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Abstract

This thesis presents ambient energy data obtained from a measurement campaign carried

out at an automobile plant. At the automobile plant, ambient light, ambient temperature

and ambient radio frequency were measured during the day time over two days. The

measurement results showed that ambient light generated the highest DC power. For

plant and operation managers at the automobile plant, the measurement data can be used

in system design considerations for future energy harvesting wireless sensor nodes at the

plant.

In addition, wideband measurements obtained from a machine workshop are presented

in this thesis. The power delay profile of the wireless channel was obtained by using a

frequency domain channel sounding technique. The measurements were compared with

an equivalent ray tracing model in order to validate the suitability of the commercial

propagation software used in this work.

Furthermore, a novel technique for mathematically recreating the time dispersion created

by factory inventory in a radio frequency channel is discussed. As a wireless receiver

design parameter, delay spread characterizes the amplitude and phase response of the

radio channel. In wireless sensor devices, this becomes paramount, as it determines the

complexity of the receiver. In reality, it is sometimes difficult to obtain full detail floor

plans of factories for deterministic modelling or carry out spot measurements during

building construction. As a result, radio provision may be suboptimal. The method

presented in this thesis is based on 3-D fractal geometry. By employing the fractal

overlaying algorithm presented, metallic objects can be placed on a floor plan so as to

obtain similar radio frequency channel effects. The environment created using the fractal

approach was used to estimate the amount of energy a harvesting device can accumulate

in a University machine workshop space.
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Chapter 1

Energy Harvesting for Low-power

Devices

1.1 Internet of Things for Industry

With industrial information communication technologies evolving from the embedded

systems to cyber-physical systems (CPS), it is envisaged that CPS will enable the provi-

sion of services such as augmented reality, machine-to-machine commmunications, data

analytics and simulation of manufacturing processes [1]. In order to achieve this aim,

research and innovation is required in the following categories [2]:

1. Embedded systems focused on electronics, communication technologies and mi-

crosystems

2. Virtual/augmented reality, ambient intelligence and high-performance computing

3. Human/machine interaction with language technologies and service robotics

With respect to communication technologies and electronics, twenty-first century indus-

tries use wireless sensor nodes (WSN) for condition monitoring. One of the challenges

associated with the current deployment is that they are predominantly powered via a

battery, which constitute a significant percentage of the volume and weight [3]. In most

cases, the batteries adopted in these nodes usually have a limited lifetime in the range

of months to a few years, and will eventually require frequent replacement [4]. This
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reoccurring maintenance process introduces significant operational cost when there are

a large number of sensor nodes on the factory shop floor [5]. As a profitable alterna-

tive, energy harvesting techniques can be used to power up sensor nodes or to extend

the lifespan of the batteries. The radio communication subsystem in WSN and wireless

industrial microsystems determine the battery life, and in order to extend their opera-

tional lifetime [6], low power radio communication technologies such as Zigbee [7] and

Picoradio [8] can be adopted in the radio front ends of these devices. In order to address

the disadvantages associated with battery power for these devices, there are three known

techniques that can be adopted [9–11].

1. Improve the energy density of storage systems;

2. Develop schemes for distributing and providing power;

3. Harvest energy from ambient sources.

Ongoing research into energy density improvement can be found in the literature. Some

of which include miniaturized fuel cells [10, 11]. The second approach requires power

to be transmitted wirelessly. One of the techniques adopted in this domain is powering

devices through radio frequency (RF), such as radio frequency identification (RFID)

tags. However, careful design is required to ensure interference is kept minimal and

exposure limits are not exceeded [9]. Moreover, they only work over a short range. On

the other hand, energy harvesting (EH) can provide a means of powering sensor nodes

and other low power electronics.

