
Implementing Fault Tolerant Applications using
Reflective Object-Oriented Programming

Jean-Charles Fabre, Vincent Nicomette, Tanguy P6rennou Robert J. Stroud, Zhixue Wu

LAAS-CNRS
7, Avenue du Colonel Roche

3 1077 Toulouse cedex, France

Abstract
This paper shows how refection and object-oriented

programming can be used to ease the implementation of
classical fault tolerance mechanisms in distributed
applications. When the underlying runtime system does not
provide fault tolerance transparently, classical approaches to
implementing fault tolerance mechanisms ofren imply
mixing functional programming with non-functional
programming (e.g. error processing mechanisms). The use
of reflection improves the transparency of fault tolerance
mechanisms to the programmer and more generally provides
a clearer separation between functional and non-functional
programming. The implementations of some classical
replication techniques using a reflective approach are
presented in detail and illustrated by several examples,
which have been prototyped on a network of Unix
workstations. Lessons learnt from our experiments are
drawn and future work is discussed.

1 Introduction

The implementation of fault tolerant distributed
applications largely depends on the computing environment
which is available. The ideal case is when the underlying
operating system provides fully transparent error processing
protocols such as in Delta-4 117, 191. However, when the
operating system does not provide such facilities, the
application programmer is forced to integrate in the
functional part of the application statements to initialise or
invoke appropriate non-functional mechanisms for error-
processing. This can be done using library calls to pre-
defined mechanisms embedded in a specific environment
such as in Isis [6]. Another approach, used by systems like
Avalon/C++ [lo] and Arjuna [22], consists of using
properties of object-oriented languages, such as inheritance,
to make objects recoverable. However, even if the object
model seems appropriate for introducing fault tolerance into
applications, there are significant problems with such an
approach for implementing various replication techniques in
distributed applications, and we show that the use of
reflection is a more promising approach. Reflection [141
enables functional programming to be separated

Department of Computing Science
University of Newcastle upon Tyne

Newcastle upon Tyne, NE1 7RU, UK

transparently from non-functional programming, i.e., in the
present paper, programming of fault tolerance mechanisms.
Reflection allows programmers to observe and manipulate
the computational behaviour of a program. In particular, in
object-oriented languages, this property enables some
operations such as object creation, attribute access and
method invocations to be intercepted at a meta-level and
this ability will be used for implementing fault tolerance
mechanisms. The idea of using a meta-level to hide the
implementation of non-functional requirements such as
dependability and distribution transparency from the
application programmer is not new. For example, various
authors have proposed using the CLOS meta-object
protocol to add attributes such as persistence and
concurrency control to application objects [3,161, 1251 has
argued that reflection is an appropriate way to address
distribution transparency and [11 has described the
implementation of dependability protocols using reflection
in an actor-based language. Dependability can thus be
provided transparently from the programmer's point of view
and dependability-related facilities can be reused in multiple
applications.

The contributions of this paper are two-fold: (a) to
provide a comparison of different approaches to
implementing fault-tolerance with respect to the degree of
transparency for the application programmer, and (b) to
provide detailed case studies showing how meta-level
programming can be used to implement various replication
strategies transparently in the reflective object-oriented
language Open-C++. The latter is illustrated by presenting
the implementation of the following three replication
techniques used in our examples: passive replication, semi-
active replication and active replication with majority
voting. Section 2 discusses various ways of using fault
tolerance mechanisms in the development and
implementation of distributed applications. Programming
style is underlined in each case. Section 3 provides a brief
overview of reflection in object-oriented languages and
introduces the reflective capabilities of Open-C++, the
language that was used in our experiments. Section4
briefly presents the distributed processing model used and
details the reflective implementation of the three replication

489
0731-3071/95 $4.00 Q 1995 IEEE

techniques that are under investigation. Section 5 mainly
describes implementation issues of meta-objects for further
development.

2 Approaches to programming fault
tolerance

The aim of this section is to describe several
approaches and programming styles that have been used in
practice to add redundancy to applications for fault tolerance.
These approaches will be considered for programming fault
tolerance in distributed applications. A distributed
application will be seen here as a collection of distributed
software components (objects, processes) communicating
by messages. Various error processing techniques may be
used either when the runtime units (corresponding to design
objects) are created or at an early stage during the design of
the application in terms of objects. They can be based either
on software component replication or on other approaches
such as checkpointing to stable storage.

Three approaches can be followed for implementing
error processing: (i) in the underlying runtime systems
through built-in error processing facilities, for instance to
replicate software components, (ii) in the programming
environment through predefined software constructions and
libraries, and (iii) in the application design environment
through properties of the programming language. These
three approaches are discussed and will be used as a basis for
comparing various programming styles and implementation
approaches. We will also underline the limits of the role of
the application programmer in each case.

2.1 System-based fault tolerance

In this approach, the underlying runtime system may
offer a set of transparent error processing protocols, for
instance based on replication as in Delta-4 1171. Delta-4
provides several replication strategies: passive, semi-active
and active replication. They rely on detection mechanisms
and voting protocols implemented by the underlying
multicast communication system. The error processing
protocol is selected at configuration time according to the
failure mode assumptions that can be made about the
available nodes of the distributed computing architecture and
the coverage of these assumptions [18].

