29 research outputs found

    XRLoc: Accurate UWB Localization for XR Systems

    Full text link
    Understanding the location of ultra-wideband (UWB) tag-attached objects and people in the real world is vital to enabling a smooth cyber-physical transition. However, most UWB localization systems today require multiple anchors in the environment, which can be very cumbersome to set up. In this work, we develop XRLoc, providing an accuracy of a few centimeters in many real-world scenarios. This paper will delineate the key ideas which allow us to overcome the fundamental restrictions that plague a single anchor point from localization of a device to within an error of a few centimeters. We deploy a VR chess game using everyday objects as a demo and find that our system achieves 2.42.4 cm median accuracy and 5.35.3 cm 90th90^\mathrm{th} percentile accuracy in dynamic scenarios, performing at least 8×8\times better than state-of-art localization systems. Additionally, we implement a MAC protocol to furnish these locations for over 1010 tags at update rates of 100100 Hz, with a localization latency of ∼1\sim 1 ms

    Next Generation Auto-Identification and Traceability Technologies for Industry 5.0: A Methodology and Practical Use Case for the Shipbuilding Industry

    Get PDF
    [Abstract] Industry 5.0 follows the steps of the Industry 4.0 paradigm and seeks for revolutionizing the way industries operate. In fact, Industry 5.0 focuses on research and innovation to support industrial production sustainability and place the well-being of industrial workers at the center of the production process. Thus, Industry 5.0 relies on three pillars: it is human-centric, it encourages sustainability and it is aimed at developing resilience against disruptions. Such core aspects cannot be fully achieved without a transparent end-to-end human-centered traceability throughout the value chain. As a consequence, Auto-Identification (Auto-ID) technologies play a key role, since they are able to provide automated item recognition, positioning and tracking without human intervention or in cooperation with industrial operators. Although the most popular Auto-ID technologies provide a certain degree of security and productivity, there are still open challenges for future Industry 5.0 factories. This article analyzes and evaluates the Auto-ID landscape and delivers a holistic perspective and understanding of the most popular and the latest technologies, looking for solutions that cope with harsh, diverse and complex industrial scenarios. In addition, it describes a methodology for selecting Auto-ID technologies for Industry 5.0 factories. Such a methodology is applied to a specific use case of the shipbuilding industry that requires identifying the main components of a ship during its construction and repair. To validate the outcomes of the methodology, a practical evaluation of passive and active UHF RFID tags was performed in an Offshore Patrol Vessel (OPV) under construction, showing that a careful selection and evaluation of the tags enables product identification and tracking even in areas with a very high density of metallic objects. As a result, this article serves as a useful guide for industrial stakeholders, including future developers and managers that seek for deploying identification and traceability technologies in Industry 5.0 scenarios.This work was supported in part by the Auto-Identication for Intelligent Products Research Line of the Navantia-Universidade da Coruña Joint Research Unit under Grant IN853B-2018/02, and in part by the Centro de Investigación de Galicia ``CITIC,'' funded by Xunta de Galicia and the European Union (European Regional Development Fund-Galicia 2014_2020 Program) under Grant ED431G 2019/01Xunta de Galicia; IN853B-2018/02Xunta de Galicia; ED431G 2019/0

    Radio frequency channel characterization for energy harvesting in factory environments

    Get PDF
    This thesis presents ambient energy data obtained from a measurement campaign carried out at an automobile plant. At the automobile plant, ambient light, ambient temperature and ambient radio frequency were measured during the day time over two days. The measurement results showed that ambient light generated the highest DC power. For plant and operation managers at the automobile plant, the measurement data can be used in system design considerations for future energy harvesting wireless sensor nodes at the plant. In addition, wideband measurements obtained from a machine workshop are presented in this thesis. The power delay profile of the wireless channel was obtained by using a frequency domain channel sounding technique. The measurements were compared with an equivalent ray tracing model in order to validate the suitability of the commercial propagation software used in this work. Furthermore, a novel technique for mathematically recreating the time dispersion created by factory inventory in a radio frequency channel is discussed. As a wireless receiver design parameter, delay spread characterizes the amplitude and phase response of the radio channel. In wireless sensor devices, this becomes paramount, as it determines the complexity of the receiver. In reality, it is sometimes difficult to obtain full detail floor plans of factories for deterministic modelling or carry out spot measurements during building construction. As a result, radio provision may be suboptimal. The method presented in this thesis is based on 3-D fractal geometry. By employing the fractal overlaying algorithm presented, metallic objects can be placed on a floor plan so as to obtain similar radio frequency channel effects. The environment created using the fractal approach was used to estimate the amount of energy a harvesting device can accumulate in a University machine workshop space

