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Abstract. This paper presents a new way to enrich finite element methods with nonpolynomial
functions without adding any function to the finite element space. For this reason, the method is
called celatus, which is a Latin word meaning ``hidden from view."" Since no nonpolynomial function
is added to the finite element space, many issues with standard enriched methods are avoided, among
which there is the worsening of the condition of the linear system. In the present work, we focus on
second-order elliptic source problems with reentering corners and show that the new method is more
computationally efficient than standard finite element methods when used with hp-adaptivity.
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1. Introduction. Finite element methods (FEMs) have been very successful in
the past decades in solving many challenging problems in engineering and physics. In
the context of second-order elliptic problems, standard FEMs are known to be very
flexible and accurate on problems with smooth solutions [22], i.e., solutions u \in Hn,
n \geq 2. However, standard FEMs struggle with nonsmooth solutions [29]. This is
mainly due to the fact that standard polynomial sets of basis functions do not ap-
proximate well nonsmooth functions. When this happens, the convergence rate of
standard FEMs deteriorate and people look for ways to fix it. The two most success-
ful ways are mesh adaptivity and enrichment. Mesh adaptivity is regaining a good
convergence by introducing smaller elements where the solutions are nonsmooth [35].
In recent years, the field of automatic mesh adaptivity driven by error estimators has
been particularly active [7, 11, 15, 19, 20]. Such technology is particularly appealing
because it automatically adapts the mesh without any a priori knowledge of the fea-
tures of the solution. To obtain an efficient implementation of the automatic mesh
adaptive method, in many cases an error estimator has to be derived for the prob-
lem under consideration. The enrichment technique consists of transferring a priori
knowledge about the solution into the FEM by adding ad hoc functions to the finite
element basis set that capture the nonsmooth behavior of the solution that standard
FEMs are not able to resolve efficiently [14, 13, 25, 27, 36]. The method works only
if the functions used to enrich the finite element space are the exact ones to describe
the behavior of the solution. In general, these added functions are not polynomials,
and this can create new issues with the FEM, such as stability of the method itself
and an increase of the condition number of the linear system, making the problem
harder to solve.

We propose a new method to enrich FEMs that does not involve adding functions
to the finite element space. In this way, all the issues listed above are avoided. Never-
theless, a big improvement in the convergence of second-order elliptic source problems
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is obtained. Also, since no changes have been done by the proposed enrichment to the
finite element space, the method can be applied to existing FEM packages without
the need to modify the FEM code, which is particularly useful in cases where the
source code of the FEM is not available for modifications.

The proposed enriching method consists of using a reliable and efficient error esti-
mator to filter out the nonsmooth part of the solution from the FEM and approximate
it using a descendent method. Since the method is based on an error estimator, the
same error estimator can be used to adapt the mesh obtaining an enriched adaptive
FEM with very little extra effort.

The proposed method can be applied to a variety of FEMs, but in the analy-
sis below we focus on the discontinuous Galerkin (DG) symmetric interior penalty
method, which is more difficult to enrich compared to other FEMs. The difficulty lies
in the fact that the form of the penalty term and the choice of the penalty parame-
ter depend on the characteristics of the finite element space. The penalty parameter
is what makes the method stable and for polynomial finite element spaces has been
shown [5, 30, 31] a good choice for the penalty term. But such proof is only true for
polynomial functions. Enriching the finite element space with nonpolynomial func-
tions could lead to an unstable method if the penalty term is not adjusted accordingly,
which may be not straightforward. The proposed method solves this issue since no
nonpolynomial functions are added to the finite element space anyway. The celatus
method can be applied to any FEM for which a reliable and efficient error estimator is
available. For conforming meshes, suitable error estimators for h-adaptive continuous
Galerkin FEMs with uniform order of polynomials are presented in [34, 35]. Consid-
ering hp-adaptive continuous Galerkin methods on conforming meshes, suitable error
estimators are presented in [26]. Moving to nonconforming methods, we have the hp-
adaptive continuous Galerkin methods on meshes with arbitrary numbers of hanging
nodes presented in [33].

To keep the presentation as simple as possible, only problems with nonsmooth
solutions arising from nonconvex geometries are considered in the analysis. But the
method can be used also for problems with nonsmooth solutions arising from other
situations, and the analysis can be applied also in those cases. The fact that the
singular behaviors of the solutions are due to reentering corners in the domain is
never used in the analysis; what is necessary to assume is that the solution of the
problem has a nonsmooth part as in (2) in section 2. Such form of the nonsmooth
part is not restricted to problems on nonconvex domains; on the contrary, it is common
for a wider class of problems. In [28, 29], it is shown that (2) is also applicable to
elliptic problems with singularities arising from changes in the boundary conditions,
to problems with singularities arising from discontinuities in the diffusion coefficients
in the interior of the domain, and also to problems with singularities arising from
discontinuities in the diffusion coefficients along the boundary at possible reentering
corners or due to changes in the boundary conditions. Furthermore, such analysis is
presented for both two dimensions and three dimensions (3D). In [21], equation (2) is
shown to be also applicable to the biharmonic and the elasticity problem. In order to
apply the celatus method, the singular behavior functions in (2) have to be known for
the problem. If not already available, these can be computed solving Sturm--Liouville
eigenvalue problems as explained in [28].

The layout of the paper is as follows. Section 2 introduces the model problem and
the analysis of the gradient descendent method. In section 3 the celatus numerical
method is presented and its implementation is discussed. Numerical examples to
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illustrate the performances of the celatus enrichment method are presented in section
4, just before the conclusions in section 5.

2. Model problem and analysis. We consider the following model problem:

 - \Delta u = f in \Omega ,
u = g on \partial \Omega ,

(1)

where \Omega \in \BbbR 2 is a nonconvex domain with m reentering corners and with f \in L2(\Omega )
and g \in H1/2(\partial \Omega ). It is well known that the solution of such problem is in general
not smooth [29, 21], i.e., u /\in H2(\Omega ). In fact, the solution u is the sum of a smooth
part s \in H2(\Omega ) and a nonsmooth part r, i.e., u = s+ r, where the nonsmooth part is
defined as

r :=

m\sum 
i=1

ni\sum 
j=1

ci,j\psi i,j(\ell i, \theta i) ,(2)

where (\ell i, \theta i) are polar coordinates systems centered at each reentering corner i, ni
are the number of singular behaviors admitted at each reentering corner i, ci,j are
real coefficients, and \psi i,j are singular functions with \psi i,j \in H1+\lambda i,j - \epsilon (\Omega ), where \lambda i,j \in 
(0, 1] and for any \epsilon > 0. The numbers of singular behaviors ni at each reentering corner
i is equal to the number of eigenvalues \lambda i,j < 1 of the Sturm--Liouville eigenvalue
problem at each reentering corner; also, the values ni are always finite. Moreover, for
problem (1), as for many other PDE problems, the singular functions \psi i,j and the
corresponding values \lambda i,j can be in general analytically computed.

The method proposed in this work consists of using an FEM to approximate the
smooth part s of the solution and to use a descendent method to approximate the
values of the coefficients ci,j of the nonsmooth part r of the solution. We assume that
the functions \psi i,j in (2) are not in the discrete space, and they cannot be approximated
easily. In such case, it is more efficient to apply FEMs to only the smooth part of the
solution and apply to the nonsmooth part a different technique that takes advantage
of the knowledge about the nonsmooth behavior at the reentering corners. In view
of the fact that a priori information about the solution is considered, the method can
be seen as a FEM with enrichment.

To simplify the notation we arrange the coefficients ci,j in (2) in a vector c such as

c = [c1,1, \cdot \cdot \cdot , c1,n1
, c2,1, \cdot \cdot \cdot , c2,n2

, \cdot \cdot \cdot , cm,nm
].

We can then define R(c) to be a function that for any choice of c returns the non-
smooth part r defined in (2). It is straightforward to see from the linearity of the
problem that for any choice of f and g, we have that problem (1) has a unique solution
u, and such solution is the sum of a smooth part s and a nonsmooth part r. In other
words, to any choice of f and g corresponds a unique choice for c such that r = R(c)
and that u - R(c) is smooth. We denote such vector c with cf,g. For any other choice
of c, the split is not correct in the sense that u - R(c) is not smooth.

In order to present the method, we need to introduce an auxiliary problem related
to (1): For any choice of c, w\bfc is the solution of

 - \Delta w\bfc = f +\Delta R(c) in \Omega ,
w\bfc = g  - R(c) on \partial \Omega .