Passive replication can be supported by the system, in
particular for the management of replicas, but often
involves the programmer in defining checkpoints 151.
Nevertheless, it has been shown, in particular in Delta-4,
that checkpointing can be automatically issued by the
underlying runtime system [24]. This approach enables
non-deterministic behaviour of the software component.

Semi-active replication enables several replicas to process
input messages concurrently. Input messages are delivered
by the underlying multicast communication system, thus
providing input consistency. In this model, non-
deterministic behaviour is possible but may require the
programmer to define synchronisation checkpoints to
enforce consistency of replicated processing. In some
circumstances, synchronisation can be solved by the
communication system [4]. Finally, when deterministic
behaviour can be ensured, several active replication
techniques can be defined which are transparent to the
application programmer. In Delta-4, several inter-replica
protocols (IRp) are available as part of the underlying
multicast communication system [8]. When the
deterministic assumption is valid, then the same component
can be used with either a semi-active or any active
replication technique without any change in the source code.
The advantage of this approach is that it provides
transparency in most cases for the application programmer;
the main drawback is that it needs a specific runtime system
and support environment.

2.2 Libraries of fault tolerance mechanisms

This approach is based on the use of predefined library
functions and basic primitives (i.e. a tool-kit). A good
example of this approach is Isis [6,7]. The prime objective
of this environment was not initially the implementation of
fault tolerant applications, but rather the development of
distributed applications based on the notion of process
groups. With respect to fault tolerance issues, the
underlying assumption is that nodes are fail-silent.

In Isis, a specific software construct called a
coordinator-cohort can be used to implement fault tolerant
applications, in particular based on passive replication. This
generic software construct enables the computation to be
organised using groups of processes (tasks) according to
various objectives: parallel computations, partitioned
computations, replicated computation for fault tolerance. In
the implementation of passive replication, the updated
states of the primary copy (coordinator) must be sent to the
standby copies (cohorts). When the coordinator fails a new
coordinator is elected and loaded with the current state of the
computation [12]. A new member can be inserted in the
group of replicas and its state initialised using a state
transfer primitive. All this must be taken into account
when programming the replicas. Different checkpointing
strategies are left open to the application programmer.

Other fault tolerance mechanisms based on active
replication can be defined using group management
facilities and multicast communication protocols. A token
mechanism may be used to determine a leader in the group

490

of replicas which is responsible for sending back the reply
to the client (similar to semi-active replication in Delta-4).
This is done by the application programmer, even if it can
be hidden in library calls.

The main difference with respect to the previous
approach is that in this case, error processing and
application programming is done at the same programming
level using specific programming constructs. This means
that specific function calls (state transfer, synchronisation,
sending results, voting) must be introduced into the
application programs at appropriate points, for instance for
sending updates (passive replication), token management
(semi-active replication) or decision routines (active
replication). In other words, such an approach provides
visible error processing, whereas it was invisible at the
programming level in the previous case. Another example
of the use of a library for programming fault tolerant
applications can be found in [1 11. Nevertheless, the
advantage of this approach is that the application
programmer can tailor and optimise his own fault tolerance
mechanisms. The main drawback is that functional and non-
functional programming are mixed together, and may
contradict reusability. The approach is not transparent to the
application programmers and may impose a specific
runtime environment.

2 . 3 Inheritance of fault tolerance mechanisms

The previous two approaches do not rely on any
particular property of the programming language since they
are based on appropriate mechanisms provided either by the
underlying operating system or by a specific environment.
The approach described in this section and also the reflective
approach described in this paper take advantage of object-
oriented properties for providing error processing features to
applications.

The approach based on inheritance consists in defining
the fault tolerance technique in pre-defined system classes
that are responsible for the implementation of a given
solution. The idea is to use the notion of inheritance to
derive a fault tolerant implementation of objects. This
solution consists in fact in making inheritable non-
functional characteristics (persistence and recoverability),
using appropriate system classes and programming
conventions. This type! of solution has been successfully
used in particular in Avalon/C++ [lo] and in the Arjuna
project [22]. A class can be declared as "recoverable"; this
declaration means that any instance of this class will
perform some error processing, provided that some
definitions are given by the class designer (virtual function
definition, function overloading). In Arjuna, for instance, a
recoverable class is derived from the pre-defined system

class StateManager which is responsible for providing
persistence (checkpointing to stable storage) and recovery
mechanisms; the application programmer must define the
virtual functions save-state and restore-state for a
recoverable class [2]. As with a passive replication
mechanism, the computation is done by a primary object,
unless a failure occurs.

One might also consider inheritance for implementing
different error processing techniques, based on active
replication, for instance. It seems that other system classes,
like StateManager, could be defined to provide replicated
processing. However, there would be significant problems
with such an approach. Error processing techniques based
on active replication would require a mechanism for
providing replicated method invocations and synchronising
replicas on method invocation. Overriding the creation of
objects can also be useful for creating several object replicas
on different sites. These cannot be transparently achieved
using inheritance. The essential difficulty with this
approach is that inheritance does not allow access to the
internal structure of objects and redefinition of the
fundamental mechanisms of an object-oriented language
(e.g. method invocation).

2.4 Summary and conclusions

The systems that we have described do not all use the
same fault tolerance techniques. Nevertheless, they illustrate
three different approaches for implementing fault tolerant
applications. In each case, the role of the programmer is
different, according to the degree of transparency and
separation of concerns provided by the approach.