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications

    Space Systems: Emerging Technologies and Operations

    Get PDF
    SPACE SYSTEMS: EMERGING TECHNOLOGIES AND OPERATIONS is our seventh textbook in a series covering the world of UASs / CUAS/ UUVs. Other textbooks in our series are Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA\u27s Advanced Air Assets, 1st edition. Our previous six titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols et al., 2021) (Nichols R. K. et al., 2020) (Nichols R. et al., 2020) (Nichols R. et al., 2019) (Nichols R. K., 2018) Our seventh title takes on a new purview of Space. Let\u27s think of Space as divided into four regions. These are Planets, solar systems, the great dark void (which fall into the purview of astronomers and astrophysics), and the Dreamer Region. The earth, from a measurement standpoint, is the baseline of Space. It is the purview of geographers, engineers, scientists, politicians, and romantics. Flying high above the earth are Satellites. Military and commercial organizations govern their purview. The lowest altitude at which air resistance is low enough to permit a single complete, unpowered orbit is approximately 80 miles (125 km) above the earth\u27s surface. Normal Low Earth Orbit (LEO) satellite launches range between 99 miles (160 km) to 155 miles (250 km). Satellites in higher orbits experience less drag and can remain in Space longer in service. Geosynchronous orbit is around 22,000 miles (35,000 km). However, orbits can be even higher. UASs (Drones) have a maximum altitude of about 33,000 ft (10 km) because rotating rotors become physically limiting. (Nichols R. et al., 2019) Recreational drones fly at or below 400 ft in controlled airspace (Class B, C, D, E) and are permitted with prior authorization by using a LAANC or DroneZone. Recreational drones are permitted to fly at or below 400 ft in Class G (uncontrolled) airspace. (FAA, 2022) However, between 400 ft and 33,000 ft is in the purview of DREAMERS. In the DREAMERS region, Space has its most interesting technological emergence. We see emerging technologies and operations that may have profound effects on humanity. This is the mission our book addresses. We look at the Dreamer Region from three perspectives:1) a Military view where intelligence, jamming, spoofing, advanced materials, and hypersonics are in play; 2) the Operational Dreamer Region; whichincludes Space-based platform vulnerabilities, trash, disaster recovery management, A.I., manufacturing, and extended reality; and 3) the Humanitarian Use of Space technologies; which includes precision agriculture wildlife tracking, fire risk zone identification, and improving the global food supply and cattle management. Here’s our book’s breakdown: SECTION 1 C4ISR and Emerging Space Technologies. C4ISR stands for Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance. Four chapters address the military: Current State of Space Operations; Satellite Killers and Hypersonic Drones; Space Electronic Warfare, Jamming, Spoofing, and ECD; and the challenges of Manufacturing in Space. SECTION 2: Space Challenges and Operations covers in five chapters a wide purview of challenges that result from operations in Space, such as Exploration of Key Infrastructure Vulnerabilities from Space-Based Platforms; Trash Collection and Tracking in Space; Leveraging Space for Disaster Risk Reduction and Management; Bio-threats to Agriculture and Solutions From Space; and rounding out the lineup is a chapter on Modelling, Simulation, and Extended Reality. SECTION 3: Humanitarian Use of Space Technologies is our DREAMERS section. It introduces effective use of Drones and Precision Agriculture; and Civilian Use of Space for Environmental, Wildlife Tracking, and Fire Risk Zone Identification. SECTION 3 is our Hope for Humanity and Positive Global Change. Just think if the technologies we discuss, when put into responsible hands, could increase food production by 1-2%. How many more millions of families could have food on their tables? State-of-the-Art research by a team of fifteen SMEs is incorporated into our book. We trust you will enjoy reading it as much as we have in its writing. There is hope for the future.https://newprairiepress.org/ebooks/1047/thumbnail.jp

    Sensors for Vital Signs Monitoring

    Get PDF
    Sensor technology for monitoring vital signs is an important topic for various service applications, such as entertainment and personalization platforms and Internet of Things (IoT) systems, as well as traditional medical purposes, such as disease indication judgments and predictions. Vital signs for monitoring include respiration and heart rates, body temperature, blood pressure, oxygen saturation, electrocardiogram, blood glucose concentration, brain waves, etc. Gait and walking length can also be regarded as vital signs because they can indirectly indicate human activity and status. Sensing technologies include contact sensors such as electrocardiogram (ECG), electroencephalogram (EEG), photoplethysmogram (PPG), non-contact sensors such as ballistocardiography (BCG), and invasive/non-invasive sensors for diagnoses of variations in blood characteristics or body fluids. Radar, vision, and infrared sensors can also be useful technologies for detecting vital signs from the movement of humans or organs. Signal processing, extraction, and analysis techniques are important in industrial applications along with hardware implementation techniques. Battery management and wireless power transmission technologies, the design and optimization of low-power circuits, and systems for continuous monitoring and data collection/transmission should also be considered with sensor technologies. In addition, machine-learning-based diagnostic technology can be used for extracting meaningful information from continuous monitoring data

    Ultrasound Imaging

    Get PDF
    This book provides an overview of ultrafast ultrasound imaging, 3D high-quality ultrasonic imaging, correction of phase aberrations in medical ultrasound images, etc. Several interesting medical and clinical applications areas are also discussed in the book, like the use of three dimensional ultrasound imaging in evaluation of Asherman's syndrome, the role of 3D ultrasound in assessment of endometrial receptivity and follicular vascularity to predict the quality oocyte, ultrasound imaging in vascular diseases and the fetal palate, clinical application of ultrasound molecular imaging, Doppler abdominal ultrasound in small animals and so on

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications
    corecore