(3)

Clearly w\bfc = u - R(c), where u is the solution of (1). Finally, we denote with wh,\bfc the
finite element approximation of w\bfc ; this is necessary because in general the solution
of (3) cannot be found analytically.
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The method presented in this work computes an approximation uh,\bfc of the so-
lution of (1) summing a nonsmooth part R(c) for a c that is an approximation of
cf,g and a finite element approximation wh,\bfc of the remaining part of the solution
u  - R(c). In other words, uh,\bfc := wh,\bfc + R(c) with the slight abuse of notation of
having a subscribe h in uh,\bfc even if the part R(c) is not computed through discretiza-
tion.

To keep the presentation of the method general and valid for different choices for
the used FEM, we assume that problem (3) can be written in variational formulation,
and we denote the bilinear form as a(\cdot , \cdot ). Also, we denote the corresponding energy
norm with | | | \cdot | | | , i.e., | | | w| | | 2 := a(w,w). We also assume that the bilinear form a(\cdot , \cdot )
is coercive and continuous with ca and Ca the coercivity and the continuity constants,
respectively.

The next two results show that the quantity | | | u - uh,\bfc | | | has a unique minimum.
In the first results only one singular function is considered, i.e., dim(c) = 1. The
general case dim(c) > 1 is considered after.

Lemma 1. Assume that the vector c contains only one value c and that cf,g is the
correct value for the split and moreover that \psi , the singular function corresponding
to c, is not in the discrete space. Then we have that the quantity | | | u  - uh,c| | | as a
function of c is strictly convex; i.e., it has a unique minimum.

Proof. Under the assumption that dim(c) = 1, we have that R(c) = c\psi . With P
the projection in the energy norm, we have that wh,c = P (s+ (cf,g  - c)\psi ), and so

| | | u - uh,c| | | 2 = | | | s+ cf,g\psi  - (wh,c + c\psi )| | | 2

= | | | s - P (s) + (cf,g  - c)(\psi  - P (\psi ))| | | 2

= (cf,g  - c)2| | | \psi  - P (\psi )| | | 2

+ 2(cf,g  - c)a(\psi  - P (\psi ), s - P (s)) + | | | s - P (s)| | | 2 =: T (c) .

The first two derivatives of T are

T \prime (c) =  - 2(cf,g - c)| | | \psi  - P (\psi )| | | 2 - 2a(\psi  - P (\psi ), s - P (s)) , T \prime \prime (c) = 2| | | \psi  - P (\psi )| | | 2 .

Clearly T \prime \prime is strictly positive under the assumption that \psi is not in the discrete space,
i.e., P (\psi ) \not = \psi . Therefore, applying the Taylor theorem with the Lagrange reminder
we have for any k \in \BbbR and for some value \~c that

T (c+ k) = T (c) + kT \prime (c) +
k2

2
T \prime \prime (\~c) > T (c) + kT \prime (c) ,

which implies that T is a strictly convex function [8] with a unique minimum.

The next theorem shows how to find the position of the minimum of | | | u - uh,c| | | .
Theorem 2. The position of the minimum of | | | u - uh,c| | | is defined as

c\ast = cf,g +
a(\psi  - P (\psi ), s - P (s))

| | | \psi  - P (\psi )| | | 2
.

Proof. From the previous lemma, the minimum is the stationary point c\ast such
that T \prime (c\ast ) = 0, which means

c\ast =
2cf,g| | | \psi  - P (\psi )| | | 2 + 2a(\psi  - P (\psi ), s - P (s))

2| | | \psi  - P (\psi )| | | 2
= cf,g +

a(\psi  - P (\psi ), s - P (s))

| | | \psi  - P (\psi )| | | 2
.D
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Remark 3. Assuming that a(\cdot , \cdot ) is continuous and that | | | \cdot | | | is the energy norm,
i.e., | | | w| | | 2 := a(w,w):

c\ast \leq cf,g + Ca
| | | \psi  - P (\psi )| | | | | | s - P (s)| | | 

| | | \psi  - P (\psi )| | | 2
= cf,g + Ca

| | | s - P (s)| | | 
| | | \psi  - P (\psi )| | | 

.

Considering standard a priori converge results for FEMs [22, 32, 31] and assuming
that they are sharp, the nominator converges faster to 0 than the denominator when
the finite element space is refined since s is smooth; this implies that c\ast converges to
cf,g. The definition of | | | \cdot | | | depends on the FEM used to solve numerically problem
(3). In section 3.1 we introduce a possible choice for the FEM to use, and in (15) we
define the corresponding energy norm.

Corollary 4. The second derivative of | | | u  - uh,c| | | converges to 0 when the
finite element space is refined uniformly.

Proof. From
T \prime \prime (c) = 2\| \psi  - P (\psi )\| 2 ,

we have that T \prime \prime converges to 0 as the finite element space is refined uniformly since
P (\psi ) converges to \psi .

The next theorem shows that the solution of the celatus method converges as the
error for the smooth part s only.

Theorem 5 (convergence for dim(c) = 1). Denoting by c\ast the position of the
minimum of | | | u  - uh,c| | | , we have that the solution of the celatus method converges
to the continuous solution u as

| | | u - uh,c\ast | | | \leq Cconv| | | s - P (s)| | | .

Proof. Defining c\ast = cf,g +\Delta c, we have applying Taylor's theorem to
| | | u - uh,c\ast | | | 2 = T (c\ast )

T (c\ast ) = T (cf,g +\Delta c) = T (cf,g) + \Delta cT \prime (cf,g) +
1

2
\Delta c2T \prime \prime (cf,g)(4)

since all derivatives of T of order greater than two are zero. The derivatives of T have
been already analyzed in Lemma 1; therefore, we have

T (cf,g) = | | | s - P (s)| | | 2 ,
T \prime (cf,g) =  - 2a(\psi  - P (\psi ), s - P (s)) ,

T \prime \prime (cf,g) = 2| | | \psi  - P (\psi )| | | 2 .
(5)

From Theorem 2 and using the continuity of a(\cdot , \cdot ) we have that

| \Delta c| \leq Ca
| | | s - P (s)| | | 
| | | \psi  - P (\psi )| | | 

,

which, substituted in (4) together with (5), leads to

T (c\ast ) \leq | | | s - P (s)| | | 2 + 2C2
a | | | s - P (s)| | | 2 + C2

a | | | s - P (s)| | | 2 ,

which concludes the proof.

Theorem 5 shows that the nonsmooth behaviour of the solution does not affect the
convergence rate of the celatus method, which therefore converges faster than standard
FEMs.
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Remark 6. If a conforming FEM is used, from Theorem 5 we have

| | | u - uh,c\ast | | | \leq Cconv inf
vh\in V FE

h

| | | s - vh| | | ,

where we denoted with V FE
h the conforming finite element space.

The next three results are the generalizations of the previous three for dim(c) > 1.
From now on we use square brackets to indicate the index of an element in a vector,
and we define the vectors ei as the vectors with all entries equal to 0 except for ei[i],
i.e., 1.

Lemma 7. Assuming that none of the functions \psi i,j in (2) are in the discrete
space, then the quantity | | | u - uh,\bfc | | | as a function of c is strictly convex; i.e., it has
a unique minimum.

Proof. With P the projection in the energy norm, we have that
wh,\bfc = P (s+R(cf,g  - c)), and by the linearity of R(\cdot ) in all components of c we have

| | | u - uh,\bfc | | | 2 = | | | s+R(cf,g) - (wh,\bfc +R(c))| | | 2

= | | | s - P (s) + (I  - P )R(cf,g  - c)| | | 2

= | | | s - P (s)| | | 2 +
dim(\bfc )\sum 
z=1

(cf,g[z] - c[z])2| | | (I  - P )R(ez)| | | 2

+ 2

dim(\bfc )\sum 
z=1

(cf,g[z] - c[z])a(s - P (s), (I  - P )R(ez))

+ 2

dim(\bfc )\sum 
z=1

dim(\bfc )\sum 
t=z+1

(cf,g[z] - c[z])(cf,g[t] - c[t])

a((I  - P )R(ez), (I  - P )R(et)) =: T (c) .

The derivative of T in the component z is

\partial T

\partial c[z]
(c) =  - 2(cf,g[z] - c[z])| | | (I  - P )R(ez)| | | 2  - 2a(s - P (s), (I  - P )R(ez))

 - 2

dim(\bfc )\sum 
t=1,t\not =z

(cf,g[t] - c[t])a((I  - P )R(ez), (I  - P )R(et)) .