In the first case, the error processing mechanisms are
provided by the underlying system and transparency and
separation of concerns can be achieved. However, this
approach lacks flexibility. In the second case, the
environment provides library functions that enable the
programmer to define his own error processing
mechanisms. Transparency and separation of concerns are
not achieved due to specific function calls that must be
introduced in the program. With the last approach, as
shown by the examples, inheritance can be used to add fault
tolerance properties to object-oriented applications.
Separation of concerns can be achieved but transparency is
not totally achieved, because some programming
conventions are required

Our interest in this paper is to show how the object
model and related properties can be used for programming
various classical replication techniques to implement fault
tolerant distributed applications transparently. Inheritance
seems limited from this viewpoint: inheritance does not
enable the underlying operations of the object model

49 1

(creation, invocation) to be redefined. Thus, inheritance
cannot be used to take advantage of the object structuring
for implementing replicated processing. The reflective
approach which is described in this paper solves part of this
problem since reflection provides at least access to intemal
object operations.

3 Reflection and object-oriented
programming

In this section we introduce the concept of reflection
in the environment of object-oriented programming, and
give a brief description of Open-C++, the language that was
used in our experiments.

3.1 Reflection in object-oriented languages

Reflecrion is the process by which a system can
reason about and act upon itself. A reflective computational
system is a computational system which exhibits reflective
behaviour. In a conventional system, computation is
performed on data that represents entities that are extemal to
the computational system. However, a reflective
computational system must contain data that represents the
structural and computational aspects of the system itself.
Moreover, it must be possible to access and manipulate
such data from within the system itself, and more
importantly, such data must be causally connected to the
actual behaviour of the system: changes in the data must
cause changes in the behaviour of the system and vice
versa. Unlike a conventional system, a reflective system
allows users to perform computation on the system itself in
the same manner as in the application, thus providing users
with the ability to adjust the behaviour of the system to
suit their particular needs.

B. Smith invested the power of computational
reflection in the environment of 3-Lisp [23]. P. Maes
proposed a meta-object approach to implementing reflective
systems in the framework of object-oriented computing
[14]. Each object x is associated with a meru-objecr "x that
represents both the structural and computational aspects of
x. "x contains the meta-information of the object x : its
structure and its way of handling operation invocations. By
making an object x causally connected with its meta-object
" x , a system can ensure that any change to "X will
automatically be reflected to x. Thus the structure and
behaviour of n can be adjusted by modifying its meta-object
"x . Since a meta-object is just another object, it can be
manipulated in the same manner as a normal object. In
class-based object-oriented languages, each meta-object is an
instance of a meta-level class that defines its structure and
behaviour, but in the rest of this paper, we will tend to talk

about meta-objects rather than meta-level classes, thus
emphasising the run-time aspects of the meta-object
approach.

The meta-object approach has been used in many
application areas: debugging, concurrent programming [151
and distributed systems [9]. A very successful example is
the meta-object protocol in CLOS [13]. This provides a
new approach to designing programming languages. By
using the technology of reflection and object-oriented
programming, CLOS gives programmers the ability to
incrementally modify the language's behaviour and
implementation to meet their particular requirements. The
relation of reflection to object-oriented programming is
crucial to the meta-object approach. Reflection makes it
possible to open up a system implementation without
revealing unnecessary implementation details, and the
techniques and features of object-oriented programming
make reflection practical to use. In particular, inheritance
makes it easy to adjust the behaviour of objects
incrementally.

The use of meta-level programming makes it possible
to separate functional components from non-functional
components in a system transparently [25]. If non-
functional components can be implemented in an
application-independent fashion, they are potentially usable
across a wide range of possible problem domains. There are
three tangible benefits in taking the meta-object approach to
implementing fault tolerant mechanisms. Firstly, the
separation of functional and non-functional components
makes it possible for the realisation of non-functional
requirements to be transparent rather than intrusive as far as
the application programmer is concerned, thus solving the
problems associated with traditional techniques for
implementing fault tolerance mechanisms (assuming that
system-based fault tolerance is not available). Secondly,
relying on meta-objects to deal with a wide range of user
requirements allows the basic implementation of a fault
tolerant application to be simpler and thus easier to analyse
with respect to its correctness. Thirdly, permitting each
object to have its own meta-object makes it possible for an
application to apply different strategies for different objects
according to their characteristics. These features will be
illustrated in the remainder of the paper.

3.2 The example of Open-C++

Reflection was described generally in the last sub-
section. In this sub-section, we introduce a reflective object-
oriented programming language based on the meta-object
approach, Open-C++, used to describe the examples.

Open-C++ [9] is a C++ pre-processor that provides
the programmer with two levels of abstraction: the base-

492

level, dedicated to traditional C++ object-oriented
programming, and the meta-level which allows certain
aspects of the C++ programming model to be redefined. For
example, at the meta-level, one can redefine the general
behaviour of a base-level class: how it handles method
calls, how it reads or writes its member variables, what
happens at instance creation and deletion time. Each
instance of a reflective base-level class is controlled at run-
time by its meta-object. The association of a base-level
class and a meta-level class is made at compile-time by the
Open-C++ pre-processor.

