33 research outputs found

    Image-based Text Classification using 2D Convolutional Neural Networks

    Get PDF
    We propose a new approach to text classification in which we consider the input text as an image and apply 2D Convolutional Neural Networks to learn the local and global semantics of the sentences from the variations of the visual patterns of words. Our approach demonstrates that it is possible to get semantically meaningful features from images with text without using optical character recognition and sequential processing pipelines, techniques that traditional natural language processing algorithms require. To validate our approach, we present results for two applications: text classification and dialog modeling. Using a 2D Convolutional Neural Network, we were able to outperform the state-ofart accuracy results for a Chinese text classification task and achieved promising results for seven English text classification tasks. Furthermore, our approach outperformed the memory networks without match types when using out of vocabulary entities from Task 4 of the bAbI dialog dataset

    Forex Trading Signal Extraction with Deep Learning Models

    Get PDF
    The rise of AI technology has popularized deep learning models for financial trading prediction, promising substantial profits with minimal risk. Institutions like Westpac, Commonwealth Bank of Australia, Macquarie Bank, and Bloomberg invest heavily in this transformative technology. Researchers have also explored AI's potential in the exchange rate market. This thesis focuses on developing advanced deep learning models for accurate forex market prediction and AI-powered trading strategies. Three deep learning models are introduced: an event-driven LSTM model, an Attention-based VGG16 model named MHATTN-VGG16, and a pre-trained model called TradingBERT. These models aim to enhance signal extraction and price forecasting in forex trading, offering valuable insights for decision-making. The first model, an LSTM, predicts retracement points crucial for identifying trend reversals. It outperforms baseline models like GRU and RNN, thanks to noise reduction in the training data. Experiments determine the optimal number of timesteps for trend identification, showing promise for building a robotic trading platform. The second model, MHATTN-VGG16, predicts maximum and minimum price movements in forex chart images. It combines VGG16 with multi-head attention and positional encoding to effectively classify financial chart images. The third model utilizes a pre-trained BERT architecture to transform trading price data into normalized embeddings, enabling meaningful signal extraction from financial data. This study pioneers the use of pre-trained models in financial trading and introduces a method for converting continuous price data into categorized elements, leveraging the success of BERT. This thesis contributes innovative approaches to deep learning in algorithmic trading, offering traders and investors precision and confidence in navigating financial markets

    MELINDA: A Multimodal Dataset for Biomedical Experiment Method Classification

    Full text link
    We introduce a new dataset, MELINDA, for Multimodal biomEdicaL experImeNt methoD clAssification. The dataset is collected in a fully automated distant supervision manner, where the labels are obtained from an existing curated database, and the actual contents are extracted from papers associated with each of the records in the database. We benchmark various state-of-the-art NLP and computer vision models, including unimodal models which only take either caption texts or images as inputs, and multimodal models. Extensive experiments and analysis show that multimodal models, despite outperforming unimodal ones, still need improvements especially on a less-supervised way of grounding visual concepts with languages, and better transferability to low resource domains. We release our dataset and the benchmarks to facilitate future research in multimodal learning, especially to motivate targeted improvements for applications in scientific domains.Comment: In The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), 202