The second derivative of T in the components z and t is

\partial 2T

\partial c[z]\partial c[t]
(c) = 2a((I  - P )R(ez), (I  - P )R(et)) ,

which from the assumption that none of the functions \psi i,j are in the discrete space
implies using the coercivity of a(\cdot , \cdot ) that the Hessain of T is positive definite, which
implies that T is a strictly convex function [8].

Theorem 8. The position of the minimum of | | | u - uh,\bfc | | | is defined as

c\ast [z] = cf,g[z] +
a(s - P (s), (I  - P )R(ez))

| | | (I  - P )R(ez)| | | 2

+

\sum dim(\bfc )
t=1,t\not =z(cf,g[t] - c[t])a((I  - P )R(ez), (I  - P )R(et))

| | | (I  - P )R(ez)| | | 2
.
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Corollary 9. The second derivative of | | | u - uh,\bfc | | | converges to 0 refining uni-
formly the finite element space.

Proof. From the definition of the Hessian of T that all terms \partial T
\partial \bfc [z] (c), for any t

and z, tend to 0 as the finite element space is refined uniformly.

The next theorem shows the convergence of the celatus method in the case
dim(c) > 1. This case is not a simple extension of the dim(c) = 1 case since in
the latter the upper bound for | c\ast  - cf,g| only depends on the approximation level of
the finite element space; i.e., from Theorem 2 we have

| c\ast  - cf,g| \leq Ca
| | | s - P (s)| | | 
| | | \psi  - P (\psi )| | | 

.

Instead, in the case dim(c) > 1 we have from Theorem 8 using the continuity of a(\cdot , \cdot )
that

| c\ast  - cf,g| \infty \leq Ca max
z=1,...,dim(\bfc )

| | | s - P (s)| | | 
| | | (I  - P )R(ez)| | | 

+ Ca max
z=1,...,dim(\bfc )

\sum dim(\bfc )
t=1,t\not =z | cf,g[t] - c[t]| | | | (I  - P )R(et)| | | 

| | | (I  - P )R(ez)| | | 
.

(6)

Clearly from (6) we have that the quantity | c\ast  - cf,g| \infty , which is the distance between
the minimum c\ast of the error in the energy norm and the value cf,g, depends on c,
which is the point from where the position of the minimum c\ast is calculated. In other
words, if c is far enough from cf,g, the distance | c\ast  - cf,g| \infty can be very large even if
a very fine mesh is used. This dependency has to be taken into consideration.

Theorem 10 (convergence for dim(c) > 1). Denoting by c\ast the position of the
minimum of | | | u  - uh,\bfc | | | , we have that the solution of the celatus method converges
to the continuous solution u as

| | | u - uh,\bfc \ast | | | \leq Cconv

\Biggl( 
| | | s - P (s)| | | +Q\rho 

\Biggr) 
(7)

with Q = | cf,g  - c| \infty and

\rho := dim(c) max
t=1,...,dim(\bfc )

| | | (I  - P )R(et)| | | .

Proof. Defining c\ast = cf,g +\Delta c, we have applying Taylor's theorem to
| | | u - uh,\bfc \ast | | | 2 = T (c\ast )

T (c\ast ) = T (cf,g +\Delta c) = T (cf,g) + \Delta c \cdot \nabla T (cf,g) +
1

2
\Delta cT\nabla 2T (cf,g)\Delta c(8)

since all derivatives of T of order greater than two are zero. The derivatives of T have
been already analyzed in Lemma 7; therefore, we have

T (cf,g) = | | | s - P (s)| | | 2 ,
\partial T

\partial c[z]
(cf,g) \leq 2Ca| | | s - P (s)| | | | | | (I  - P )R(ez)| | | ,

\partial 2T

\partial c[z]\partial c[t]
(cf,g) \leq 2Ca| | | (I  - P )R(et)| | | | | | (I  - P )R(ez)| | | .

(9)
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B1398 STEFANO GIANI

From Theorem 8 and using the continuity of a(\cdot , \cdot ) we have that

\Delta c[z] \leq Ca
| | | s - P (s)| | | 

| | | (I  - P )R(ez)| | | 
+ CaQ

\rho 

| | | (I  - P )R(ez)| | | 
.

Substituting the result in (8) together with (9) leads to

T (c\ast ) \leq | | | s - P (s)| | | 2 + 2C2
a | | | s - P (s)| | | 2 + 2C2

aQ\rho | | | s - P (s)| | | 
+ C3

a | | | s - P (s)| | | 2 + C3
aQ

2\rho 2 + 2C3
aQ\rho | | | s - P (s)| | | ,

which concludes the proof.

Corollary 11. Assuming that c = cf,g we have from Theorem 10 that

| | | u - uh,\bfc \ast | | | \leq Cconv| | | s - P (s)| | | .

Corollary 11 shows that in the best-case scenario also for dim(c) > 1 the method
converges as the case dim(c) = 1. On the other hand, Theorem 10 shows that in
the worst-case scenario the convergence may be dominated by \rho , which converges as
the most nonsmooth part of the solution. This suggests that in order to have a fast
convergence, it is crucial to try to reduce Q moving c closer to cf,g. This is what
inspired us to develop the gradient descendent method in section 3.2.

Unfortunately, the quantity | | | u  - uh,c| | | is not computable for most problems,
so it cannot be used directly to find c\ast . We propose to use a reliable and efficient a
posteriori error estimator \eta to approximate c\ast . The main characteristic of a reliable
and efficient a posteriori error estimator is that its value is linearly depending on the
value of the true error; i.e., there are two positive constants \beta 1 and \beta 2 not depending
on the size or order of elements in the mesh such that

\beta 1| | | u - uh,c| | | \leq \eta \leq \beta 2| | | u - uh,c| | | .(10)

In other words, the true error forces the error estimator to behave in a similar way,
making possible in practice to find with good approximation the position of the min-
imum of | | | u - uh,c| | | .

Reliable and efficient a posteriori error estimators are available for different types
of FEMs, and they are normally used to drive mesh adaptivity. The first error estima-
tors were derived for conforming FEMs to be used with h-adaptivity [35]. Later, error
estimators for conforming FEMs suitable for hp-adaptivity appeared [11]. Even more
recently, examples of reliable and efficient a posteriori error estimators for noncon-
forming FEMs like for DG methods started to appear. The first example of such error
estimator for the DG method can be traced back to [24]. In the past few years more
refined analyses have appeared addressing the issue of the robustness of the efficiency
for a posteriori error estimators for high-order methods. Two examples of p-robust a
posteriori error estimates based on flux reconstructions can be found in [9, 12].

The derivation of reliable and efficient a posteriori error estimators is a topic on
its own that deserves to be discussed in separate publications. For the purposes of
this work, we assume a reliable and efficient a posteriori error estimator for the FEM
used within the celatus method is already available.

3. Numerical method and implementation. In this section we introduce
the numerical method and discuss its implementation.
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HP-ADAPTIVE CELATUS DG B1399

3.1. FEM. We assume that problem (3) is numerically approximated using an
FEM. Many different FEMs can be used for this task. Among all of them we decided
to use the symmetric interior penalty discontinuous Galerkin (SIPDG) method [5].

Any mesh \scrT used in this work is a subdivision of \Omega with K denoting a generic
triangular or quadrilateral element. We assume that the subdivision \scrT is shape regular
and constructed via affine mappings FK : \^K  - \rightarrow K, where \^K is either the reference
triangle or the reference quadrilateral. We allow for a maximum of one hanging node
per edge, and we denote \scrE (\scrT ) and \scrE int(\scrT ) \subset \scrE (\scrT ) the set of all edges of the mesh \scrT 
and the subset of all interior edges, respectively, and by \scrE BC(\scrT ) \subset \scrE (\scrT ) the subset of
all boundary edges. We define hK and hE to be the diameter of the element K and
the length of the edge E, respectively.

Now we introduce the polynomial degrees for the approximation in our DG
method. Hence, for each element K of the mesh \scrT we associate a polynomial de-
gree pK \geq 1, and we introduce the vector p = \{ pK : K \in \scrT \} . We assume that p is
of bounded local variation between pairs of neighboring elements. For any E \in \scrE (\scrT ),
we introduce the edge polynomial degree pE by

pE =

\left\{     
max (pK , pK\prime ) if E = \partial K \cap \partial K \prime \in \scrE int(\scrT ),

pK if E = \partial K \cap \partial \Omega \in \scrE BC(\scrT ).

