40 research outputs found

    Discontinuous Galerkin Methods on hp-Anisotropic Meshes II: A Posteriori Error Analysis and Adaptivity

    Get PDF
    We consider the a posteriori error analysis and hp-adaptation strategies for hp-version interior penalty discontinuous Galerkin methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes with anisotropically enriched elemental polynomial degrees. In particular, we exploit duality based hp-error estimates for linear target functionals of the solution and design and implement the corresponding adaptive algorithms to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement and isotropic and anisotropic polynomial degree enrichment. The superiority of the proposed algorithm in comparison with standard hp-isotropic mesh refinement algorithms and an h-anisotropic/p-isotropic adaptive procedure is illustrated by a series of numerical experiments

    Shock capturing techniques for hp-adaptive finite elements

    No full text
    The aim of this work is to propose an hp-adaptive algorithm for discontinuous Galerkin methods that is capable to detect the discontinuities and sharp layers and avoid the spurious oscillation of the solution around them. In order to control the spurious oscillations, artificial viscosity is used with the particularity that it is only applied around the layers where the solution changes abruptly. To do so, a novel troubled-cell detector has been developed in order to mark the elements around those layers and to impose linear order in them. The detector takes advantage of the evolution of the value of the gradient through the adaptive process.Peer ReviewedPostprint (published version

    hp-adaptive celatus enriched discontinuous Galerkin method for second-order elliptic source problems

    Get PDF
    This paper presents a new way to enrich finite element methods with nonpolynomial functions without adding any function to the finite element space. For this reason, the method is called celatus, which is a Latin word meaning ``hidden from view."" Since no nonpolynomial function is added to the finite element space, many issues with standard enriched methods are avoided, among which there is the worsening of the condition of the linear system. In the present work, we focus on second-order elliptic source problems with reentering corners and show that the new method is more computationally efficient than standard finite element methods when used with hp-adaptivity

    Robust Numerical Methods for Singularly Perturbed Differential Equations--Supplements

    Full text link
    The second edition of the book "Roos, Stynes, Tobiska -- Robust Numerical Methods for Singularly Perturbed Differential Equations" appeared many years ago and was for many years a reliable guide into the world of numerical methods for singularly perturbed problems. Since then many new results came into the game, we present some selected ones and the related sources.Comment: arXiv admin note: text overlap with arXiv:1909.0827

    Multi-hp adaptive discontinuous Galerkin methods for simplified PN approximations of 3D radiative transfer in non-gray media

    Get PDF
    In this paper we present a multi-hp adaptive discontinuous Galerkin method for 3D simplified approximations of radiative transfer in non-gray media capable of reaching accuracies superior to most of methods in the literature. The simplified models are a set of differential equations derived based on asymptotic expansions for the integro-differential radiative transfer equation. In a non-gray media the optical spectrum is divided into a finite set of bands with constant absorption coefficients and the simplified approximations are solved for each band in the spectrum. At high temperature, boundary layers with different magnitudes occur for each wavelength in the spectrum and developing a numerical solver to accurately capture them is challenging for the conventional finite element methods. Here we propose a class of high-order adaptive discontinuous Galerkin methods using space error estimators. The proposed method is able to solve problems where 3D meshes contain finite elements of different kind with the number of equations and polynomial orders of approximation varying locally on the finite element edges, faces, and interiors. The proposed method has also the potential to perform both isotropic and anisotropic adaptation for each band in the optical spectrum. Several numerical results are presented to illustrate the performance of the proposed method for 3D radiative simulations. The computed results confirm its capability to solve 3D simplified approximations of radiative transfer in non-gray media
    corecore