Programming the meta-level boils down to
programming C++ classes since meta-objects are just
instances of traditional C++ classes. Meta-level classes all
inherit (directly or indirectly) from the predefined MetaObj
class. They can redefine the methods describing creation,
deletion of an object, method invocation, etc. In
Open-C++, the control of base-level object operations is
realised via traps towards the related meta-object. For
example, the handler associated with a base-level method
call is a virtual method belonging to the class MetaObj
called Meta-Methodcall, as shown in Fig. 1. It is
possible for the application programmer to choose which
attributes and methods are reflective.

J

Fig. 1. Invocation trapping
When a reflective method is called at the base-level,

the call is trapped and handled at the meta level by
Meta-Methodcall (a). This meta method makes it
possible to redefine the semantics of calling a method at the
base-level. Usually, Me ta-Me thodCall invokes the
application method from the meta level using another meta
Operation, Meta-HandleMethodCall (a@), but it may
also perform some extra processing before or after calling
the application method and perhaps not even call the
application method directly at all. At the end of
Meta-Methodcall, any results are returned to the caller as
if for a normal method call (0).

The reflective attributes and methods of a base-level
Open-C++ class are declared using a "1 /MOP reflect : "
clause. For example in Fig. 2, the class Myclass has a
reflective method g () and a reflective attribute X. These are
the only attributes and methods that can be controlled by
the meta-object associated with an instance of MyClass.
The association of a class with a meta-level class is
expressed using a "//MOP reflect class" clause. For

example, in Fig. 2, the meta-level class for Myclass is
declared to be MyMetaObj. Note that reflection is not
completely transparent in Open-C++. Instead, the
application programmer is required to use a special
reflective version of the original application class which
Open-C++ generates automatically. Thus, a reflective
object of type MyClass is declared to be of type
ref 1-MyClass and not MyClass.

/* Doclaration of a class with rofloctivo nwmkrs */
class W l a s s {
Dublic:

f 0 ;

a 0 : / * Dublic reflective method * /
//MOP reflect:

procec t ed :
int i;

//MOP reflect:
float x; /* protected reflective attribute */

I ;

//MOP reflect class Myclass : MyMetaObj;
I* Amsociation of a class w i t h a mota-lovrl class */

/ * any object of class refl-MyClass (not MyClass!) * /
/ * will be controlled by a meta-object of class * /
/ * MyMetaObj * /

I* Doclaration of a rofloctivr object * /
refl-Myclass MyObject; / * reflective object + /

Fig. 2. An Open-C++ class of a reflective object

Although Open-C++ supports meta-level
programming, it only provides a limited model of
reflection. First, it does not support structural reflection,
i.e., the ability to make changes to the structure of an
object by modifying its meta-object. Second, only limited
computational reflection is supported in Open-C++: a meta-
object in Open-C++ can control method calls and variable
accesses. Third, the binding between objects and meta-
objects in Open-C++ is made at compile time and cannot
be changed subsequently. This means that the behaviour of
an object in Open-C++ is determined statically and cannot
be changed dynamically. Most of the limitations of
Open-C++ arise from the fact that it is implemented by a
pre-processor. To solve the above problems, a good
cooperation between the pre-processor and the compiler
must be established.

Although Open-C++ provides very limited reflection,
its meta-level programming model provides the ability to
separate applications into functional and non-functional
levels that is most important to our investigations.

4 Meta-objects to support replication

In this section, we present a number of case studies
that illustrate how a reflective approach can be used to
implement a range of different replication techniques,
namely passive, semi-active and active replication. Each
replication technique will be implemented by a different
meta-object. The runtime association of an object with a
meta-object implementing a particular replication strategy
enables the application programmer to arrange for

493

application objects to be replicated transparently. The
details of how the replication mechanism is implemented
are hidden at the meta-level and do not appear in the source
code for the application.

The replication mechanisms we consider here follow
the principles given in Section 2.1 but have been
simplified for our experiments. We will present possible
meta-objects for each technique, describing the
implementation of passive replication in some detail. We
will then discuss how this approach can also be used for
semi-active replication, and how meta-objects can be used
to support active replication with majority voting. Atomic
multicast and failure detection are useful basic system
services, but the implementation of the meta-objects
described in this section does not rely on such services; we
will return to this issue later in Section 5 .

We consider a distributed application designed as a set
of objects. From a distributed point of view we suppose
that objects interact following the classic client-server
model. For clarity, we will describe the inter-replica
protocol implementation with one client and one replicated
server. The details of possible inter-replica protocols for the
proposed replication techniques are beyond the scope of this
paper and can be found for instance in [4,8,24].

Distribution can be handled at either the meta-level or
the base-level. For our first two replication examples, we
chose to implement distribution at the base-level using
client and server stubs. A server is composed of a stub that
manages communications with the client and a "reflective
object" that encapsulates the state of the server. The
reflective object is managed by the server and is an instance
of a base-level class associated with a meta-level class that
implements a particular replication mechanism (e.g. passive
replication). The server (a Unix process in the current
implementation) encapsulates the object from a runtime
viewpoint. When a server receives requests from its client
via the stub, it calls the corresponding methods of the
reflective object to meet the requests. These methods are
intercepted at the meta-level as appropriate and dealt with
according to the particular replication mechanism
implemented by the meta-object associated with the
application object representing the server's state.