(11)

Hence, for a given partition \scrT of \Omega and a vector p on \scrT , we define the DG finite
element space by

V\bfp (\scrT ) = \{ v \in L2(\Omega ) : v| K \in \scrP pK
(K), K \in \scrT \} ,(12)

where for triangular elements \scrP pK
(K) is the space of polynomials of degree less or

equal pK and for quadrilateral elements is the space of polynomials of degree less or
equal pK with respect to each variable. We also denote hmax and pmin as the diameter
of the biggest element in \scrT and the minimum value in p, respectively.

Thus, the DG approximation of problem (3) reads as follows: For any vector c,
find wh,\bfc \in V\bfp (\scrT ) such that

aDG(wh,\bfc , vh) = lDG
\bfc (vh) \forall vh \in V\bfp (\scrT ) ,(13)

where the bilinear forms

aDG(u, v) :=
\sum 
K\in \scrT 

\int 
K

\nabla u \cdot \nabla v dx

 - 
\sum 

E\in \scrE int(\scrT )\cup \scrE BC(\scrT )

\int 
E

\{ \{ \nabla u\} \} \cdot [[v]] + \{ \{ \nabla v\} \} \cdot [[u]] ds

+
\sum 

E\in \scrE int(\scrT )\cup \scrE BC(\scrT )

\gamma p2E
hE

\int 
E

[[u]] \cdot [[v]] ds

lDG
\bfc (v) :=

\sum 
K\in \scrT 

\int 
K

(f +\Delta R(c))v dx

 - 
\sum 

E\in \scrE BC(\scrT )

\int 
E

(g  - R(c))\nabla v \cdot nE ds

+
\sum 

E\in \scrE BC(\scrT )

\gamma p2E
hE

\int 
E

(g  - R(c))v ds ,

(14)
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B1400 STEFANO GIANI

where \gamma is the penalty constant; [[\cdot ]] and \{ \{ \cdot \} \} are the jump and average operators
defined in [5], respectively; and nE is the unit vector normal to E and pointing out
of \Omega .

The energy norm for problem (13) is the DG norm defined as

| | | u| | | DG =

\Biggl( \sum 
K\in \scrT 

\| \nabla u\| 20,K +
\sum 

E\in \scrE int(\scrT )

\gamma p2E
hE

\| [[u]]\| 20,E +
\sum 

E\in \scrE BC(\scrT )

\gamma p2E
hE

\| u\| 20,E

\Biggr) 1/2

,

(15)

where \| \cdot \| 0,K and \| \cdot \| 0,E are, respectively, the L2-norm on an element K and on an
edge E.

Considering the SIPDG method, the result in Theorem 5 can be extended using
the convergence result in [31].

Corollary 12 (convergence of the SIPDG method for dim(c) = 1). Denoting
by c\ast the position of the minimum of | | | u - uh,c| | | DG, we have that the solution of the
celatus method converges to the continuous solution u as

| | | u - uh,c\ast | | | DG \leq Cconv
h\mu  - 1
max

p
r - 3/2
min

\| s\| r,\Omega ,

where the smooth part s of the solution is assumed to be in s \in Hr(\Omega ) with r \geq 2,
where \| \cdot \| r,\Omega is the Sobolev norm on Hr(\Omega ) and with \mu = min(pmin + 1, r).

This result clearly explains the better performance of the celatus method com-
pared to the SIPDG method applied directly to (1) as reported in section 4.3. In
the standard case the convergence can be found using the results in [31] with the
interpolation operator in [6],

| | | u - uh| | | DG \leq Cconv
h\mu  - 1
max

p
k - 3/2
min

\| u\| k,\Omega ,(16)

with u \in Hk(\Omega ) and with \mu = min(pmin + 1, k). In case of nonsmooth solutions
u, k < r because Hk(\Omega ) is the Sobolev space containing the entire solution u, where
Hr(\Omega ) is the Sobolev space containing only the smooth part of the solution. Moving to
the general case, i.e., dim(c) > 1, we have from Theorem 10 that the worst possible
convergence of the celatus method with SIPDG is asymptotically the same as the
convergence of SIPDG alone (16).

Corollary 13 (convergence of the SIPDG method for dim(c) > 1). Denoting
by c\ast the position of the minimum of | | | u - uh,\bfc | | | DG, we have that the solution of the
celatus method converges to the continuous solution u as

| | | u - uh,\bfc \ast | | | DG \leq Cconv

\Biggl( 
h\mu 1 - 1
max

p
r - 3/2
min

\| s\| r,\Omega +R dim(c)
h\mu 2 - 1
max

p
k - 3/2
min

\Biggr) 
,

where the smooth part s of the solution is assumed to be in s \in Hr(\Omega ) and

k := min\{ m : 1 \leq t \leq dim(c) , R(et) \in Hm(\Omega )\} ,

is the regularity of the least regular part of the solution and with \mu 1 = min(pmin+1, r)
and \mu 2 = min(pmin + 1, k).
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HP-ADAPTIVE CELATUS DG B1401

The error estimator \eta \bfc for our SIPDG method (13) is defined as

\eta \bfc =

\sqrt{} \sum 
K\in \scrT 

\Bigl( 
\eta 2\bfc ,R,K + \eta 2\bfc ,J,K + \eta 2\bfc ,F,K

\Bigr) 
,(17)

where the three terms are defined as

\eta 2\bfc ,R,K =
h2K
p2K

\bigm\| \bigm\| \bigm\| f +\Delta R(c) + \Delta wh,\bfc 

\bigm\| \bigm\| \bigm\| 2
0,K

,

\eta 2\bfc ,J,K =
1

2

\sum 
E\in \scrE int(K)

\gamma 2p3E
hE

\bigm\| \bigm\| \bigm\| [[wh,\bfc ]]
\bigm\| \bigm\| \bigm\| 2
0,E

+
\sum 

E\in \scrE BC(K)

\gamma 2p3E
hE

\bigm\| \bigm\| \bigm\| wh,\bfc  - (g  - R(c))
\bigm\| \bigm\| \bigm\| 2
0,E

,

\eta 2\bfc ,F,K =
1

2

\sum 
E\in \scrE int(K)

hE
pE

\bigm\| \bigm\| \bigm\| [[\nabla wh,\bfc ]]
\bigm\| \bigm\| \bigm\| 2
0,E

.

This error estimator is an example of an energy norm residual-based error estimator
[16, 20, 35, 38], which is proven to be reliable in the energy norm. In the case of the
SIPDG method used in this paper, the reliability in the energy norm implies

| | | w\bfc  - wh,\bfc | | | DG \leq C(\eta \bfc +\Theta \bfc ) ,

where the constant C does not depend on the size of the elements in the mesh or
the order of polynomials used in the finite element space and where \Theta \bfc is the data
approximation term depending on the approximation of f +\Delta R(c) and g  - R(c) in
the finite element space and which is an asymptotically higher-order term compared
to \eta \bfc . Because of \Theta \bfc is a higher-order term, it is never computed in practice, and from
the literature for both smooth and nonsmooth problems, it clearly can be omitted.

3.2. Gradient descendent method. The method presented in this section is
what distinguishes the present work from others. Here, we use a gradient descendent
method to approximate c\ast , which is the position of the minimum for the energy norm
as shown in Theorem 8. Denoting by c\ast h the approximation of c\ast computed finding
the minimum of the error estimator \eta \bfc , we have from (10) that c\ast h has to be closed to
c\ast for a fine enough finite element space. We introduce the function F\bfc ,z(\cdot )

F\bfc ,z(\alpha ) := \eta 2\bfc +\alpha \bfe z
 - \eta 2\bfc ,(18)

which describes the variation of the error estimator along the z component of c. In
order to find the minimum of the residual along the z component, we can simply
apply the gradient descendent method to F\bfc ,z(\cdot ). This consists of solving for \alpha the
equation

F \prime 
\bfc ,z(\alpha ) = 0 .(19)

Then to complete the computation of the position of the minimum, the same process
can be repeated for all remaining components of c.

In order to express the first derivative of F\bfc ,z(\cdot ) we need the solutions from an
auxiliary family of problems: For any i and j from (2), let z the index in c for the
position of the entry ci,j . Then uz is the solution of

 - \Delta uz = \Delta R(ez) in \Omega ,
uz =  - R(ez) on \partial \Omega .

