

 
Fig. 6. Validation of the gait event detection system under controlled and real-

life walking conditions (flat and rough level-ground, inclined surfaces and 

staircases). The users wore two units of InertialLAB (instep of the foot) and two 
FSRs attached to heel and toe by a yellow rubber strap.   

Controlled walking situations 

We validated the proposed algorithm under controlled 

walking situations to test the effect of variations in ground 

surface and gait speed. We included 11 healthy volunteers (7 

males and 4 females). The subjects presented an average age of 

28.27±4.17 years old, the height of 1.70 ±0.08 m, and weight of 

69 ±12.02kg. The participants were randomly divided into 

barefoot (6 subjects) and footwear conditions (5 subjects). 

The participants conducted walking experiments on an 

instrumented split-belt treadmill at different speeds (1.5, 2.5, 

3.5, and 4.5 km/h) and slopes (0%, 5%, and 10%). All 

combinations of gait speed and incline were randomly 

performed. We asked the subjects to perform 3 trials of 30 

seconds per condition. Furthermore, the participants were 

instructed to conduct walking trials at variable speeds to 

approximate a real-life environment. In this case, the subjects 

walked for 60 seconds and changed gait speed every 20 seconds 

according to the provided instructions (increasing from 1.5 

km/h to 4.5 km/h and decreasing from 4.5 km/h to 2.5km/h). To 

provide reliable results, the acceleration period was not 

considered in the detection of gait events, except in the trials 

where the speed was variable.  

Real-life walking situations  

The algorithm validation was extended to real-life situations 

to evaluate human locomotion in different conditions. For this 

matter, we included 9 healthy subjects (6 males and 3 females), 

who wore their own sports-shoes. The participants’ mean age is 

27±7.35 years old, and they presented a height of 1.70 ±0.12 m 

and weight of 62.63 ±9.39 kg.  

As the human gait is quite dynamic in the real-world often 

involving varying gait speeds, surfaces and surface inclinations, 

the proposed computational method was validated in 

uncontrolled indoor and outdoor environments. Three gait trials 

were randomly performed in the following scenarios (illustrated 

in Fig. 6): forward level-ground walking on a 20 m flat surface; 

forward level-ground walking on a rough surface (urban 

ground) along 30 m; descending and ascending an inclined 

ground (approximately 10º) and a 10 m rough surface; and 

climbing a staircase of 8 steps with standard dimensions (a 

height of 17 cm, depth of 31 cm, and step width of 110 cm). For 

each condition, the participants were asked to walk at three self-

selected gait speeds: slow, normal, and fast.  

III. RESULTS  

A total of 5657 steps from both feet were analyzed to 

demonstrate the versatility and time-effectiveness of the 

adaptive computational method. We inspected 3522 controlled 

steps, 596 steps on flat surface, 572 steps on rough ground, and 

644 steps on inclined ground, and 323 steps on staircases. This 

section presents the adaptability outcomes and performance 

metrics, such as the algorithm’s precision and timing errors. 

A. Adaptability  

Adaptability is a key feature of the proposed computational 

method. Appendix II shows the gyroscope variability with 

sudden changes in speed, as well as the consequent variations 

in the adaptive thresholds (MAXthr and MINthr) and adaptive 

ranges based on the stride (STRIDE_TIME) defined for each 

gait event (HS_range, FF_range, MMST_range, HO_range, 

TO_range, MMSW_range). The increase in gait speed results in 

higher values of angular velocity with shorter stride duration, 

supporting the need to update the thresholds of MAXthr, MINthr 

and STRIDE_TIME, respectively. By analyzing Appendix II, it 

is possible to conclude that the values of the adaptive thresholds 

(MAXthr and MINthr) increase or decrease when the magnitude 

of the maxima and minima are higher or lower, respectively, 

and the adaptive ranges, which are directly dependent on the 

value of the STRIDE_TIME (blue line in bottom view of 

Appendix II), change in accordance with these values.  

The findings also highlight that the algorithm’s adaptability 

provides a proper detection (orange line in top view of 

Appendix II) even when the foot angular velocity varies with 

changes in speed from 1.5 km/h to 4.5 km/h (controlled 

situation) and from 1±0.2 m/s to 2±0.18 m/s (real-life 

situations). The algorithm’s adaptability can also address 

possible changes in the magnitude of the angular velocity, 

which may result from walking in overground (flat and rough 

ground) or on staircases. 

