436 research outputs found

    A Breakdown Voltage Multiplier for High Voltage Swing Drivers

    Get PDF
    A novel breakdown voltage (BV) multiplier is introduced that makes it possible to generate high output voltage swings using transistors with low breakdown voltages. The timing analysis of the stage is used to optimize its dynamic response. A 10 Gb/s optical modulator driver with a differential output voltage swing of 8 V on a 50 Ω load was implemented in a SiGe BiCMOS process. It uses the BV-Doubler topology to achieve output swings twice the collector–emitter breakdown voltage without stressing any single transistor

    Wideband integrated circuits for optical communication systems

    Get PDF
    The exponential growth of internet traffic drives datacenters to constantly improvetheir capacity. Several research and industrial organizations are aiming towardsTbps Ethernet and beyond, which brings new challenges to the field of high-speedbroadband electronic circuit design. With datacenters rapidly becoming significantenergy consumers on the global scale, the energy efficiency of the optical interconnecttransceivers takes a primary role in the development of novel systems. Furthermore,wideband optical links are finding application inside very high throughput satellite(V/HTS) payloads used in the ever-expanding cloud of telecommunication satellites,enabled by the maturity of the existing fiber based optical links and the hightechnology readiness level of radiation hardened integrated circuit processes. Thereare several additional challenges unique in the design of a wideband optical system.The overall system noise must be optimized for the specific application, modulationscheme, PD and laser characteristics. Most state-of-the-art wideband circuits are builton high-end semiconductor SiGe and InP technologies. However, each technologydemands specific design decisions to be made in order to get low noise, high energyefficiency and adequate bandwidth. In order to overcome the frequency limitationsof the optoelectronic components, bandwidth enhancement and channel equalizationtechniques are used. In this work various blocks of optical communication systems aredesigned attempting to tackle some of the aforementioned challenges. Two TIA front-end topologies with 133 GHz bandwidth, a CB and a CE with shunt-shunt feedback,are designed and measured, utilizing a state-of-the-art 130 nm InP DHBT technology.A modular equalizer block built in 130 nm SiGe HBT technology is presented. Threeultra-wideband traveling wave amplifiers, a 4-cell, a single cell and a matrix single-stage, are designed in a 250 nm InP DHBT process to test the limits of distributedamplification. A differential VCSEL driver circuit is designed and integrated in a4x 28 Gbps transceiver system for intra-satellite optical communications based in arad-hard 130nm SiGe process

    Broadband distributed drivers for 3D photonic-electronic wafer-scale packaging

    Get PDF

    Broadband distributed drivers for 3D photonic-electronic wafer-scale packaging

    Get PDF

    Distributed Circuit Analysis and Design for Ultra-wideband Communication and sub-mm Wave Applications

    Get PDF
    This thesis explores research into new distributed circuit design techniques and topologies, developed to extend the bandwidth of amplifiers operating in the mm and sub-mm wave regimes, and in optical and visible light communication systems. Theoretical, mathematical modelling and simulation-based studies are presented, with detailed designs of new circuits based on distributed amplifier (DA) principles, and constructed using a double heterojunction bipolar transistor (DHBT) indium phosphide (InP) process with fT =fmax of 350/600 GHz. A single stage DA (SSDA) with bandwidth of 345 GHz and 8 dB gain, based on novel techniques developed in this work, shows 140% bandwidth improvement over the conventional DA design. Furthermore, the matrix-single stage DA (M-SSDA) is proposed for higher gain than both the conventional DA and matrix amplifier. A two-tier M-SSDA with 14 dB gain at 300 GHz bandwidth, and a three-tier M-SSDA with a gain of 20 dB at 324 GHz bandwidth, based on a cascode gain cell and optimized for bandwidth and gain flatness, are presented based on full foundry simulation tests. Analytical and simulation-based studies of the noise performance peculiarities of the SSDA and its multiplicative derivatives are also presented. The newly proposed circuits are fabricated as monolithic microwave integrated circuits (MMICs), with measurements showing 7.1 dB gain and 200 GHz bandwidth for the SSDA and 12 dB gain at 170 GHz bandwidth for the three-tier M-SSDA. Details of layout, fabrication and testing; and discussion of performance limiting factors and layout optimization considerations are presented. Drawing on the concept of artificial transmission line synthesis in distributed amplification, a new technique to achieve up to three-fold improvement in the modulation bandwidth of light emitting diodes (LEDs) for visible light communication (VLC) is introduced. The thesis also describes the design and application of analogue pre-emphasis to improve signal-to-noise ratio in bandwidth limited optical transceivers