    Machine Learning for Human Activity Detection in Smart Homes

    Get PDF
    Recognizing human activities in domestic environments from audio and active power consumption sensors is a challenging task since on the one hand, environmental sound signals are multi-source, heterogeneous, and varying in time and on the other hand, the active power consumption varies significantly for similar type electrical appliances. Many systems have been proposed to process environmental sound signals for event detection in ambient assisted living applications. Typically, these systems use feature extraction, selection, and classification. However, despite major advances, several important questions remain unanswered, especially in real-world settings. A part of this thesis contributes to the body of knowledge in the field by addressing the following problems for ambient sounds recorded in various real-world kitchen environments: 1) which features, and which classifiers are most suitable in the presence of background noise? 2) what is the effect of signal duration on recognition accuracy? 3) how do the SNR and the distance between the microphone and the audio source affect the recognition accuracy in an environment in which the system was not trained? We show that for systems that use traditional classifiers, it is beneficial to combine gammatone frequency cepstral coefficients and discrete wavelet transform coefficients and to use a gradient boosting classifier. For systems based on deep learning, we consider 1D and 2D CNN using mel-spectrogram energies and mel-spectrograms images, as inputs, respectively and show that the 2D CNN outperforms the 1D CNN. We obtained competitive classification results for two such systems and validated the performance of our algorithms on public datasets (Google Brain/TensorFlow Speech Recognition Challenge and the 2017 Detection and Classification of Acoustic Scenes and Events Challenge). Regarding the problem of the energy-based human activity recognition in a household environment, machine learning techniques to infer the state of household appliances from their energy consumption data are applied and rule-based scenarios that exploit these states to detect human activity are used. Since most activities within a house are related with the operation of an electrical appliance, this unimodal approach has a significant advantage using inexpensive smart plugs and smart meters for each appliance. This part of the thesis proposes the use of unobtrusive and easy-install tools (smart plugs) for data collection and a decision engine that combines energy signal classification using dominant classifiers (compared in advanced with grid search) and a probabilistic measure for appliance usage. It helps preserving the privacy of the resident, since all the activities are stored in a local database. DNNs received great research interest in the field of computer vision. In this thesis we adapted different architectures for the problem of human activity recognition. We analyze the quality of the extracted features, and more specifically how model architectures and parameters affect the ability of the automatically extracted features from DNNs to separate activity classes in the final feature space. Additionally, the architectures that we applied for our main problem were also applied to text classification in which we consider the input text as an image and apply 2D CNNs to learn the local and global semantics of the sentences from the variations of the visual patterns of words. This work helps as a first step of creating a dialogue agent that would not require any natural language preprocessing. Finally, since in many domestic environments human speech is present with other environmental sounds, we developed a Convolutional Recurrent Neural Network, to separate the sound sources and applied novel post-processing filters, in order to have an end-to-end noise robust system. Our algorithm ranked first in the Apollo-11 Fearless Steps Challenge.Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 676157, project ACROSSIN

    Saving Our Bacon: Applications of Deep Learning for Precision Pig Farming

    Get PDF
    PhD ThesisThe research presented in this thesis focussed on how deep learning can be applied to the field of agriculture to enable precision livestock farming for pigs. This refers to the use of technology to automatically monitor, predict, and manage livestock. Increased consumer awareness of the welfare issues facing animals in the farming industry, combined with growing demand for high-quality produce, has resulted in a need for providing farmers with tools to improve and simplify animal care. The concept of precision livestock farming tackles these requirements, as it makes it possible to treat animals as individuals, rather than as batches. This translates to tailored care for each animal and the potential for higher-quality produce. As deep learning has shown rapidly increasing potential in recent years, this research explored and evaluated various architectures for applications in two distinct areas within pig farming. We began by demonstrating how deep learning methods can be used to monitor and model the environmental conditions in which pigs are living in order to forecast oncoming respiratory disease. Implementing this approach can mean earlier intervention than if simplify looking for clinical symptoms. However, as not all diseases are caused by environmental conditions, we also implemented and evaluated a full workflow for the localisation and tracking of individual pigs. This made it possible to extract behavioural metrics to better understand the wellbeing of each pig. Overall, this research shows that deep learning can be used to advance the agriculture industry towards better levels of care, which is valuable for all stakeholders

    Scene graph generation: A comprehensive survey

    Get PDF
    Deep learning techniques have led to remarkable breakthroughs in the field of object detection and have spawned a lot of scene-understanding tasks in recent years. Scene graph has been the focus of research because of its powerful semantic representation and applications to scene understanding. Scene Graph Generation (SGG) refers to the task of automatically mapping an image or a video into a semantic structural scene graph, which requires the correct labeling of detected objects and their relationships. In this paper, a comprehensive survey of recent achievements is provided. This survey attempts to connect and systematize the existing visual relationship detection methods, to summarize, and interpret the mechanisms and the strategies of SGG in a comprehensive way. Deep discussions about current existing problems and future research directions are given at last. This survey will help readers to develop a better understanding of the current researches