The STRIDE_TIME calculation also contributes to the real-

time estimation of stride time. STRIDE_TIME values were 

compared to the time between two consecutive HSs (tracked by 

the FSR placed on the heel) to determine the estimation error 

for different walking speeds (controlled situation) and surfaces 

(real-life situation). Table II lists the percentage of 

underestimated values (i.e., when the STRIDE_TIME was lower 

than the real stride time), the percentage of overestimated 

values (i.e., when the STRIDE_TIME was higher than the actual 

stride time), and the duration of these timing errors. The 

percentage values of these errors and the correct determinations 

of stride time sum to 100%. 

Overall, for the controlled situations the proposed approach 

more frequently determines a higher STRIDE_TIME than the 
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actual value of the subjects, since the percentages of 

overestimations are higher than 50% (overestimated error > 

59.1%). A similar finding can be observed with respect to the 

timing error since the overestimation (<34.11±8.86 ms) present 

higher errors than the underestimation (<25.07±11.07 ms). 

When the walking speed is variable, the adaptive 

STRIDE_TIME estimation exhibits similar time errors in terms 

of over and underestimation. These timing errors present a low 

significance considering that the magnitude of the stride time 

ranges from 1200 ms (walking speed 4.5km/h) to 1750 ms 

(walking speed 1.5km/h).  

By analyzing the real-life situations in Table II, the findings 

suggest a higher occurrence of tuned estimations (>27.5%) in 

the controlled situations (>11.86%). This suggests that the 

adaptability point of STRIDE_TIME acted properly in real-life 

walking conditions that included changes in speed and surface. 

However, in terms of timing error, the proposed approach to 

estimate STRIDE_TIME performs similar in controlled and 

real-life situation, excepting stair climbing. In this walking 

condition, STRIDE_TIME was overestimated with a mean error 

of 56.01±15.68 ms, i.e., the estimated value was higher than the 

actual value of 56.01±15.68 ms. Although climbing stairs 

showed higher timing errors of the STRIDE_TIME, the 

magnitude of the error 56.01±15.68 ms was not quite significant 

when compared to the real value of stride time, which ranged 

from 1170 ms to 1350 ms. For changing surfaces, the 

occurrence of overestimations (<44.17%) was also more 

frequent than the occurrence of underestimations (<37.82%).   

TABLE II 

UNDERESTIMATION AND OVERESTIMATION ERRORS OF STRIDE_TIME (% 

OCCURRENCE AND TIMING ERROR). CORRECT ESTIMATIONS NOT REPORTED  

 Walking 

condition 

Underestimation Error Overestimation Error 

 % ms % ms 

C
o

n
tr

o
ll

e
d

 

si
tu

a
ti

o
n

s 

1.5 km/h 24.54 25.07±11.07 62.5 34.11±8.86 

2.5 km/h 27.16 17.8±10.68 59.9 29.91±9.12 

3.5 km/h 24.53 14.64±7.95 58.1 30.15±7.33 

4.5 km/h 27.05 13.57±8.85 59.1 33.16±11.32 

Variable 
speed 

40.94 30.09±6.82 47.2 31.07±9.96 

R
e
a

l-
li

fe
 

si
tu

a
ti

o
n

s 

Level-
ground  

28.33 19.59±12.33 44.17 31.13±15.11 

Inclined 
surfaces 

37.82 22.39±14.45 39.90 23.0±14.83 

Climbing 
stairs 

32.76 34.56±17.41 39.66 56.01±15.68 

B. Performance metrics  

We investigated the accuracy, the percentage of occurrence 

and duration of delays and advances in the controlled (Table 

III) and real-life situations (Tables IV, V and VI) to assess the 

versatility and time-effectiveness of the algorithm. The time-

effectiveness was only inspected for correct detections. Timing 

errors greater than 100 ms (a critical duration for motor 

rehabilitation purposes) were considered as a misdetection. 

Appendix III presents the results of the statistical studies 

conducted to assess the performance of the proposed method.  

We also assessed the operability of a state-of-the-art gait 

event detection algorithm (four-state hidden Markov model 

[19]) using the same dataset in an attempt to conduct a direct 

comparison with an existing method. We selected this detector, 

which relies on the same input data (angular velocity in the 

sagittal plane recorded by a foot-mounted gyroscope on healthy 

subjects) to the ones collected in the present work. Note that 

this comparison will be limited to the gait events determined by 

Mannini’s algorithm [19], which consist of the HS, FF, HO and 

TO events. We also conducted a statistical analysis to 

strengthen this comparative analysis. The results of this analysis 

are presented in Appendix III.  

