141,160 research outputs found

    Invited Talk: Towards a Principled Multi-Language Infrastructure

    Get PDF
    AbstractSun's Java architecture introduced a safe virtual machine (VM) in which an ensemble of software components developed independently could smoothly interoperate. The goal of Microsoft's Common Language Runtime (CLR) is to generalize this approach and allow components in many source languages to interoperate safely. CLR supports flexible interoperation by compiling various source languages into a common intermediate language and by using a unified type system. However, the type system in CLR (and Java VM) enforces only conventional type safety in an object-oriented system. Therefore, higher-level specifications (e.g., resource bounds, generalized access control, formal software protocols) cannot be enforced. Because conventional type systems are too inflexible for real applications, developers often bypass the type system, producing code that steps outside the managed part of the VM; such components cannot be verified.At Yale we have been developing typed common intermediate languages (named FLINT) that can support safely not only the standard object-oriented model, but also higher-order generic (polymorphic) programming and Java-style reflection (introspection). Unlike CLR, our type system is independent of any particular programming model, yet it is capable of expressing all valid propositions and proofs in higher-order predicate logic (so it can be used to capture and verify advanced program properties). The rich type system of FLINT makes it possible to typecheck both compiler intermediate code and low level machine code; this allows typechecking to take place at any phase of compilation, even after optimizations and register allocation. It also leads to a smaller and more extensible VM because low-level native routines that would otherwise be in VM can now be verified and moved into a certified library. This talk describes our vision of the FLINT system, outline our approach to its design, and survey the technologies that can be brought to support its implementation

    An Object-Oriented Model for Extensible Concurrent Systems: the Composition-Filters Approach

    Get PDF
    Applying the object-oriented paradigm for the development of large and complex software systems offers several advantages, of which increased extensibility and reusability are the most prominent ones. The object-oriented model is also quite suitable for modeling concurrent systems. However, it appears that extensibility and reusability of concurrent applications is far from trivial. The problems that arise, the so-called inheritance anomalies are analyzed and presented in this paper. A set of requirements for extensible concurrent languages is formulated. As a solution to the identified problems, an extension to the object-oriented model is presented; composition filters. Composition filters capture messages and can express certain constraints and operations on these messages, for example buffering. In this paper we explain the composition filters approach, demonstrate its expressive power through a number of examples and show that composition filters do not suffer from the inheritance anomalies and fulfill the requirements that were established

    Open Programming Language Interpreters

    Get PDF
    Context: This paper presents the concept of open programming language interpreters and the implementation of a framework-level metaobject protocol (MOP) to support them. Inquiry: We address the problem of dynamic interpreter adaptation to tailor the interpreter's behavior on the task to be solved and to introduce new features to fulfill unforeseen requirements. Many languages provide a MOP that to some degree supports reflection. However, MOPs are typically language-specific, their reflective functionality is often restricted, and the adaptation and application logic are often mixed which hardens the understanding and maintenance of the source code. Our system overcomes these limitations. Approach: We designed and implemented a system to support open programming language interpreters. The prototype implementation is integrated in the Neverlang framework. The system exposes the structure, behavior and the runtime state of any Neverlang-based interpreter with the ability to modify it. Knowledge: Our system provides a complete control over interpreter's structure, behavior and its runtime state. The approach is applicable to every Neverlang-based interpreter. Adaptation code can potentially be reused across different language implementations. Grounding: Having a prototype implementation we focused on feasibility evaluation. The paper shows that our approach well addresses problems commonly found in the research literature. We have a demonstrative video and examples that illustrate our approach on dynamic software adaptation, aspect-oriented programming, debugging and context-aware interpreters. Importance: To our knowledge, our paper presents the first reflective approach targeting a general framework for language development. Our system provides full reflective support for free to any Neverlang-based interpreter. We are not aware of any prior application of open implementations to programming language interpreters in the sense defined in this paper. Rather than substituting other approaches, we believe our system can be used as a complementary technique in situations where other approaches present serious limitations

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Implementing fault tolerant applications using reflective object-oriented programming

    Get PDF
    Abstract: Shows how reflection and object-oriented programming can be used to ease the implementation of classical fault tolerance mechanisms in distributed applications. When the underlying runtime system does not provide fault tolerance transparently, classical approaches to implementing fault tolerance mechanisms often imply mixing functional programming with non-functional programming (e.g. error processing mechanisms). The use of reflection improves the transparency of fault tolerance mechanisms to the programmer and more generally provides a clearer separation between functional and non-functional programming. The implementations of some classical replication techniques using a reflective approach are presented in detail and illustrated by several examples, which have been prototyped on a network of Unix workstations. Lessons learnt from our experiments are drawn and future work is discussed
    • 

    corecore