(20)
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Clearly uz \equiv  - \psi z. Applying the SIPDG methods to problems (20) for all values of z
between 1 and dim(c), we obtain a family of discrete problems: For any z, uh,z is the
solution of

aDG(uh,z, vh) = lDG
z (vh) \forall vh \in V\bfp (\scrT ) ,(21)

where

lDG
z (v) :=

\sum 
K\in \scrT 

\int 
K

\Delta R(ez)v dx

 - 
\sum 

E\in \scrE BC(\scrT )

\int 
E

 - R(ez)\nabla v \cdot nE ds+
\sum 

E\in \scrE BC(\scrT )

\gamma p2E
hE

\int 
E

 - R(ez)v ds .
(22)

Now we have all the ingredients to express (19): From (18) and (17) we have

F\bfc ,z(\alpha ) =
\sum 
K\in \scrT 

\bigl( 
\eta 2\bfc +\alpha \bfe z,R,K  - \eta 2\bfc ,R,K + \eta 2\bfc +\alpha \bfe z,J,K  - \eta 2\bfc ,J,K + \eta 2\bfc +\alpha \bfe z,F,K  - \eta 2\bfc ,F,K

\bigr) 
,

where

\eta 2\bfc +\alpha \bfe z,R,K =
h2K
p2K

\bigm\| \bigm\| \bigm\| f +\Delta R(c+ \alpha ez) + \Delta wh,\bfc +\alpha \bfe z

\bigm\| \bigm\| \bigm\| 2
0,K

=
h2K
p2K

\bigm\| \bigm\| \bigm\| (f +\Delta R(c) + \Delta wh,\bfc ) + \alpha (\Delta R(ez) + \Delta uh,z)
\bigm\| \bigm\| \bigm\| 2
0,K

,

\eta 2\bfc +\alpha \bfe z,J,K =
1

2

\sum 
E\in \scrE int(K)

\gamma 2p3E
hE

\bigm\| \bigm\| \bigm\| [[wh,\bfc +\alpha \bfe z ]]
\bigm\| \bigm\| \bigm\| 2
0,E

+
\sum 

E\in \scrE BC(K)

\gamma 2p3E
hE

\bigm\| \bigm\| \bigm\| wh,\bfc +\alpha \bfe z  - (g  - R(c+ \alpha ez))
\bigm\| \bigm\| \bigm\| 2
0,E

=
1

2

\sum 
E\in \scrE int(K)

\gamma 2p3E
hE

\bigm\| \bigm\| \bigm\| [[wh,\bfc + \alpha uh,z]]
\bigm\| \bigm\| \bigm\| 2
0,E

+
\sum 

E\in \scrE BC(K)

\gamma 2p3E
hE

\bigm\| \bigm\| \bigm\| (wh,\bfc  - (g  - R(c)) + \alpha (uh,z +R(ez))
\bigm\| \bigm\| \bigm\| 2
0,E

,

\eta 2\bfc +\alpha \bfe z,F,K =
1

2

\sum 
E\in \scrE int(K)

hE
pE

\bigm\| \bigm\| \bigm\| [[\nabla wh,\bfc +\alpha \bfe z ]]
\bigm\| \bigm\| \bigm\| 2
0,E

=
1

2

\sum 
E\in \scrE int(K)

hE
pE

\bigm\| \bigm\| \bigm\| [[\nabla wh,\bfc + \alpha \nabla uh,z]]
\bigm\| \bigm\| \bigm\| 2
0,E

,

and consequently

\eta 2\bfc +\alpha \bfe z,R,K  - \eta 2\bfc ,R,K =
h2K
p2K

\alpha 2
\bigm\| \bigm\| \bigm\| \Delta R(ez) + \Delta uh,z

\bigm\| \bigm\| \bigm\| 2
0,K

+ 2\alpha 
h2K
p2K

\int 
K

(f +\Delta R(c) + \Delta wh,\bfc )(\Delta R(ez) + \Delta uh,z) dx

= \alpha 2GR,K,z + 2\alpha D\bfc ,R,K,z ,
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HP-ADAPTIVE CELATUS DG B1403

\eta 2\bfc +\alpha \bfe z,J,K  - \eta 2\bfc ,J,K =
1

2

\sum 
E\in \scrE int(K)

\gamma 2p3E
hE

\Bigl( 
\alpha 2
\bigm\| \bigm\| \bigm\| [[uh,z]]\bigm\| \bigm\| \bigm\| 2

0,E
+ 2\alpha 

\int 
E

[[wh,\bfc ]][[uh,z]] ds
\Bigr) 

+
\sum 

E\in \scrE BC(K)

\gamma 2p3E
hE

\Bigl( 
\alpha 2
\bigm\| \bigm\| \bigm\| uh,z +R(ez)

\bigm\| \bigm\| \bigm\| 2
0,E

+ 2\alpha 

\int 
E

(wh,\bfc  - (g  - R(c)))(uh,z +R(ez)) ds
\Bigr) 

= \alpha 2GJ,K,z + 2\alpha D\bfc ,J,K,z ,

\eta 2\bfc +\alpha \bfe z,F,K  - \eta 2\bfc ,F,K =
1

2

\sum 
E\in \scrE int(K)

hE
pE

\Bigl( 
\alpha 2
\bigm\| \bigm\| \bigm\| [[\nabla uh,z]]\bigm\| \bigm\| \bigm\| 2

0,E

+ 2\alpha 

\int 
E

[[\nabla wh,\bfc ]][[\nabla uh,z]] ds
\Bigr) 

= \alpha 2GF,K,z + 2\alpha D\bfc ,F,K,z ,

where

GR,K,z =
h2K
p2K

\bigm\| \bigm\| \bigm\| \Delta R(ez) + \Delta uh,z

\bigm\| \bigm\| \bigm\| 2
0,K

,

D\bfc ,R,K,z =
h2K
p2K

\int 
K

(f +\Delta R(c) + \Delta wh,\bfc )(\Delta R(ez) + \Delta uh,z) dx ,

GJ,K,z =
1

2

\sum 
E\in \scrE int(K)

\gamma 2p3E
hE

\bigm\| \bigm\| \bigm\| [[uh,z]]\bigm\| \bigm\| \bigm\| 2
0,E

+
\sum 

E\in \scrE BC(K)

\gamma 2p3E
hE

2
\bigm\| \bigm\| \bigm\| uh,z +R(ez)

\bigm\| \bigm\| \bigm\| 2
0,E

,

D\bfc ,J,K,z =
1

2

\sum 
E\in \scrE int(K)

\gamma 2p3E
hE

\int 
E

[[wh,\bfc ]][[uh,z]] ds

+
\sum 

E\in \scrE BC(K)

\gamma 2p3E
hE

2

\int 
E

(wh,\bfc  - (g  - R(c)))(uh,z +R(ez)) ds ,

GF,K,z =
1

2

\sum 
E\in \scrE int(K)

hE
pE

\bigm\| \bigm\| \bigm\| [[\nabla uh,z]]\bigm\| \bigm\| \bigm\| 2
0,E

,

D\bfc ,F,K,z =
1

2

\sum 
E\in \scrE int(K)

hE
pE

\int 
E

[[\nabla wh,\bfc ]][[\nabla uh,z]] ds .

Putting all together we obtain

F\bfc ,z(\alpha ) = \alpha 2
\sum 
K\in \scrT 

(GR,K,z +GJ,K,z +GF,K,z)

+ 2\alpha 
\sum 
K\in \scrT 

(D\bfc ,R,K,z +D\bfc ,J,K,z +D\bfc ,F,K,z) .
(23)

Finally, we can express (19) taking the derivative of (23):

0 = F \prime 
\bfc ,z(\alpha ) = 2\alpha 

\sum 
K\in \scrT 

(GR,K,z +GJ,K,z +GF,K,z)

+ 2
\sum 
K\in \scrT 

(D\bfc ,R,K,z +D\bfc ,J,K,z +D\bfc ,F,K,z) .
(24)D
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It is straightforward to see that the solution \alpha of (24) is

\alpha =
 - 
\sum 

K\in \scrT (D\bfc ,R,K,z +D\bfc ,J,K,z +D\bfc ,F,K,z)\sum 
K\in \scrT (GR,K,z +GJ,K,z +GF,K,z)

.(25)