By analyzing Table III, we verified that the proposed 

computational method is significantly accurate (p=0.0812) for 

the detection of all events at distinct conditions (e.g., speed, 

slope, footwear or barefoot) in the controlled situation 

(accuracy>95.06%). The TO and MMSW events exhibited 

lower accuracy (accuracies of 95.95% and 95.06 %, 

respectively) due to the existence of local maxima and minima, 

respectively. On the other hand, the HS event was properly 

segmented in all the studied gait cycles (accuracy of 100%). 

The high accuracy was consistent across different walking 

speeds and slopes, which suggests that the proposed adaptive 

tool can be applied to human gait analysis in real-life situations. 

The findings of the controlled situations also indicate that HO 

and MMST had a higher occurrence of delayed detections 

(30.80% and 29.35%, respectively), being detected with a mean 

delay of 22.71±21.07 ms and 36.54±13.25 ms, respectively. 

Advanced detections were mainly observed for the HO 

(18.62±9.63 ms) and TO events (14.38±12.83 ms). The 

proposed algorithm showed significantly lower timing errors 

(p=0.9314) and a lower occurrence of misdetection (p=0.9953) 

than did the Mannini’s algorithm. Additionally, this difference 

was more pronounced for the delayed detections namely, for the 

HO event (61.04 ±10.81 ms).  

The findings presented in Tables IV, V and VI indicate that 

the proposed algorithm is significantly more accurate 

(p>0.0526) with level-ground and inclined surfaces than in 

staircases (p<0.05). However, with level-ground surfaces the 

timing errors were significantly different than 0 ms (p<0.05), 

in contrast to incline (p>0.0942) and staircases (p>0.151).  

Considering the proposed computational method, HS was the 

most correctly detected event in the real-life walking situations 

(accuracy>96.98%) and was always correct in level-ground 

walking (accuracy of 100%). On the other hand, MMSW was 

the least properly detected event (accuracy > 90.12%) due to 

the existence of local maxima, which were particularly 

observed in two male subjects. For the remaining gait events, 

the algorithm performed similarly for the level-ground and 

inclined surfaces. Timing errors were more pronounced in the 

detection of MMST and HO events. In some analyzed gait 

cycles, the MMST event was detected earlier (mean 

advances<22.2±067 ms), whereas in other cases this event was 

detected with a mean delay lower than 18.79 ± 3.2 ms. In fact, 

this event was the earlier detected. This timing deviation may 

result from the algorithm’s susceptibility to variations in stride, 

which causing delays and advances when the stride decreases 

or increases, respectively. HO was the most delayed gait event 

(mean delays < 26.39±4.67 ms) due to possible instabilities of 

the signal during stance (not completely constant). The 
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remaining gait events presented lower timing errors, which 

indicates that the algorithm can operate in a timely manner in 

normal real-life situations, such as stairs and inclined surfaces.  

Moreover, the proposed method was more accurate 

(accuracy>96.98%) in the detection of HS, FF, HO and TO 

events performed in the explored real-life situations than was 

Mannini’s algorithm (accuracy>85.47%). Mannini’s method 

also demonstrated higher timing errors than the proposed 

method, which mainly consisted of the delayed detections of 

HS (61.75±2.4 ms) and HO events (67.39±8.92 ms), as well as 

the advanced detections of the HO event (<52.35±4.67 ms). 

Indeed, the proposed algorithm is significantly more accurate 

(p > 0.9925) and time-effective (p >0.9314) in real-life 

situations than Mannini’s method. Note that the timing errors 

disclosed in Tables III, IV, V and VI do not include the 

algorithm latency of 10ms due to the filtering process. 