For the last replication example distribution is handled
at the meta-level. The structure of the client and the server
is rather different in this case and communication stubs at
the base-level are not used. This aspect of our design will
be illustrated in Section 4.3.

4.1 Passive replication

The application is composed of a client, a primary
server and one backup replica server. Client requests are

processed by the primary server, and upon completion of an
operation that updates its state, the server sends the new
state to the backup replica. When the primary server
crashes, the backup replica takes over the responsibility of
providing continued service to the client and a new backup
replica is started.

Base-level. In order to use passive replication for a
particular application object, the application programmer
must associate that object's class with the meta-level class
Pas s i v e-Rep 1 -Met a 0 b j which is responsible for
implementing the passive replication strategy. The
application programmer must also decide which methods of
the application class should be reflective - typically those
methods which modify the state of the application object.

/* Clam. &finition */
class Medical-Info 1
public:

//MOP reflect:

protected:

void Read-Info[...):

void Write-Info(. . .) ; / * reflective method * /

//MOP reflect:

I ;
Medical-Record med-rec; / * reflective attribute * /

/* Amociation w i t h a meta-object */

/* Dofinition Of objact method. */
//MOP reflect class Medical-Info : Passive-Repl-MetaObj:

void Medical-1nfo::Read-Info(...) (

I
void Medical-1nfo::Write-Info(...) (

1

refl-Medical-Info My-Info;

main0 I
server-main-loop(); / * handles client requests * /

1 / * invokes methods of My-Info * /

anethod statements>

anethod statements>

/* Lb21aratic.n Of tha object */

/* serve2 stub * I
/*"refl-" is Open-C++ specific*/

Fig. 3. Structure of a server (primary or backup)
In the example (see Fig. 3), the base-level class

Medical-Inf o has been associated with the meta-level
Class Passive-Repl-MetaObj. Thus, instances Of the Class
ref 1-Medical-Inf o such as the object My-Inf o will have
a passive replica that is managed at the meta-level by
Passive-Repl-MetaObj. The details of the passive
replication mechanism are implemented by
Passive-Repl-MetaObj and do not appear in the source
code for Medical-Info. The communication protocols are
managed by the server stub (server-main-loop). In the
given example, the state of a Medical-Info object
corresponds to the med-rec protected reflective attribute.
Open-C++ requires this state to be reflective so that it can
be accessed from the meta-level in order to generate
checkpoints. The Write-Info method which updates the
object state is also declared to be reflective using a //MOP
re f 1 e c t declaration. This enables an invocation of
Write-Info to be trapped at the meta-level in order to
checkpoint the updated state of a Medical-Inf o object to

494

Authorized licensed use limited to: ISAE. Downloaded on June 8, 2009 at 04:46 from IEEE Xplore. Restrictions apply.

the backup server after execution of Write-Info. In our
example we consider that the Read-Info method does not
update the state and thus does not need to be reflective. No
checkpoint is sent in this case.

Meta- level . Reflection is used to control
modifications to attributes of the reflective object. As
previously mentioned, the methods that modify the data
amibutes of the primary state are made reflective. The meta-
object which controls the primary's reflective object traps
all the invocations of its reflective methods; we take
advantage of this ability to checkpoint the server state to its
backup replica. The inter-replica protocol is handled at the
meta-level and includes the following actions:

has been processed base-level

The base-level is identical for both replicas, but the
actions performed at the meta-level by the primary and the
backup replica are different: the primary sends checkpoints
to the backup after each reflective method invocation, the
backup replica processes these checkpoints. The meta-level
also includes mechanisms for error detection and recovery.
This protocol is summarised in Fig. 4.

PASSIVE-REPL-METAOBJ

META-LEVEL

EASE-LEVEL

Fig. 4. Passive replication protocol
Both sides (primary and backup) presented in this

figure are actually implemented by a single meta-level class
as shown in Fig. 5. Every reflective method call is trapped
(0) at the meta-level. Then the object method is called at
the base-level from the meta-level (0). Control returns
back to the meta-level (0) and the updated state of the
primary replica is then sent in a checkpoint to the backup
replica (a). The latter updates its base-level object state
directly (6) and sends an acknowledgement (0) to the
primary. The reflective method invocation completes and
returns to the client (8).

As well as the communication stubs used at the base-
level for communication between the client and the primary
server, communication stubs are also used at the meta-level
mainly for sendindreceiving checkpoints and for detecting
errors. The detection mechanism is simple but not efficient
in the current implementation; this will be discussed later
in Section 5. When the absence of any peer is detected,
either when sending or receiving checkpoints, the
Recovery-Handler is activated at the meta-level where a
recovery procedure is performed. The Recovery-Handler
can also be activated directly by the meta-level
communication stubs. A simple periodic checking of the
presence of peers can be implemented in these stubs as well
as more sophisticated detection mechanisms with reduced
latency which depend on the underlying communication
protocols.