Maintenance of critical assets in manufacturing plants today is typically done via condi-

tion monitoring. Industrial monitoring systems such as the NI CompactRIO, depend on

a large number of sensor inputs measuring various parameters on the shop floor (for ex-

ample temperature, vibration, rotation, and resource usage). To operate a highly reliable

maintenance network, it is essential that these sensor nodes are self-sustainable during

their lifetime. In this introductory chapter, energy harvesting techniques and co-located

energy harvesters for WSN are discussed.
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1.2 Energy Harvesting Techniques

Energy harvesting also known as energy scavenging is converting other forms of energy

available within a given environment into electrical energy. The power consumption

of sensor nodes is dependent on diverse parameters and features such as the transmit-

ter/receiver radio electronics, wireless channel power loss (free space or multipath fad-

ing), data packet size, communication distance, current drawn for data transmission and

reception, data rate and duty cycle [12–15]. As a result, there is no specific power con-

sumption value [4]. With respect to commercial off-the-shelf (COTS) sensor nodes (such

as Rockwell’s WINS and Medusa II), the power requirement for WSN can vary from 25

mW in a low-end sensor node to 1000 mW in a high-end device [4]. This wide variation

can be associated to the sensor node electronics. For example, the power consumption of

the microprocessor in the Rockwell’s WINS is 400 mW and 16.5 mW in the Medusa II 1.

Harvesting energy from the environment can be done through the following mainstream

forms:

1. Vibration/motion

2. Light (solar)

3. Thermal

4. Radio frequency

Due to the time-varying nature of ambient energy, power management circuits are usu-

ally required to maintain continuous operation [10]. Thus, the essential connection

blocks in an energy harvesting system will include an energy harvester, storage unit,

power management circuitry (with boost converter), ultra-low power (ULP) microcon-

troller unit (MCU) and a wireless interface. Typically, in an energy harvesting device, the

energy storage unit powers the entire system (MCU, sensor, and wireless interface) [17].

1Adopting the energy consumption model presented in [16], the power consumption of a typical sensor

node can be estimated at 250 mW.
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1.2.1 Ambient Vibration Energy Harvesting

According to [18], “vibration energy harvesting is the process by which otherwise wasted

vibration (from a piece of industrial machinery for example) is harvested and converted

to useful electrical energy to power miniature devices”. In order for a vibrating source

to be suitable for energy harvesting, two important characteristics must be present in the

vibrating structure [18]. These are: resonant frequency and vibration level. Provided a

resonant or dominant frequency component is present in the frequency analysis of the

target mass, a vibration energy harvester (VEH) can be tuned to this frequency to ensure

the highest operational efficiency. VEHs are usually modeled as a mass spring damper

system. The vibration level can be measured in terms of displacement (m), velocity

(m/s) or acceleration (m/s2). However, acceleration also known as “g” is widely used.

There are three widely known methods for harvesting mechanical/human motion. They

are: Electromagnetic (inductive), Electrostatic (capacitive), and Piezoelectric [6,10,11].

1.2.2 Ambient Light Energy Harvesting

Photovoltaic (PV) cells (also known as solar cells) are made of semiconductor materi-

als and are used for transducing sunlight (or artificial light) to useable electrical power.

The operating principle of solar cells is based on the Photoelectric effect, whereby semi-

conductor materials release electrons when exposed to photons of light. These loose

electrons are then used to generate electric current by attaching conductors to the pos-

itive and negative sides of the semiconductor. The amount of harvestable power from

a PV cell is dependent on several factors. Some of which include: the location (indoor

or outdoor), type of lighting (florescent or incandescent), type of PV cell used, available

irradiance, PV cell size, operating temperature and the conversion efficiency. The spec-

tral composition of the light source is a vital criterion in selecting a suitable PV cell, as

different light sources have unique spectral components [5]. For example, a DSSC is

more suitable for locations with low irradiance and artificial light sources than a thin-

film solar cell. The efficiencies of COTS PV cells ranges from 5% to 30% [9]. The

harvestable ambient energy data presented in [9] corroborates the intuition that indoor

irradiance levels are substantially reduced when compared to outdoor values.
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1.2.3 Ambient Temperature Energy Harvesting

Temperature difference offers an opportunity for energy harvesting using thermoelectric

devices. The operating principle for these devices is the Seebeck effect [19]. This occurs

when a temperature difference exists between two different conductors in contact. With

the introduction of an electrical circuit, a direct current (DC) is produced as a result of the

movement of electrons from the hot material to the cold material. The core element in

a thermoelectric device is the thermopile, which is an array of thermocouples connected

thermally in parallel or electrically in series. This interconnection becomes necessary

due to the low voltage range produced by a thermocouple per temperature difference in

Kelvin. Additionally, these devices can have a heat-sink or radiator attached to ensure

that the heat is dissipated to the environment effectively [9]. Thermoelectric generators

(TEG) are generally suitable for environments where high temperature sources exist, for

example a hot exhaust pipe [20]. The open circuit voltage generated by a thermoelec-

tric generator is directly proportional to the number of thermocouple pairs, temperature

gradient and Seebeck coefficients [9].