TABLE III 

ALGORITHMS PERFORMANCE IN CONTROLLED SITUATIONS  

 Proposed computational method  Mannini’s computational method [19] 

 
Accuracy 

(%) 

Delay Advance Accuracy 

(%) 

Delay Advance 

% ms % ms % ms % ms 

HS 100 12.4 6.28±12.03 11.86 10.25±12.03 95.07 19.71 40.29±8.91 79.98 19.77±18.05 

FF 99.37 6.23 4.36±5.06 9.21 9.18±17.79 92.37 9.16 52.76±20.67 90.31 20.84±19.63 

MMST 98.78 20.46 30.53±9.88 7.92 15.31±5.52 - - - - - 

HO 99.27 23.78 19.67±16.9 11.02 13.75±9.59 88.27 81.26 61.04±10.81 16.0 24.72±12.03 

TO 97.57 8.74 5.82±15.95 18.24 11.13±9.59 90.47 77.49 21.22±12.03 21.93 44.87± 8.45 

MMSW 94.71 7.41 4.54±4.28 0.29 1.75±4.45 - - - - - 

TABLE IV 

ALGORITHMS PERFORMANCE IN REAL-LIFE SITUATIONS: LEVEL-GROUND SURFACES 

 Proposed computational method  Mannini’s computational method [19] 

 
Accuracy 

(%) 

Delay Advance Accuracy 

(%) 

Delay Advance 

% ms % ms % ms % ms 

HS 100.00 0.8 1.90±9.1 1.2 4.01±1.9 93.07 25.68 55.23±10.1 74.32 17.80±3.67 

FF 99.24 2.8 2.22±8.56 1.6 1.19±9.46 91.32 34.42 46.05±8.65 63.40 23.15±2.56 

MMST 91.04 23.5 8.63±12.5 16.7 8.43±4.24 - - - - - 

HO 96.18 30.8 26.39±4.7 0 0.00 86.37 68.11 43.69±6.7 31.40 37.52±5.61 

TO 98.64 1.1 4.8±10.56 4.3 3.69±8.95 89.54 71.35 17.34±9.34 28.09 36.80±9.1 

MMSW 90.50 4.5 8.40±2.65 0.3 5.3±0.80 - - - - - 

TABLE V 

ALGORITHMS PERFORMANCE IN REAL-LIFE SITUATIONS: INCLINED SURFACES 

 Proposed computational method  Mannini’s computational method [19] 

 
Accuracy 

(%) 

Delay Advance Accuracy 

(%) 

Delay Advance 

% ms % ms % ms % ms 

HS 99.82 0 0.0±0.0 2.3 0.71±2.45 92.57 1.44 61.75±2.4 98.56 11.50±7.60 

FF 99.82 0 0.0±0.0 2.7 1.43±1.98 91.10 16.85 23.36±3.21 82.79 19.49±4.78 

MMST 91.87 22.7 18.79±3.2 18.67 2.14±0.67 - - - - - 

HO 96.17 28.9 16.43±12.3 1.6 0.71±0.56 85.47 85.89 38.11±6.54 13.80 48.32±4.81 

TO 97.13 0 0.0±0.0 5.3 6.43±5.7 88.94 88.11 14.49±4.0 11.58 30.79±3.58 

MMSW 90.12 3.7 8.63±2.56 0 0.0±0.0 - - - - - 

TABLE VI 

ALGORITHMS PERFORMANCE IN REAL-LIFE SITUATIONS: STAIRS 

 Proposed computational method  Mannini’s computational method [19] 

 
Accuracy 

(%) 

Delay Advance Accuracy 

(%) 

Delay Advance 

% ms % ms % ms % ms 

HS 96.98 0 0.0±0.0 2.56 2.51±1.56 90.46 10.6 44.91±5.2 89.42 18.88±2.45 

FF 96.78 0 0.0±0.0 2.4 1.43±1.98 89.43 9.0 58.88±6.71 91.0 23.59±1.45 

MMST 92.79 27.41 16.79±1.2 12.67 22.2±0.67 - - - - - 

HO 93.98 24.6 23.6±7.3 0 0.0±0.0 81.67 80.0 67.39±8.92 18.57 52.35±4.67 

TO 95.89 0 0.0±0.0 3.3 6.43±5.7 85.47 79.59 24.94±2.60 20.41 45.97±4.60 

MMSW 90.79 2.63 2.63±3.16 0 0.0±0.0 - - - - - 
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IV. DISCUSSION  

A real-time and adaptive computational method for assessing 

human gait events was presented and validated in controlled 

and real-life walking situations using repeated measures of 

healthy gait patterns. The novelty of this adaptive algorithm lies 

in using a single kinematic measure to detect six gait events 

(HS, FF, MMST, HO, TO, and MMSW) in real-life scenarios, 

which include variations in gait speeds and surfaces. The single 

axis of a gyroscope placed on the instep of each foot provides 

sufficient information for the segmentation of human gait 

events at these conditions. This single measurement point 

simplifies the computational load of the gait analysis and 

enables its integration for daily and repeated use.  