PMsivo-Ropl-Y.taObj :: Meta-NotbodCall (Id ~lpy-mtbod,...) f
/* execution of the method * /

/ * storage of all reflective data in a message * /

/ * sending a checkpoint to the backup * /

Meta-HandleMethodCall(my-method);

Init-Checkpoint(state);

if (Send-Checkpoint(backup,state) == ERROR)
Recovery-Handler();

1
PMmivo-Ropl-Y.taObj I : Mota-StartUpO (
/ * status initialised by the meta-level class constructor * /

if (status == primary-status) (
/ * selection and connection with a first backup * /

Replica-Select (backup);
Replica-COMeCt (backup) ;

)
else (/ * status == backup-status * /

/ * waiting for server connection * /
Wait-For-Replica-Connect(primary);
I* checkpoint receive and store loop * /

Eackup-MainLoop () ;

/ * begin execution at the base level * /

PMsivo-Ropl-Y.taObj 1: BaChp-NdnLOop() (

1

1

while (Receive-Checkpoint(primary,state) ! = ERROR)

Recovery-Handler () ;
Update-State(state);

1
Paaaive_R.pl-Y.taObj 1: Recovory-Eal~dlUO (

/ * primary crash: backup becomes primary */
if (status == backup-status) (

1

Replica-Select (backup);
Replica-Connect(backup);

Init-Checkpoint(state);

if (Send-Checkpoint (backup, state) == ERROR)

status = primary-status;

/ * selection and connection with a new backup */

/ * storage of all reflective data in a message */

/* send current state to the new backup */

Recovery-Handler () ;
1

Fig. 5. Passive-Repl-MetaObj simplified source code
For instance, when a primary crashes, the recovery

procedure can be briefly described as follows: the backup
leaves the main loop, its status is set to primary, a new
backup replica is simply selected from a list of pre-created
replicas, a connection is established with this new backup
and finally the current state of the computation is sent to
initialise the new backup. A connection is then established
by the new primary with the client at the base level. The

495

recovery mechanism also involves numbering client calls,
possibly including the current reply and a checkpoint
number in every checkpoint, etc. Checkpoints are
acknowledged in order to detect errors and failures. Not all
the related details in the source code are presented here in
order to keep it simple and clear. The source code for the
Passive-Repl-MetaObj meta-level class is essentially
composed of the methods mentioned in Fig. 5.

Finally, the meta-level is also responsible for
reconfiguration after the failure of a peer has been detected.
A new replica must be created and initialised with the
current state of the computation. This is why the internal
state of the reflective object must always be made accessible
at the meta-level by declaring it reflective. The meta-level
of an operational replica must be able to read the state, and
the meta level of the new replica must be able to write this
state down to the base-level. This is true for any replication
protocol.

4 . 2 Semi-active replication

In this protocol, a client sends its requests to a leader
replica which in turn forwards it to its follower replica.
Both replicas process the request, but only the leader replies
to the client (see Fig. 6).

SEMI ACTIVE-REPL-METAOBJ

META-LEVEL

ollower-MainLoopo [
-HandieMsthodCaiI()

BASE-LEVEL

Fig. 6. Semi-active replication protocol
The simple example taken here considers deterministic

behaviour of the execution only. One reason for using
semi-active replication in this case instead of passive
replication is determined by the size of the object state;
when it is very large, passive replication would imply large
overheads. Multicast protocols are not considered in this
example, and therefore the request message received by the
leader is forwarded to the follower at the meta-level.

The source code of the server is almost identical to the
previous case (see Fig. 3), except that the base-level class
is associated with a different meta-level class
(Semiactive-Repl-MetaOb] in this case). The object state
in this protocol is updated by the concurrent execution of
the leader and follower replica.

The implementation of Semiactive-Repl-MetaObj
(see Fig. 6) is similar to Passive-Repl-MetaObj. The
main difference is that a method invocation is transmitted
instead of a checkpoint. A reflective method call is trapped
(0) and transmitted by the leader to the follower (Q) and
acknowledged. Both the leader and the follower execute the
method concurrently. On each side, the method at the base-
level is called from the meta-level (@, @) and control is
retumed back to the meta-level when the method execution
is completed (a, 0) . Finally, the initial method call
retums to the client (8). Synchronisation between replicas
could be added to this example in order to prevent the
follower from getting too far behind the leader. Atomic
multicast could also be used to simplify this protocol by
broadcasting client requests to both replicas. This could be
implemented by a meta-object on the client side; such a
solution is mandatory for active replication and voting as
described in the next section.

4 . 3 Active replication with majority voting

Several strategies can be defined for active replication.
They all involve sophisticated inter-replica protocols on
both the client and the server side. Our objective in this
section is not to investigate these protocols, but briefly
underline that they can be easily implemented using a
reflective approach.

We consider here a simple example (see Fig. 7) with
one client and a triplicated server: the client sends multiple
requests to a group of servers and handles several reply
messages (voting); all server replicas process client requests
and send replies back to the client .

CLIENl

mv-methodO:

BASE-LEVEL

Fig. 7. Active replication with majority voting protocol
A possible implementation using meta-objects can be

briefly summarised as follows. One can be defined for
handling the client side, TMR-MetaOb j, and one for the
server side, Server-MetaObj. We consider in this section

496

that the client declares an object representing a remote
object located in the server (just a remote object interface -
Server-Interface in Fig. 7); the server encapsulates the
remote object. The client invokes the remote object as if it
was local and not replicated.

