1,542 research outputs found

    Analysis of a Reputation System for Mobile Ad-Hoc Networks with Liars

    Get PDF
    The application of decentralized reputation systems is a promising approach to ensure cooperation and fairness, as well as to address random failures and malicious attacks in Mobile Ad-Hoc Networks. However, they are potentially vulnerable to liars. With our work, we provide a first step to analyzing robustness of a reputation system based on a deviation test. Using a mean-field approach to our stochastic process model, we show that liars have no impact unless their number exceeds a certain threshold (phase transition). We give precise formulae for the critical values and thus provide guidelines for an optimal choice of parameters.Comment: 17 pages, 6 figure

    RTDSR protocol for channel attacks prevention in mobile ad hoc ambient intelligence home networks

    Get PDF
    In ambient intelligence home networks, attacks can be on the home devices or the communication channel. This paper focuses on the channel attacks prevention by proposing Real Time Dynamic Source Routing (RTDSR) protocol. The protocol adopted the observation based cooperation enforcement in ad hoc networks (oceans) and collaborative reputation mechanism built on Dynamic Source Routing (DSR) protocol. The RTDSR introduced lookup table on the source, destination and intermediate nodes. It also ensures that data path with high reputation are used for data routing and a monitoring watchdog was introduced to ensure that the next node forward the packet properly. The RTDSR protocol was simulated and benchmarked with DSR protocol considering network throughput, average delay, routing overhead and response time as performance metrics. Simulation result revealed a better performance of RTDSR protocol over existing DSR protocol.Keywords: RTDSR, Ambient, Home network, Channel attacks, Protocol, Packet, OPNE

    T-VNets: a novel Trust architecture for Vehicular Networks using the standardized messaging services of ETSI ITS

    Full text link
    In this paper we propose a novel trust establishment architecture fully compliant with the ETSI ITS standard which takes advantage of the periodically exchanged beacons (i.e. CAM) and event triggered messages (i.e. DENM). Our solution, called T-VNets, allows estimating the traffic density, the trust among entities, as well as the dishonest nodes distribution within the network. In addition, by combining different trust metrics such as direct, indirect, event-based and RSU-based trust, T-VNets is able to eliminate dishonest nodes from all network operations while selecting the best paths to deliver legal data messages by taking advantage of the link duration concept. Since our solution is able to adapt to environments with or without roadside units (RSUs), it can perform adequately both in urban and highway scenarios. Simulation results evidence that our proposal is more efficient than other existing solutions, being able to sustain performance levels even in worst-case scenarios. © 2016 Published by Elsevier B.VThis work was partially supported by both the Ministerio de Economia y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, and the Ministere de l'enseignement superieur et de la recherche scientifique, Programme National Exceptionnel P.N.E 2015/2016, Algeria.Kerrache, CA.; Lagraa, N.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2016). T-VNets: a novel Trust architecture for Vehicular Networks using the standardized messaging services of ETSI ITS. Computer Communications. 93:68-83. https://doi.org/10.1016/j.comcom.2016.05.013S68839

    Intelligent spectrum management techniques for wireless cognitive radio networks

    Get PDF
    PhD ThesisThis thesis addresses many of the unique spectrum management chal- lenges in CR networks for the rst time. These challenges have a vital e ect on the network performance and are particularly di cult to solve due to the unique characteristics of CR networks. Speci cally, this thesis proposes and investigates three intelligent spectrum management tech- niques for CR networks. The issues investigated in this thesis have a fundamental impact on the establishment, functionality and security of CR networks. First, an intelligent primary receiver-aware message exchange protocol for CR ad hoc networks is proposed. It considers the problem of alleviat- ing the interference collision risk to primary user communication, explic- itly to protect primary receivers that are not detected during spectrum sensing. The proposed protocol achieves a higher measure of safeguard- ing. A practical scenario is considered where no global network topology is known and no common control channel is assumed to exist. Second, a novel CR broadcast protocol (CRBP) to reliably disseminate the broadcast messages to all or most of the possible CR nodes in the network is proposed. The CRBP formulates the broadcast problem as a bipartite-graph problem. Thus, CRBP achieves a signi cant successful delivery ratio by connecting di erent local topologies, which is a unique feature in CR ad hoc networks. Finally, a new defence strategy to defend against spectrum sensing data falsi cation attacks in CR networks is proposed. In order to identify malicious users, the proposed scheme performs multiple veri cations of sensory data with the assistance of trusted nodes.Higher Committee For Education Devel- opment in Iraq (HCED-Iraq