The computational method proposed in this paper was 

coupled to a threshold-based structure where an FSM detects 

the events and, in parallel, updates the thresholds used in the 

heuristic decision rules. The heuristic decision rules involve the 

gyroscope information that varies with variations in speed and 

surface. Consequently, the algorithm’s adaptability proved to 

be a key feature for the successful application of the proposed 

gait event detection system in real-life situations, and it enabled 

the algorithm to handle inter-subject and inter-step variability. 

This feature makes this computational method a potential 

benchmark approach for real-time human gait segmentation.   

The proposed gait event detection system endows different 

strategies to reduce latency. The use of a wired connection in 

the wearable sensory system and the processing of only one axis 

of kinematic data in a high-performance central processing unit 

are factors that reduce the latency. Additionally, we applied a 

1st order low-pass filter that is computationally light.  

The proposed algorithm was significantly accurate (accuracy 

equal to 100%, p>0.0526) in most of the investigated walking 

situations (controlled situations, level-ground and inclined 

surfaces). In addition, the proposed method is a time-effective 

tool for real-life situations, as shown by delays that were 

significantly closer to 0 ms (p > 0.0663).  

In comparison with the literature regarding real-time gait 

event detection based on gyroscope signals, the proposed 

computational method was able to conduct a more holistic gait 

segmentation by detecting six gait events instead of only 

detecting HS and TO events (the most commonly detected 

events). Moreover, this work is advantageously when compared 

with similar studies (i.e., using heuristic rules based on foot 

angular velocity) conducted in controlled situations and on 

level-ground surfaces. Bejarano et al. [3] reported delays of 

69.6±15.1 ms and 7.8±25.6 ms for HS and TO, respectively 

whereas the proposed tool has shown to be more time-effective 

(HS: 6.28 ±12.03 ms and TO: 5.82 ±15.95 ms), mainly in HS 

detection. Similarly, delayed detection was reported by 

Gowanda et al. [17] and Lee et al. [18] for HS (100 ms and 19 

ms, respectively) and TO (100 ms and 8 ms, respectively) on 

level-ground walking. 

The performance of the presented algorithm also matches 

that of the current state-of-the-art real-time HS and TO 

detection in real-life situations. To the best knowledge of the 

authors, there has been no study in the literature that was able 

to detect the six gait events assessed in the present study in both 

inclined surfaces and staircases. Catalfamo et al. [6] reported 

that their heuristic rules were able to segment the HS and TO 

events (accuracy of 98%) on inclined surfaces (indoor and 

outdoor environments) with a delay of 25 ms and an advance of 

75 ms. Our adaptive method was shown to be more time-

effective (timing errors less than 6.43±5.7 ms), and similarly 

accurate (accuracy of 99.82% and 97.13% for HS and TO, 

respectively). The algorithm’s adaptability also contributed to 

positive findings for gait cycles performed on staircases. Our 

approach produced favorable performance in terms of accuracy 

(HS=96.98%>95.5%; TO=95.89%>93.1%) and time-

effectiveness (HS=0.0±0.0 ms <11±18ms; TO=6.43±5.7 ms < 

35±20 ms) as compared to study [16].  

Furthermore, through a direct comparison with the Hidden 

Markov Models proposed by Mannini et al. [19] using the same 

dataset, we verified that the proposed approach performs 

advantageously in the detection of HS (delays of 61.75>6.28 

ms; advances of 19.77>10.25ms), FF (delays of 58.88>4.36 ms; 

advances of 23.59>9.18 ms), HO (delays of 67.39 > 26.39 ms; 

advances of 52.35>11.02 ms), and TO (delays of 24.94>5.82 

ms; advances of 28.09>18.24 ms). For controlled and real-life 

situations, the proposed adaptive rule-based method was 

significantly time-effective (p>0.9314) and more accurate 

(accuracy=96.98%>85.47%, p>0.9925) than the machine 

learning algorithm proposed by Mannini et al. [19]. This 

benchmark analysis highlights the benefits of the proposed 

computational method for the gait event detection field. 