    Design of Power/Analog/Digital Systems Through Mixed-Level Simulations

    Get PDF
    In recent years the development of the applications in the field of telecommunications, data processing, control, renewable energy generation, consumer and automotive electronics determined the need for increasingly complex systems, also in shorter time to meet the growing market demand. The increasing complexity is mainly due to the mixed nature of these systems that must be developed to accommodate the new functionalities and to satisfy the more stringent performance requirements of the emerging applications. This means a more complex design and verification process. The key to managing the increased design complexity is a structured and integrated design methodology which allows the sharing of different circuit implementations that can be at transistor level and/or at a higher level (i.e.HDL languages).In order to expedite the mixed systems design process it is necessary to provide: an integrated design methodology; a suitable supporting tool able to manage the entire design process and design complexity and its successive verification.It is essential that the different system blocks (power, analog, digital), described at different level of abstraction, can be co-simulated in the same design context. This capability is referred to as mixed-level simulation.One of the objectives of this research is to design a mixed system application referred to the control of a coupled step-up dc-dc converter. This latter consists of a power stage designed at transistor-level, also including accurate power device models, and the analog controller implemented using VerilogA modules. Digital controllers are becoming very attractive in dc-dc converters for their programmability, ability to implement sophisticated control schemes, and ease of integration with other digital systems. Thus, in this dissertation it will be presented a detailed design of a Flash Analog-to-Digital Converter (ADC). The designed ADC provides medium-high resolution associated to high-speed performance. This makes it useful not only for the control application aforementioned but also for applications with huge requirements in terms of speed and signal bandwidth. The entire design flow of the overall system has been conducted in the Cadence Design Environment that also provides the ability to mixed-level simulations. Furthermore, the technology process used for the ADC design is the IHP BiCMOS 0.25 µm by using 50 GHz NPN HBT devices

    Electronic Photonic Integrated Circuits and Control Systems

    Get PDF
    Photonic systems can operate at frequencies several orders of magnitude higher than electronics, whereas electronics offers extremely high density and easily built memories. Integrated photonic-electronic systems promise to combine advantage of both, leading to advantages in accuracy, reconfigurability and energy efficiency. This work concerns of hybrid and monolithic electronic-photonic system design. First, a high resolution voltage supply to control the thermooptic photonic chip for time-bin entanglement is described, in which the electronics system controller can be scaled with more number of power channels and the ability to daisy-chain the devices. Second, a system identification technique embedded with feedback control for wavelength stabilization and control model in silicon nitride photonic integrated circuits is proposed. Using the system, the wavelength in thermooptic device can be stabilized in dynamic environment. Third, the generation of more deterministic photon sources with temporal multiplexing established using field programmable gate arrays (FPGAs) as controller photonic device is demonstrated for the first time. The result shows an enhancement to the single photon output probability without introducing additional multi-photon noise. Fourth, multiple-input and multiple-output (MIMO) control of a silicon nitride thermooptic photonic circuits incorporating Mach Zehnder interferometers (MZIs) is demonstrated for the first time using a dual proportional integral reference tracking technique. The system exhibits improved performance in term of control accuracy by reducing wavelength peak drift due to internal and external disturbances. Finally, a monolithically integrated complementary metal oxide semiconductor (CMOS) nanophotonic segmented transmitter is characterized. With segmented design, the monolithic Mach Zehnder modulator (MZM) shows a low link sensitivity and low insertion loss with driver flexibility

    Contribution to the design of continuous -time Sigma - Delta Modulators based on time delay elements

    Get PDF
    The research carried out in this thesis is focused in the development of a new class of data converters for digital radio. There are two main architectures for communication receivers which perform a digital demodulation. One of them is based on analog demodulation to the base band and digitization of the I/Q components. Another option is to digitize the band pass signal at the output of the IF stage using a bandpass Sigma-Delta modulator. Bandpass Sigma- Delta modulators can be implemented with discrete-time circuits, using switched capacitors or continuous-time circuits. The main innovation introduced in this work is the use of passive transmission lines in the loop filter of a bandpass continuous-time Sigma-Delta modulator instead of the conventional solution with gm-C or LC resonators. As long as transmission lines are used as replacement of a LC resonator in RF technology, it seems compelling that transmission lines could improve bandpass continuous-time Sigma-Delta modulators. The analysis of a Sigma- Delta modulator using distributed resonators has led to a completely new family of Sigma- Delta modulators which possess properties inherited both from continuous-time and discretetime Sigma-Delta modulators. In this thesis we present the basic theory and the practical design trade-offs of this new family of Sigma-Delta modulators. Three demonstration chips have been implemented to validate the theoretical developments. The first two are a proof of concept of the application of transmission lines to build lowpass and bandpass modulators. The third chip summarizes all the contributions of the thesis. It consists of a transmission line Sigma-Delta modulator which combines subsampling techniques, a mismatch insensitive circuitry and a quadrature architecture to implement the IF to digital stage of a receiver

    Co-design of the high-speed photonic and electronic integrated circuits

    Get PDF
    corecore