Algorithm 1 describes in algorithmic form the descendent method to find the min-
imum of \eta \bfc based on (25). Due to the nature of the problem, the position of the
minimum along each component can be found separately, and this is exploited in
Algorithm 1. Compared to a standard FEM that consists of only solving a linear
problem, Algorithm 1 is more expensive to run since multiple linear problems have
to be solved, but the accuracy of Algorithm 1 is much higher, compensating for its
cost as reported in sections 4.3 and 4.4. However, the total computational cost of
Algorithm 1 heavily depends on the linear solver used. If a direct solver is used to
solve the linear systems, then the computational cost can be reduced because all lin-
ear problems in Algorithm 1 have the same stiffness matrix. So, the factorization
can be done only once, and then the solution can be computed multiple times for
different right-hand sides. If an iterative solver is used, the choice of the solver and
the preconditioner may have a big impact on the complexity of Algorithm 1. It has
been reported in the literature [37] that the complexity of certain multigrid methods
is \scrO (N) for 3D problems with N the dimension of the problem. Comparing this with
direct solvers, we have that the complexity of Gauss elimination for dense matrices
[10] is \scrO (N3), and for sparse matrices the complexity is estimated in [1] as \scrO (N4/3)
for 3D problems. Other direct methods for sparse matrices have complexities be-
tween these two extrema. In view of this, it could be still cheaper for big enough N
such that maxits \times dim(c) < N to run Algorithm 1 calling an iterative solver mul-
tiple times rather than running Algorithm 1 with a direct solver and factorizing the

Algorithm 1. Gradient descendent algorithm: For parameters: the mesh \scrT , the
finite element space V\bfp (\scrT ), the initial guess c, the maximum number of iterarions
maxits, and the acceptable tolerance on the position of the minimum tol. The algo-
rithm returns the vector c\ast h of the minimum the solution uh,\bfc \ast 

h
= wh,\bfc \ast 

h
+ R(c\ast h) and

the residual \eta \bfc \ast 
h
.

for z = 1, . . . ,dim(c) do
Compute uh,z solving problem (20)

end for
n := 0
c0 := c
repeat
cold := cn
Compute wh,\bfc n

solving problem (13)
for z = 1, . . . ,dim(cn) do
Compute \alpha using (25)
cn[z] := cold[z] + \alpha 

end for
n := n+ 1

until | cn  - cold| < tol OR n \geq maxits
Return c\ast h := cn
Return uh,\bfc \ast 

h
which is the sum of wh,\bfc n

and R(cn), i.e. uh,\bfc \ast 
h
:= wh,\bfc n

+R(cn)
Compute and return \eta \bfc \ast 

h
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stiffness matrix only once. In case less efficient iterative solvers are used, it could be
more convenient to use a direct solver. In sections 4.3 and 4.4, we further analyze the
computational cost of Algorithm 1.

4. Numerical experiments. In this section we present a variety of numerical
examples to illustrate the performances of the celatus method. We are going to
consider two domains:

(i) An L-shape domain constructed removing a quarter from a square domain,
i.e., \Omega = [ - 1, 1]2/[0, 1]2.

(ii) A T-shape domain constructed removing two square portions from a square
domain, i.e., \Omega = ([0, 3]\times [0, 2])/([0, 1]2 \cup [2, 3]\times [0, 1]).

We also are going to use two sequences of meshes:
(i) A uniformly h-refined sequence of meshes for the L-shape domain. Such

sequence is constructed starting from a sequence of structured square element
meshes on the square domain [ - 1, 1]2 with 17 \times 17, 33 \times 33, 65 \times 65, and
129 \times 129 nodes. From this sequence, the sequence for the L-shape domain
is constructed removing a quarter of the mesh from each of the structured
meshes. This is a uniformly h-refined sequence of meshes because each mesh
in the sequence can be seen as the complete h-refinement of the previous mesh
in the sequence.

(ii) A uniformly p-refined sequence of meshes for the L-shape domain. Such
sequence is constructed taking the first mesh in the h-refined sequence of
meshes for the L-shape domain and letting the polynomial order increase
from 1 to 4 on all elements. This is a uniformly p-refined sequence of meshes
because each mesh in the sequence can be seen as the complete p-refinement
of the previous mesh in the sequence.

In the rest of the section we use the following five problems:
(i) On the L-shape domain let define f and g such that problem (1) has solution

u = sin(\pi (x+ 1)) sin(\pi (y + 1)).
(ii) On the L-shape domain let define f and g such that problem (1) has solution

u = (x2 + y2)1/3 + sin(\pi (x+ 1)) sin(\pi (y + 1)).
(iii) On the L-shape domain let define f = 1 and g = 0.
(iv) On the L-shape domain let define f and g such that problem (1) has solution

u = 10(x2 + y2)1/3 + sin(\pi (x+ 1)) sin(\pi (y + 1)).
(v) On the T-shape domain let define f = 1 and g = 0.

All the codes used to produce the results in this section are written in FORTRAN, and
all linear systems are solved using Multifrontal Massively Parallel Solver (MUMPS);
see, e.g. [2, 3, 4]. All computations are performed on an Intel Core i7 PC with 16 GB
of RAM at 3.60 GHz. The codes only take the default optimization of the machine;
i.e., they are not parallel codes.

4.1. Reliability of the error estimator in finding the minimum. In this
subsection, we numerically explore the accuracy of relation (10) or, in other words,
how accurate is \eta \bfc when used to find cf,g. As discussed in section 2, c\ast is unique,
and when c\ast is close to cf,g, w\bfc = s+ R(cf,g  - c\ast ) is close to be a smooth function.
This is also true for its approximation wh,\bfc . Since the error estimator \eta \bfc is sensitive
to any singular behavior, it can be used to estimate the smoothness of wh,\bfc and
therefore the region around the optimal value cf,g where the solution is almost smooth.
The accuracy of this method is based on the accuracy of the error estimator \eta \bfc to
detect the presence in the computed solution wh,\bfc of any singular behavior. Such
capability has been already established in the literature, and it is at the basis of many
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Fig. 1. Distribution of the error estimator values on the mesh for the smooth solution and for
p = 1 (left) and p = 6 (right).

Fig. 2. Distribution of the error estimator values on the mesh for the nonsmooth solution and
for p = 1 (left) and p = 6 (right).

mesh adaptivity techniques [17, 18, 38]. In order to show this in the context of the
present paper, let \eta 1 and \eta 2 be the error estimators of the SIPDG solutions uh,1 and
uh,2, where uh,1 is an approximation of the solution of problem (i) and uh,2 is an
approximation of the solution of problem (ii). Clearly the solution uh,1 is smooth,
and the solution uh,2 is not smooth. In Figure 1 are the plots of the distribution of
values of \eta 1 on the second mesh in the uniformly h-refined sequence and for p on all
elements equal to either 1 or 6. In Figure 2 are the plots of the distribution of values
of \eta 2 on the same mesh for the same values of p. In the case of \eta 1 the values of the
error estimator are all closer to 0 compared to \eta 2, and they decrease very rapidly when
p increase. Comparing \eta 1 with \eta 2, it is clear that in the latter the error estimator has
correctly identified the presence of singular behavior at the reentering corner marking
the region with very high values, and this is the same for all values of p since singular
behavior cannot be resolved efficiently with high-order polynomials. To further show
that the error estimator \eta \bfc is suitable for searching for the position of the minimum
c\ast , we now move our attention to the celatus method applied to problem (ii) and
with \psi (r, \theta ) = (x2 + y2)1/3. Such choice of \psi is able to capture the singular behavior
at the reentering corner, and in view of the decomposition u = s+ cf,g\psi , clearly the
optimal value for cf,g is 1. We then consider values of c in the range [ - 5, 5], and for
each value of c we numerically solve problem (3) and then compute \eta c for each c. In

D
ow

nl
oa

de
d 

11
/1

4/
18

 to
 1

29
.2

34
.3

9.
15

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HP-ADAPTIVE CELATUS DG B1407

Fig. 3. Value of \eta c as a function of c for different values of p on the left and for different
meshes with p = 1 on the right.

Table 1
Error in the value of cn in Algorithm 1 for a series of structured meshes with p = 1 and

corresponding values for \eta cn for each iteration of Algorithm 1.

Mesh Iteration | cn  - cf,g | \eta cn

17\times 17
0 1 1.6367
1 0.1619 0.8289

33\times 33
0 1 1.0465
1 0.1029 0.4240

65\times 65
0 1 0.6658
1 0.0653 0.2149

129\times 129
0 1 0.4221
1 0.0414 0.1084

Figure 3 \eta c is plotted as a function of c. On the left we used the uniformly p-refined
sequence of meshes, on the right the uniformly h-refined sequence of meshes with
p = 1. The value of c = 1 is marked by vertical black lines, and clearly the minimum
of \eta c is reached in the correct neighborhood for all simulations suggesting that in
this case c\ast h \approx 1, which is correct since by construction cf,g = 1. Moreover, we can
notice that the value of the error estimator is decreasing with p and also by refining
the mesh. This is explainable due to the fact that a richer finite element space can
better approximate the solution. Also, it is clear that increasing p or reducing the
sizes of the elements, the second derivative of \eta c as a function of c is decreasing; this
is exactly the behavior of | | | u  - uh,c| | | described in Corollary 4, suggesting that the
error estimator has a similar behavior.