Moreover, the algorithm was shown to be robust in barefoot 

and footwear conditions, even when different types (size, shape, 

and height of sole) of shoes were worn. This finding highlights 

the versatility of the proposed tool for different user’s foot 

conditions in opposition to the force-based sensors, whose 

performance relies on foot size and shape.  

The proposed method was also able to determine the stride 

time in real-time, a temporal gait parameter commonly 

observed in human gait diagnosis. For both controlled and real-

life situations, the stride time was more overestimated (62.5% 

of occurrences) than underestimated (40.94% of occurrences). 

However, this effect was observed less under changes in surface 

and speed, highlighting the suitability of the proposed 

computational method for real-life situations. Moreover, the 

exhibited timing errors were lower when compared to the actual 

value of the stride time. Overall, the findings indicate that the 

computational method can properly update the stride time.   

The lower computational load, together with the significantly 

improved performance of the adaptive computational method, 

increases the potential application of the proposed method as a 

quantitative and computational benchmark for assessing human 

gait. It is also shown to be suitable for providing human gait 

information in real-time by outputting lower timing errors, 

which are smaller than the reaction times of healthy voluntary 

muscle activities (128 ± 3 ms) [32]. As the delay presented by 

the developed tool is considerably lower than the response time 

of human physiological structures, the integration of this 

algorithm in real-time control of human gait is also feasible.  

Nonetheless, improvements can be performed to mitigate the 

different factors that could lead to timing deviations and 
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misdetections. For instance, the detection of local extrema 

should be more tuned to minimize the occurrence of 

misdetections or timing errors in the MMSW and TO events to 

address the occurrence of local maxima and minima, 

respectively, close to the global extrema. For MMST, the 

detection method must be more robust to the variations of the 

stride time to avoid timing errors when this gait metric 

decreases or increases. Finally, note that the validation 

presented in this work only considered straight-line walking.  

V. CONCLUSION 

The proposed gait event detection system was shown to be 

an accurate, time-effective, low-cost, wearable, low-

computation strategy for real-time gait analysis, which can be 

used either in gait assessment or rehabilitation tasks. The 

adaptability introduced in this tool provides more accurate gait 

analysis in different walking conditions and enables more 

robust accommodation of sporadic perturbations. These 

aspects, combined with the reduced computational load and 

simple usage, makes this detection system suitable as a 

quantitative benchmark of human locomotion.   

Future work is aimed at enhancing the threshold-based 

algorithm to reduce the effects of local extrema and to apply 

this detection system in the control of a lower-limb orthosis. 

Challenges also include the validation of this algorithm with 

neurological subjects in non-assisted and assisted gait 

conditions. In the latter case, predictive techniques can also be 

explored to tune the assistance delivered by robotic devices 

with the user’s gait pattern.  
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APPENDIX I 

 
Foot angular velocity along sensor’s z-axis (moves relatively to the sagittal plane) measured at different ground facets: level-

ground, inclined surface (10º), and staircase. 

APPENDIX II 

 
 

Human gait detection in one subject (top view), walking at distinct speeds, with representation of adaptive thresholds (middle 

view) and adaptive ranges (bottom view) changing during the trial.  
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APPENDIX III 

 

Walking Situation 
Statistical performance of proposed method Proposed method vs Mannini’s method 

Accuracy Delay Advance  Accuracy Delay Advance  

Controlled situations p = 0.0812 p < 0.05 p < 0.05 p = 0.9953 p = 0.9314 p = 0.9758 

Level-ground p = 0.0639 p = 0.0663 p < 0.05 p = 0.9979 p = 0.9889 p = 0.9945 

Inclined p = 0.0526 p = 0.0942 p = 0.1023 p = 0.9976 p = 0.9732 p = 0.9480 

Stairs  p < 0.05 p = 0.151 p = 0.1807 p = 0.9925 p = 0.9946 p = 0.9866 

 

Results of two statistical analyses conducted with a significance level of 5%. In the first analysis, we statistically investigate the 

performance of the proposed method by testing its accuracy and time-effectiveness relatively to the desired performance, i.e., 100% 

and zero ms, respectively. In the second analysis, we performed a statistical study to increase the strength of the comparative 

analysis between the proposed computational method and the Mannini’s method. For this purpose, we conducted two statistical 

tests with the following hypothesis; first, the accuracy of the proposed algorithm is greater than the one reached by the Mannini’s 

method; second, the delay and advance times of the proposed algorithm are lower than the one reached by the Mannini’s method.  

  