1.2.4 Ambient Radio frequency Energy Harvesting

Wireless power transfer is essentially in two forms: non-radiative and radiative. In the

former, resonant coupling is used to transfer energy between two coils without contact

and are known to have a high power conversion efficiency over a very short range [27]. A

resonant coupling circuit is shown in Figure 1.1, where a RF source (V1) is connected to

a resonant circuit that is made up of L1 and C2. The receiving resonator (represented by

L2 and C1) is then used to power a load R2. The losses in the transmitting and receiving

coils are represented by R3 and R1. In the latter, a source (intentional or unintentional)

sends electromagnetic (EM) waves through space. The waves are then captured by a

receiving antenna (located at a distance) and a RF- DC conversion circuit is used to

rectify the alternating current (AC) voltage to useable direct current (DC) voltage (see

Figure 1.2). The proximity of the source determines if it is regarded as ambient RF

energy harvesting or RF wireless power transport. For example, harvesting RF in the

far-field of a GSM base station will be classified as RF energy harvesting, while harvest-
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ing RF waves in the far-field of a dedicated RF source a few meters away is known as

RF energy transport [28]. The input matching circuit in Figure 1.2 is required for maxi-

mum power transfer between the antenna and the input impedance of the rectifier circuit

(which can be obtained via harmonic balance simulations). Harmonics generated from

the non-linear rectifying circuit impair the conversion efficiency. Thus an output match-

ing circuit can be introduced, such that the circuit elements are selected to maximize the

rectifying efficiency. The effect on an output matching/filter network was investigated

in [21]. The power spectrum results showed that rather than allowing the harmonics

generated by the rectifier device to be absorbed by the load, filtering out these harmonics

with a low pass filter after the rectifier can increase the RF- DC conversion efficiency.

Rectification 
and Power

Management t
L2

R1

C1
R2

L1

R3

C2
V1

Figure 1.1: Resonant coupling (non-radiative).

 
RF Source 

Transmitting 
antenna 

Matching 
Circuit 

Receiving antenna 

Rectifying 
Circuit 

Power 
Management 

Circuit 

   Load 
(Sensor) 

Output 
Matching 

Circuit 

Figure 1.2: Radiative RF power transfer system. The dashed box is widely known as a

rectenna.
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1.3 Co-located Energy Harvesters

Wireless sensors today exist in environments that have multiple ambient energy sources.

In such situations, it is possible to increase the amount of power absorbed from the ambi-

ent and system reliability by combining multiple ambient energy sources, thus reducing

blackout time due to the variations associated with harvestable sources [22, 23]. From

the multi-source architecture, AC sources are rectified prior to DC combining. One of

the major drawbacks of combining multiple sources is the backward coupling associated

with the circuit dynamics. An example is energy been transferred from a vibrating struc-

ture to the energy storage system, which in turn impedes the maximum strain obtain-

able [22]. However, if electrical isolation can be achieved, then these ambient sources

(especially vibration) can be tuned individually [22]. There are two connection topolo-

gies available in the literature for combining ambient sources: they are parallel topology

and series topology [22, 24]. In reality, these systems can operate suboptimally; espe-

cially when the individual sources are connected in parallel and are generating different

open circuit voltages. Some examples of collocated energy harvesters in the literature

include:

1. Wickenheiser et al.: A thermoelectric generator was combined with a piezoelectric

vibration energy harvester [22].

2. Carli et al. and Park et al.: A wind energy harvesting system was combined with

solar PV cells [23, 25].

3. Schlichting et al.: A solar PV cell was combined with a piezoelectric generator in

series and parallel. Also investigated was an array of piezoelectric generators [24].

4. Collado et al.: Solar cells were combined with rectennas for energy harvesting

[26].