4.2. Accuracy in localizing the minimum. Next, we show the performances
of the celatus method, Algorithm 1, in localizing the minimum. In order to do that
the considered test case is problem (ii) and with \psi (r, \theta ) = (x2 + y2)1/3. As already
explained in the previous subsection, the optimal value for cf,g is 1. The parameters
for Algorithm 1 are initial value of c = 0, maxits = 100, and tol = 1E  - 6.

In Table 1 we report the behavior of the quantity | cn  - cf,g| during the iterations
of Algorithm 1 for the uniformly h-refined sequence of meshes with p = 1. For all
meshes the algorithm takes two iterations before converging, and it can be seen that
the error decreases using finer meshes. This is in line with Theorem 2, which shows
convergence of c\ast to cf,g when the finite element space gets richer. A similar behavior
can be seen for the error estimator \eta cn ; this can be easily explained by the fact that
the approximation error reduces when the finite element space gets finer.
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In Table 2 we report the behavior of the quantity | cn  - cf,g| during the iterations
of Algorithm 1 for the uniformly p-refined sequence of meshes. For all meshes the
algorithm takes two iterations to converge, which is the same as before, but, compared
with Table 1, it is clear that in this case the error and the residual decrease much
faster. This suggests much better approximation of the location of the minimum, and
smaller residuals imply better approximation of the solution. This is confirmed by
Figure 4 (left), where the error | c\ast h  - cf,g| is plotted for the two sequences of meshes.
On closer inspection, it can be seen that the error on the uniformly p-refinement
sequence converges exponentially. This is what we consider the main advantage of our
method compared to any standard polynomial FEM. With our method it is possible to
achieve exponential convergence for nonsmooth solutions with uniform p-refinement
alone. Standard FEMs can only achieve polynomial convergence with p-refinement
alone for nonsmooth solutions since increasing the order of p, without reducing the size
of the elements where the solution is nonsmooth, is not enough. To get exponential
convergence for nonsmooth solutions with standard FEMs, it is necessary to use hp-
adaptivity. With our method this is not necessary since the nonsmooth part of the
solution is removed from the finite element problem and handled by the gradient
descendent method. This improves the convergence of the finite element part and in
return improves the convergence of the overall method. This aspect is further explored
in the next sections.

Next, we consider problem (iii), for which the analytical solution is unknown.
Solving the Sturm--Liouville eigenvalue problem around the reentering corner, we have
that there is a single eigenvalue less than 1, and the corresponding singular behavior

Table 2
Error in the value of cn in Algorithm 1 for a series of structured meshes with 192 elements and

different values of p and corresponding values for \eta cn for each iteration of Algorithm 1.

Mesh Iteration | cn  - cf,g | \eta cn

p = 1
0 1 1.6367
1 0.1619 0.8289

p = 2
0 1 0.9265
1 0.0003 0.0153

p = 3
0 1 0.6623
1 4.8795e-05 0.0003

p = 4
0 1 0.5246
1 5.7818e-08 3.8663e-06

Fig. 4. (left) Error of the position of the minimum in Algorithm 1 for the two sequences of
meshes. (right) Value of \eta c\ast 

h
per iteration of Algorithm 1 for two sequences of meshes.
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Table 3
Value of cn in Algorithm 1 for the uniformly h-refined sequence of meshes with p = 1 and

corresponding values for \eta cn for each iteration of Algorithm 1.

Mesh Iteration cn \eta cn

17\times 17
0 0 0.3767
1 0.5044 0.3553

33\times 33
0 0 0.1962
1 0.4789 0.1807

65\times 65
0 0 0.1024
1 0.4551 0.9129e-01

129\times 129
0 0 0.5390e-01
1 0.4372 0.4590e-01

Table 4
Value of cn in Algorithm 1 for the uniformly p-refined sequence of meshes and corresponding

values for \eta cn for each iteration of Algorithm 1.

Mesh Iteration cn \eta cn

p = 1
0 0 0.3767
1 0.5044 0.3553

p = 2
0 0 0.6300e-01
1 0.4023 0.1061e-01

p = 3
0 0 0.4850e-01
1 0.4020 0.2107e-02

p = 4
0 0 0.4114e-01
1 0.4020 0.8097e-03

is \psi (r, \theta ) = r2/3 sin(2/3 \theta ). Even if the singular behavior is known, the solution u
remains unknown since the exact value of cf,g and the smooth part s are not known.
We choose the parameters for Algorithm 1 as before, and in Table 3 we report the
behavior of the quantity cn during the iterations of Algorithm 1 for the uniformly
h-refined sequence of meshes with p = 1. For all meshes the algorithm takes two
iterations before converging. Since the exact value of cf,g is not known, it is difficult
to estimate the convergence, but by the naked eye the values c\ast h are settling down.
Also, the value of the error estimator is decreasing refining the mesh, suggesting a
decrease of the approximation error for the smooth part of the solution. As in the
previous example, this leads to a decay of the total error | | | u - uh,\bfc | | | DG.

In Table 4 we report the behavior of cn and \eta cn on the uniformly p-refined sequence
of meshes.

Comparing Tables 3 and 4 to the two previous tables, the same conclusions can be
reached for the convergence speeds on the two sequences of meshes. This is confirmed
by Figure 5, where the behavior of the error estimator is reported.

4.3. Comparison with standard FEMs. In this subsection, we compare the
performances of the celatus method against a standard FEM. In particular we are
going to compare against the SIPDG method in section 3.1 applied directly to prob-
lem (1). We consider problem (iv) with \psi (r, \theta ) = (x2 + y2)1/3, which implies that
the optimal value for cf,g is 10. The parameters for Algorithm 1 are initial value of
c = 0, maxits = 100, and tol = 1E  - 8. To do the comparison we start from a mesh
of 12 square elements with p = 1, and then we apply either uniform-h or uniform-p
refinement. In Figure 6 we report the decay of the errors in the L2 and the DG norms
for our method and for the standard SIPDG method. As can be seen, our method
is always better than the standard method and really outperforms the standard one
with uniform-p refinement. Considering only uniform-h refinement, we have that the
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Fig. 5. Minimum value of \eta cn per iteration of Algorithm 1 for the two sequences of meshes.

Fig. 6. (left) Convergence for the methods in the L2 norm: std stands for standard SIPDG,
and new stands for the celatus method. (right) Convergence for the methods in the DG norm.

two methods converge only polynomially, which is not surprising since finite elements
can only converge as such if the order of the elements is kept constant. However, in-
creasing the order of polynomials, FEMs can potentially converge exponentially fast,
but only if the solution is smooth. The solution of the considered problem is not
smooth at all, and so the standard method converges only polynomially also with
uniform-p refinement. However, with our proposed method, the nonsmooth part is al-
most completely removed from the solution of the finite element problem. Therefore,
from Corollary 12 the convergence of the overall method follows the convergence of
the FEM part, which is exponential since only the smooth part is approximated by
the FEM. In other words, our method converges exponentially fast even on structured
meshes for nonsmooth problems where standard methods do not.
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4.4. Comparison with standard adaptive FEMs. In this subsection, we
compare the performances of the celatus method against a standard FEM with adap-
tivity, and we are going to consider problem (iii). For this problem the exact solution
is unknown. For the comparison, we set the parameters of Algorithm 1 as c = 0,
maxits = 100, and tol = 1E  - 6. The initial mesh is the same used in the previous
subsection comprised of 12 square elements with p = 1. The comparison is done using
uniform-h, adaptive-h and adaptive-hp refinement. In the adaptive schemes, we use
a fixed fraction criteria with a threshold of 15\% to mark elements for refinement,
and for the adaptive-hp refinement, we use the estimation of the local smoothness
of the computed solution to choose between h or p refinement [23]. The adaptive
algorithms used for the standard method and for the proposed method are reported
in Algorithm 2 and Algorithm 3, respectively.

The convergence plots of the error estimator using the different adaptive tech-
niques are reported in Figure 7. For both uniform-h and adaptive-h the proposed
method is slightly better than the standard method. However, for the adaptive-hp re-
finement the improvement is more dramatic. Even if the standard method is already
converging exponentially as expected, the proposed method converges even faster.
This is again due to the fact that in the proposed method the FEM focuses mainly
on the smooth part of the solution, and so the hp-adaptive strategy recognizes the
smoothness and adapts to give an even faster convergence. The fact that the solution
of the FEM in the proposed method does not include the nonsmooth part is confirmed
by Figure 8, where the FEM solutions for the standard and proposed methods are
compared. Clearly the proposed method has successfully captured the nonsmooth part
removing it from the region around the reentering corner in the FEM. It is interesting

Algorithm 2. Standard adaptive FEM: For parameters: the initial mesh \scrT , the
intial finite element space V\bfp (\scrT ), and the number of meshes n to compute.