    Fine Art Pattern Extraction and Recognition

    Get PDF
    This is a reprint of articles from the Special Issue published online in the open access journal Journal of Imaging (ISSN 2313-433X) (available at: https://www.mdpi.com/journal/jimaging/special issues/faper2020)

    Deep Vision in Optical Imagery: From Perception to Reasoning

    Get PDF
    Deep learning has achieved extraordinary success in a wide range of tasks in computer vision field over the past years. Remote sensing data present different properties as compared to natural images/videos, due to their unique imaging technique, shooting angle, etc. For instance, hyperspectral images usually have hundreds of spectral bands, offering additional information, and the size of objects (e.g., vehicles) in remote sensing images is quite limited, which brings challenges for detection or segmentation tasks. This thesis focuses on two kinds of remote sensing data, namely hyper/multi-spectral and high-resolution images, and explores several methods to try to find answers to the following questions: - In comparison with natural images or videos in computer vision, the unique asset of hyper/multi-spectral data is their rich spectral information. But what this “additional” information brings for learning a network? And how do we take full advantage of these spectral bands? - Remote sensing images at high resolution have pretty different characteristics, bringing challenges for several tasks, for example, small object segmentation. Can we devise tailored networks for such tasks? - Deep networks have produced stunning results in a variety of perception tasks, e.g., image classification, object detection, and semantic segmentation. While the capacity to reason about relations over space is vital for intelligent species. Can a network/module with the capacity of reasoning benefit to parsing remote sensing data? To this end, a couple of networks are devised to figure out what a network learns from hyperspectral images and how to efficiently use spectral bands. In addition, a multi-task learning network is investigated for the instance segmentation of vehicles from aerial images and videos. Finally, relational reasoning modules are designed to improve semantic segmentation of aerial images

    Action-oriented Scene Understanding

    Get PDF
    In order to allow robots to act autonomously it is crucial that they do not only describe their environment accurately but also identify how to interact with their surroundings. While we witnessed tremendous progress in descriptive computer vision, approaches that explicitly target action are scarcer. This cumulative dissertation approaches the goal of interpreting visual scenes “in the wild” with respect to actions implied by the scene. We call this approach action-oriented scene understanding. It involves identifying and judging opportunities for interaction with constituents of the scene (e.g. objects and their parts) as well as understanding object functions and how interactions will impact the future. All of these aspects are addressed on three levels of abstraction: elements, perception and reasoning. On the elementary level, we investigate semantic and functional grouping of objects by analyzing annotated natural image scenes. We compare object label-based and visual context definitions with respect to their suitability for generating meaningful object class representations. Our findings suggest that representations generated from visual context are on-par in terms of semantic quality with those generated from large quantities of text. The perceptive level concerns action identification. We propose a system to identify possible interactions for robots and humans with the environment (affordances) on a pixel level using state-of-the-art machine learning methods. Pixel-wise part annotations of images are transformed into 12 affordance maps. Using these maps, a convolutional neural network is trained to densely predict affordance maps from unknown RGB images. In contrast to previous work, this approach operates exclusively on RGB images during both, training and testing, and yet achieves state-of-the-art performance. At the reasoning level, we extend the question from asking what actions are possible to what actions are plausible. For this, we gathered a dataset of household images associated with human ratings of the likelihoods of eight different actions. Based on the judgement provided by the human raters, we train convolutional neural networks to generate plausibility scores from unseen images. Furthermore, having considered only static scenes previously in this thesis, we propose a system that takes video input and predicts plausible future actions. Since this requires careful identification of relevant features in the video sequence, we analyze this particular aspect in detail using a synthetic dataset for several state-of-the-art video models. We identify feature learning as a major obstacle for anticipation in natural video data. The presented projects analyze the role of action in scene understanding from various angles and in multiple settings while highlighting the advantages of assuming an action-oriented perspective. We conclude that action-oriented scene understanding can augment classic computer vision in many real-life applications, in particular robotics
    corecore