In the client, the interface object representing the
remote object is associated with an instance of the meta-
level class TMR-Me t aOb j ; this meta-object traps method
invocation on the remote object (0). The version of
Meta-Methodcall defined by TMR-MetaObj is responsible
for sending a request corresponding to the method
invocation to each server replica (a, @, <2>), and then for
voting on the replies (0, 0, <5>) before returning the
final result to the client base-level (09). Two comments can
be made: (i) the protocol used for sending the request in
this case should be an atomic multicast protocol;
(ii) Meta-Methodcall for TMR-MetaObj does not call
Meta-HandleMethodCall Since the invoked methods will
be executed remotely by the server replicas.

In each server replica, an instance of the meta-level
class Server-MetaObj is bound to the "reflective object"
that encapsulates its state. This meta-object is responsible
for handling client remote requests issued by the
TMR-MetaObj on the client side and for executing the
corresponding methods on the server side via the
Met a-HandleMethodCall (@-@, @-e, <3>-<4>). The
Server-Me taOb j is also responsible for handling
reconfiguration when one of the server replicas in the group
fails. Creation of a new server replica is done by the
Server-MetaOb j of the operational replica(s): this
operation updates the new replica with the current state of
the server (accessible at the meta-level as shown in previous
examples) and adds a new member to the group of replicas.

Just as in previous examples, the application
programmer does not have to be aware of the details of how
fault tolerance is implemented. Remote invocation details
are also hidden.

5 Implementation issues

Most replication protocols need atomic multicast to
deliver input messages to several replicas running
concurrently or to send checkpoints to a set of standby
replicas, for instance. This service can be implemented
either at the environment level as in Isis or at the
communication level as in Delta-4, the latter providing the
better performance.

We discuss here the implementation of replication
techniques based on the classic distinction between
"application level" (user space) and "system level" (system
space). The application level itself involves two
programming levels, the base-level and the meta-level. The

application meta-level implements the replication
techniques (inter-replica protocols) based on the services
provided by the system level:

application meta-level: this level is dedicated to the
implementation of the replication protocol;
reconfiguration is also handled at this level;
system level: programming meta-level protocols
involves several services that should be provided by the
underlying system. Failure detection, atomic multicast
and group management protocols are some examples.
The frontier between these two levels may vary

according to the underlying runtime system and the
hardware architecture of the nodes. Micro-kernel technology
provides a good basis for tuning the frontier between
application level and system level for implementing meta-
level functionalities.

Obj#toriented mdlcmtlon

REPLICATION
TECHMOUES

SYSTEM
LEVEL

Mlcro-kmrnd

Fig. 8. Implementation layers of replication techniques

As shown in Fig. 8, this technology provides a good
implementation framework for the system dependent
services. This approach enables meta-programmers to define
new meta-level classes for various replication protocols,
according to several failure assumptions, but also with
respect to various hardware architectures and node
configurations. The development of meta-level classes can
take advantage of inheritance as for the construction of base
classes in Arjuna. Solutions proposed in Isis and Delta-4
for failure detection and atomic multicast protocols can be
implemented directly on top of the micro-kernel. This
approach will be experimented with in the near future using
Chorus [21] and xAMp multicast protocols [20].

6 Conclusion

When the underlying system does not provide fully
transparent fault tolerance mechanisms, programming fault
tolerant applications is a difficult activity since functional
and non-functional programming are often mixed at one
level and the programmer needs to know details of the fault
tolerant mechanisms that are used. The two (or more) levels
of programming provided by reflective object-oriented
languages enable these two rather different development
activities to be done separately using the same language.
This approach is obviously not restricted to fault tolerant
mechanisms, but also encompasses distribution and other
non-functional aspects such as security, transaction

497

management, configuration management, etc. As a side
effect, this approach facilitates testing and debugging.

The simple examples presented in this paper have all
been prototyped. Various replication techniques are now
being implemented in order to obtain a library of meta-level
classes for programming fault tolerant distributed
applications. This activity will also involve the
development of other meta-level classes for distribution and
security purposes. Meanwhile, original meta-level classes
will evolve according to improvements in error processing
protocols, error detection mechanisms and communication
protocols implemented in user space or at system level.
Thanks to the reflective approach, such evolution can occur
without any change in the source code of the user
applications. Nevertheless, it is clear that a more
sophisticated model of reflection would allow better results.
For instance, a language with more reflective attributes than
Open-C++ would ease the solution of several
implementation problems (e.g. minimisation of the amount
of information in a checkpoint) that we have encountered. It
is also important to mention that the ability to bind
application-level objects to meta-level objects dynamically
could be used to allow the application to adapt dynamically
to system evolution either with respect to the underlying
operating system services or with respect to new hardware
configurations and failure assumptions.

In conclusion, a reflective approach combines the
advantages of the object model with the advantages of a
system-based approach to fault tolerance (transparency and
separation of concerns). Like a system-based approach, a
reflective approach provides (i) well defined software
component structuring in terms of objects and (ii) access to
internal operations of the model. Fault tolerance
mechanisms that were supported by the runtime layer can
now be implemented as a set of meta-objects, thus making
this approach more flexible.
A c k n o w l e d g e m e n t s : the authors wish to thank our
colleagues in the PDCS-2 project, especially Brian Randell,
who participated in the elaboration of these ideas during the
numerous discussions on the subject. We are very grateful to
Felicita Di Giandomenico, Alexander Romanovsky and in
particular David Powell for their valuable comments on
previous versions of this paper.