\scrT 1 := \scrT 
V\bfp ,1(\scrT 1) := V\bfp (\scrT )
for i = 1, . . . , n do
Compute uh solving problem (1) using the SIPDG method on the mesh

\scrT i and using the FE space V\bfp ,i(\scrT i).
Compute the error estimator \eta .
Use \eta to adapt the mesh and the local polynomial degrees to

construct \scrT i+1 and V\bfp ,i+1(\scrT i+1).
end for

Algorithm 3. Celatus adaptive FEM: For parameters: the initial mesh \scrT , the intial
finite element space V\bfp (\scrT ), and the number of meshes n to compute and the initial
guess c, the maximum number of iterarions maxits, and the acceptable tolerance on
the position of the minimum tol.

\scrT 1 := \scrT 
V\bfp ,1(\scrT 1) := V\bfp (\scrT )
for i = 1, . . . , n do
(c\ast h, uh,\bfc \ast 

h
, \eta \bfc \ast 

h
) := Algorithm 1(\scrT i, V\bfp ,i(\scrT i),maxits, tol).

Use \eta \bfc \ast 
h
to adapt the mesh and the local polynomial degrees to

construct \scrT i+1 and V\bfp ,i+1(\scrT i+1).
end for
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Fig. 7. Convergence plots of the standard and celatus method.

Fig. 8. (left) FE solution computed by the standard method. (right) FE solution computed by
the celatus method.

to notice that the mesh-adaptivity is based on the computed solutions wh,c\ast h
, which

approximates well the smooth part of u; therefore, the mesh is adapted mainly to
reduce the error | | | s  - P (s)| | | DG in the smooth part of u. This is enough in view of
Corollary 12, which shows that the overall error of the celatus method is dominated by
the error from the smooth part. Finally, to see how the adaptive-hp strategy performs
with the two methods, the 20th adapted meshes from both methods are displayed in
Figure 9. For the standard method, the adaptive scheme has recognized the singular
behavior around the reentering corner and captured it using heavily h-refinement. In
the case of the celatus method, the adaptive scheme has recognized the smoothness
of the solution, and more p-refinement has been automatically applied.
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Fig. 9. (left) hp-adapted mesh for the standard method. (right) hp-adapted mesh for the celatus
method. The color scheme is used to denote the order of polynomials for the elements.

Fig. 10. (left) CPU time in seconds to solve each mesh factorizing the stiffness matrix only
once. (right) CPU time in seconds to solve each mesh factorizing the stiffness matrix for each
problem.

To further compare the two methods, in Figure 10 we report the CPU time for all
considered adaptive strategies. Even if we use a direct solver, we have also included
the case where the factorization is done every time a linear system has to be solved.
In this way, we can more precisely capture the behavior of the celatus method in
case of a different solver is used which does not produce a factorization that can be
used multiple times. It is interesting to notice that for uniform-h refinement and for
adaptive-h refinement, the celatus method is more expensive since more linear systems
have to be solved. But for adaptive-hp refinement, the celatus method is less expensive
after few meshes. This is due to the fact that by removing the singular behavior from
the finite element solution, the mesh refinement strategy follows a completely different
path that introduces fewer degrees of freedom.

Figure 10 does not consider the entire picture; our method is sometimes more
expensive to use, but it is also more accurate. So, in order to consider also the
accuracy, in Figure 11 we report the CPU time for different methods to reach a
given accuracy. The bottom-left corner is where the best methods sit, and it is clear
that the celatus method with adaptive-hp refinement is the best one reaching far
better accuracy with smaller CPU time. Another way to compare different methods
considering both accuracy and CPU time is by using the CPU efficiency index, which
is computed taking the product of (CPU time) - 1 and \eta  - 1

c\ast h
. In this way, high values

of CPU time or error estimator translate into lower values of CPU efficiency. Also, in
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Fig. 11. Graphs reporting CPU time for different methods to reach a certain precision. The
value of the error estimator is used to assess the precision. Best results are near the bottom-left
corner. Each curve rapresents a method, and all of the simulations start in the bottom-right corner.
(left) CPU time in seconds factorizing the stiffness matrix only once on each mesh. (right) CPU
time in seconds factorizing the stiffness matrix for each problem.

Fig. 12. (left) CPU efficiency to solve each mesh factorizing the stiffness matrix only once.
(right) CPU efficiency to solve each mesh factorizing the stiffness matrix for each problem.

this respect (see Figure 12), the benefit of using the celatus method with adaptive-hp
refinement is clear.

Next, we consider the T-shape domain with problem (v). Since the domain has
two reentering corners, the irregular part is a linear combination of two nonsmooth
functions, each one centered in one of the reentering corners. For this problem the
exact solution is unknown. We use for Algorithm 1 with initial value of c = (0, 0),
maxits = 100, and tol = 1E  - 6. The initial mesh is a structured mesh of 64 square
elements with p = 1. The comparison is done using uniform-h, adaptive-h, and
adaptive-hp refinement as before. The convergence plots of the error estimator using
the different adaptive techniques are reported in Figure 13. As already noticed in
the previous subsection, for the adaptive-hp refinement, the improvement using our
method is more dramatic. Even if the standard method is already converging exponen-
tially as expected, the proposed method converges even faster. This seems to indicate
that we are not in the worst scenario of Corollary 13 since the celatus method is con-
verging faster than SIPDG alone. The solution of the FEM in the proposed method is
much smoother as confirmed by Figure 14, where the FEM solutions for the standard
and proposed methods are compared. Finally, to see how the adaptive-hp strategy

D
ow

nl
oa

de
d 

11
/1

4/
18

 to
 1

29
.2

34
.3

9.
15

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HP-ADAPTIVE CELATUS DG B1415

Fig. 13. Convergence plots of the standard and proposed method.

Fig. 14. (left) FE solution computed by the standard method. (right) FE solution computed by
the proposed method.

performs in this case, the twentieth adapted meshes from both methods are displayed
in Figure 15. For the standard method, the adaptive scheme has recognized the sin-
gular behavior around the reentering corners and approximated them using heavily
h-refinement. In the case of the proposed method, the adaptive scheme has recog-
nized the smoothness of the solution, and more p-refinement has been automatically
applied.

To further compare the two methods on the T-shape domain, in Figure 16 we
report the CPU time for all considered adaptive strategies. The same conclusions
discussed for the L-shape domain are also valid in this case.

In Figure 17 we report the CPU time for different methods to reach a given ac-
curacy, and in Figure 18 we report the CPU efficiency for all considered adaptive
strategies. Also, for the T-shape domain, the celatus method with adaptive-hp refine-
ment is much better than the standard method.
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Fig. 15. (left) hp-adapted mesh for the standard method. (right) hp-adapted mesh for the
proposed method. The color scheme is used to denote the order of polynomials used in the elements.

Fig. 16. (left) CPU time in seconds to solve each mesh factorizing the stiffness matrix only
once. (right) CPU time in seconds to solve each mesh factorizing the stiffness matrix for each
problem.

Fig. 17. Graphs reporting CPU time for different methods to reach a certain precision. The
value of the error estimator is used to assess the precision. Best results are near the bottom-left
corner. Each curve rapresents a method, and all of the simulations start in the bottom-right corner.
(left) CPU time in seconds factorizing the stiffness matrix only once on each mesh. (right) CPU
time in seconds factorizing the stiffness matrix for each problem.
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Fig. 18. (left) CPU efficiency to solve each mesh factorizing the stiffness matrix only once.
(right) CPU efficiency to solve each mesh factorizing the stiffness matrix for each problem.

5. Conclusions. The paper has presented, for the first time, a new way called
celatus to enrich a FEM. The novelty of the presented approach is that no nonpoly-
nomial functions are added to the finite element space avoiding any issue with the
condition number of the system. The implementation presented in the paper is based
on a DG FEM, but the enrichment can be applied to other FEMs as well. The celatus
enrichment uses an error estimator to capture the nonsmooth part of the solution; in
view of this it seems natural to use the celatus enrichment with mesh adaptivity since
an error estimator is already available. The paper has provided the framework for the
new enrichment and tested against a standard FEM on second-order problems with
reentering corners. This will allow engineers and scientists to apply the enrichment
method to obtain more accurate approximations of solutions even on existing FEM
codes.
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