    IoT trust and reputation: a survey and taxonomy

    Full text link
    IoT is one of the fastest-growing technologies and it is estimated that more than a billion devices would be utilized across the globe by the end of 2030. To maximize the capability of these connected entities, trust and reputation among IoT entities is essential. Several trust management models have been proposed in the IoT environment; however, these schemes have not fully addressed the IoT devices features, such as devices role, device type and its dynamic behavior in a smart environment. As a result, traditional trust and reputation models are insufficient to tackle these characteristics and uncertainty risks while connecting nodes to the network. Whilst continuous study has been carried out and various articles suggest promising solutions in constrained environments, research on trust and reputation is still at its infancy. In this paper, we carry out a comprehensive literature review on state-of-the-art research on the trust and reputation of IoT devices and systems. Specifically, we first propose a new structure, namely a new taxonomy, to organize the trust and reputation models based on the ways trust is managed. The proposed taxonomy comprises of traditional trust management-based systems and artificial intelligence-based systems, and combine both the classes which encourage the existing schemes to adapt these emerging concepts. This collaboration between the conventional mathematical and the advanced ML models result in design schemes that are more robust and efficient. Then we drill down to compare and analyse the methods and applications of these systems based on community-accepted performance metrics, e.g. scalability, delay, cooperativeness and efficiency. Finally, built upon the findings of the analysis, we identify and discuss open research issues and challenges, and further speculate and point out future research directions.Comment: 20 pages, 5 Figures, 3 tables, Journal of cloud computin

    IoT trust and reputation: a survey and taxonomy

    Get PDF
    IoT is one of the fastest-growing technologies and it is estimated that more than a billion devices would be utilized across the globe by the end of 2030. To maximize the capability of these connected entities, trust and reputation among IoT entities is essential. Several trust management models have been proposed in the IoT environment; however, these schemes have not fully addressed the IoT devices features, such as devices role, device type and its dynamic behavior in a smart environment. As a result, traditional trust and reputation models are insufficient to tackle these characteristics and uncertainty risks while connecting nodes to the network. Whilst continuous study has been carried out and various articles suggest promising solutions in constrained environments, research on trust and reputation is still at its infancy. In this paper, we carry out a comprehensive literature review on state-of-the-art research on the trust and reputation of IoT devices and systems. Specifically, we first propose a new structure, namely a new taxonomy, to organize the trust and reputation models based on the ways trust is managed. The proposed taxonomy comprises of traditional trust management-based systems and artificial intelligence-based systems, and combine both the classes which encourage the existing schemes to adapt these emerging concepts. This collaboration between the conventional mathematical and the advanced ML models result in design schemes that are more robust and efficient. Then we drill down to compare and analyse the methods and applications of these systems based on community-accepted performance metrics, e.g. scalability, delay, cooperativeness and efficiency. Finally, built upon the findings of the analysis, we identify and discuss open research issues and challenges, and further speculate and point out future research directions.Comment: 20 pages, 5 Figures, 3 tables, Journal of cloud computin

    Potential mass surveillance and privacy violations in proximity-based social applications

    Get PDF
    Proximity-based social applications let users interact with people that are currently close to them, by revealing some information about their preferences and whereabouts. This information is acquired through passive geo-localisation and used to build a sense of serendipitous discovery of people, places and interests. Unfortunately, while this class of applications opens different interactions possibilities for people in urban settings, obtaining access to certain identity information could lead a possible privacy attacker to identify and follow a user in their movements in a specific period of time. The same information shared through the platform could also help an attacker to link the victim's online profiles to physical identities. We analyse a set of popular dating application that shares users relative distances within a certain radius and show how, by using the information shared on these platforms, it is possible to formalise a multilateration attack, able to identify the user actual position. The same attack can also be used to follow a user in all their movements within a certain period of time, therefore identifying their habits and Points of Interest across the city. Furthermore we introduce a social attack which uses common Facebook likes to profile a person and finally identify their real identity

    A secure communication framework for wireless sensor networks

    Get PDF
    Today, wireless sensor networks (WSNs) are no longer a nascent technology and future networks, especially Cyber-Physical Systems (CPS) will integrate more sensor-based systems into a variety of application scenarios. Typical application areas include medical, environmental, military, and commercial enterprises. Providing security to this diverse set of sensor-based applications is necessary for the healthy operations of the overall system because untrusted entities may target the proper functioning of applications and disturb the critical decision-making processes by injecting false information into the network. One way to address this issue is to employ en-route-filtering-based solutions utilizing keys generated by either static or dynamic key management schemes in the WSN literature. However, current schemes are complicated for resource-constrained sensors as they utilize many keys and more importantly as they transmit many keying messages in the network, which increases the energy consumption of WSNs that are already severely limited in the technical capabilities and resources (i.e., power, computational capacities, and memory) available to them. Nonetheless, further improvements without too much overhead are still possible by sharing a dynamically created cryptic credential. Building upon this idea, the purpose of this thesis is to introduce an efficient and secure communication framework for WSNs. Specifically, three protocols are suggested as contributions using virtual energies and local times onboard the sensors as dynamic cryptic credentials: (1) Virtual Energy-Based Encryption and Keying (VEBEK); (2) TIme-Based DynamiC Keying and En-Route Filtering (TICK); (3) Secure Source-Based Loose Time Synchronization (SOBAS) for WSNs.Ph.D.Committee Chair: Copeland, John; Committee Co-Chair: Beyah, Raheem; Committee Member: Li, Geoffrey; Committee Member: Owen, Henry; Committee Member: Zegura, Ellen; Committee Member: Zhang, Fumi
    • …
    corecore