References
[l] G. Agha, S. Fr@lund, R. Panwar and D. Sturman, “A Linguistic

Framework for Dynamic Composition of Dependability
Protocols”. Proc. DCCA-3, pp.197-207, 1993.
Arjuna, The Arjuna System Programmer’s Guide, Dept. of Comp.
Science, Univ. of Newcastle-upon-Tyne, UK, July 1992.
G. Attardi, C. Bonini, M. R. Boscotrecase, T. Flagella and M.
Gaspari, “Metaleve1 Programming in CLOS”, Proc. ECOOP’89,

[2]

[3]

pp.243-56, 1989.

[4] P. A. Barrett, A. M. Hilborne, P. G. Bond, D. T. Seaton, P.
Ven’ssimo, L. Rodrigues and N. A. Speirs, “The Delta4 Extra
Performance Architecture (P A) ” , Proc. FTCS-20, (Newcastle
upon Tyne, UK), pp.481-8, 1990.
J. F. BarUett, “A Non-Stop (TM) Kemef”, Proc. SOSP-8, (Pacific
Grove, CA, USA), pp.22-9, 1981.
K. P. Birman, “Replication and Fault-Tolerance in the ISIS
System”, ACM Operaring Sys t em Review, 19 (3, pp.79-86, 1985.
K. P. Birman and T. A. Joseph, “Exploiting Virtual Synchrony in
Distributed Systems”, ACM Operating Systems Review, 21 (9,

M. ChCr&que, D. Powell, P. Reynier, J.-L. Richier and J. Voiron,
“Active Replication in Delta-4”, Proc. FTCS-22, (Boston, MA,

S. Chiba and T. Masuda, “Designing an Extensible Distributed
Language with Meta-Level Architecture”, Proc. ECOOP’93,
LNCS 707, (0. Nierstrasz, Ed.), (Kaiserslautern, Germany),

D. L. Detlefs, M. P. Herlihy and J. M. Wing, “Inheritance of
Synchronization and Recovery Properties in Avalon/C++”,
Computer, pp.57-69, December 1988.

[l l] Y. Huang and C. Kintala, “Software Implemented Fault
Tolerance: Technologies and Experience”, Proc. FTCS-23,
(Toulouse, France), pp.2-9, 1993.

[12] The Isis Distributed Toolkit - User Reference Manual, Isis
Distributed Systems, Inc., 1992.

[13] G. Kiczales, J. d. Rivitres and D. G. Bobrow, The Art of the
Metaobject Protocol, MIT Press, 1991.

[14] P. Maes, “Concepts and Experiments in Computational
Reflection”, Proc. OOPSLA ’87, pp. 147-55, 1987.

[15] S. Matsuoka, T. Watanabe and A. Yonezawa, “Hybrid Group
Reflective Architecture for Object-Oriented Concurrent
Reflective Programming”, Proc. ECOOP’91. pp .2 1 3-50,
Springer-Verlag, 1991.
A. Paepcke, “PCLOS: Stress Testing CLOS’, Proc. OOPSLA’90,
ACM SICPLAN Notices, pp.194-211, 1990.
D. Powell (Ed.), Delta-4: A Generic Architecture for Dependable
Distributed Computing, Research Reports ESPRIT, 484p.,
Springer-Verlag, Berlin, Germany, 1991.

[18] D. Powell, “Failure Mode Assumptions and Assumption
Coverage”, Proc. FTCS-22 (Boston, MA, USA), pp.386-95, 1992.

[19] D. Powell, “Distributed Fault-Tolerance - Lessons Learnt from
Delta4”, in Hardware and Sofirware Architecture for Fault
Tolerance: Experiences and Perspectives (M. Banatre and P. A.
Lee, Eds.), LNCS 774, pp.199-217, New York: Springer Verlag,
1994.
L. Rodrigues and P. Vedssimo, “xAMp: A Protocol Suite for
Group Communication”, Proc. SRDS-11, pp.112-21, 1992.
M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M.
Guillemont, F. Henmann, C. Kaiser, S. Langlois, P. Ltonard and
W. Neuhauser, Overview of the CHORUS@ Distributed
Operating Systems, Chorus Systtmes, Report, N’CSKR-90-25,
April 1990.
S. K. Shrivastava, G. N. Dixon and G. D. Parrington, “An
Overview of the Arjuna Distributed Programming System”, IEEE
Sofnuare, 8 (l), pp.66-73, January 1991.
B. C. Smith, “Reflection and Semantics in Lisp”, in 11th Annual
ACM Symposium on Principles of Programming Longuages,

N. A. Speirs and P. A. Barrett, ‘‘Using Passive Replicates in
Delta4 to provide Dependable Distributed Computing”, Proc.
FTCS-19, (Chicago, IL, USA), pp.184-90, 1989.
R. J. Stroud, “Transparency and Reflection in Distributed
Systems”, ACM Operating Systems Review, 22 (2), pp.99-103,
April 1993.

[5]

[6]

[7]

pp.123-8, 1987.
[8]

USA), ~p.28-37, 1992.
[9]

pp.482-501, 1993.
[lo]

[16]

[17]

[20]

[21]

[22]

[23]

pp.23-35, 1984.
[24]

[25]

498