7



1.4 Research Motivation

To effectively transport radio waves in a factory for the purpose of harvesting, it is essen-

tial to understand the behaviour and propagation mechanisms present at the site. This

can be done by site-specific measurements or deterministic modelling. The challenge

with measurement campaigns is the associated cost and in some cases operation logis-

tics involved in accessing the site. On the other hand, deterministic models require exact

floor plans in order to use diffraction theories to evaluate the electric field at interact-

ing surfaces. However, in some cases, floor plans carry sensitive detail that sometime

requires a lengthy clearance/security processes. In the literature, very few authors [27]

have investigated modelling factory like spaces without exact detail of the inventory. In

this project, a purely deterministic technique that models small-scale propagation ef-

fects has been investigated and used to determine the suitability of ambient RF energy

harvesting in factory environments.

1.5 Research Contribution

The novel contribution of this thesis are:

1. Evaluating ambient energy harvesting sources at the Ford Dagenham Engine Plant.

The key findings of the measurement campaign were that ambient RF from radio

access technologies (RATs) around the site was not sufficient for RF energy har-

vesting; temperature differences between the machines and room temperature was

sufficient for COTS TEGs and indoor lighting could be harvested using COTS PV

cells. The outcome of the measurement campaign can be made useful for the plant

manager as a feasibility study for energy harvesting at the plant. The measurement

data from the three energy domains characterized was published in [28, 29].

2. Measuring delay spread in a factory environment. Using the University machine

workshop which has equipment similar to a factory, delay spread measurements

were carried out between 2300 - 2500 MHz using a frequency domain measure-

ment system. The results were used to validate the commercial deterministic mod-
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elling software used in this thesis.

3. Developing a deterministic model that recreates the time dispersion (delay spread)

of multipath rich environments. With the aid of fractal geometry, this thesis has

been able to estimate delay spread in factory environments using ray tracing tech-

niques without details of the inventory.

4. Evaluating 2-dimensional spatial interpolation techniques for predicting received

power and received power density at unsampled locations in an indoor environ-

ment. The RF measurement campaign at the automobile was carried out at five

scattered locations, and in order to obtain a broader distribution of RF power den-

sity, spatial interpolation methods were used to estimate the power density in form

of a 2-dimensional grid. The prediction errors of the interpolation methods used

showed that inverse distance weighting (IDW) and kriging were suitable. The re-

sults of this study were published in [30]. With the aid of a power density grid, an

estimate of the accumulated power over time was calculated for a mobile sensor

device travelling predefined paths.

1.6 Organisation of this thesis

Chapter 2 presents a background study of the wireless channel. Based on radio propaga-

tion mechanisms, narrowband and wideband characteristics of the wireless channel can

be determined for a given location. A detailed overview of how to obtain these channel

characteristics is also presented.

Chapter 3 will discuss the results of the measurement campaign carried out at an auto-

mobile plant. Using the measurement data, an energy harvesting system engineer can

design a suitable harvester that works optimally using the available ambient energy. A

survey of measurement techniques and adopted measurement procedures are also dis-

cussed.

Chapter 4 presents the results of a measurement campaign carried out at a machine work-

shop at Loughborough University. The wireless channel measurement data obtained

from the workshop was used to validate the commercial ray tracing software. Also
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discussed in this chapter is an overview of wideband channel sounding techniques for

indoor locations.

Chapter 5 presents details on a novel deterministic approach for modelling wideband

characteristics of a factory like wireless channel. In this chapter, fractal geometry is

used to mathematically generate metallic inventory for a machine workshop. Using the

environment created by the fractal overlaying algorithm, the time dispersion wideband

characteristic of the channel was deterministically modelled and compared with the re-

sult obtained using the deterministic model of the floor plan and exact inventory at the

machine workshop. It also discusses the comparison of the delay spread obtained from

the fractal model for line-of-sight (LoS) and non line-of-sight (NLoS) topographies with

a widely known wideband statistical model.

Chapter 6 demonstrates how spatial interpolation techniques can be used to predict re-

ceived power density. In this chapter, three widely known scattered interpolation meth-

ods were used and were evaluated using an error measure. Using the deterministic model

from Chapter 5 and the sparse measurement locations in Chapter 3, spatial interpolation

can then be used to obtain an approximate distribution of the energy profile in a specified

location. Chapter 6 also presents a mathematical model for estimating the accumulated

energy a radio frequency energy harvesting device is exposed to while travelling a pre-

defined path.

Chapter 7 concludes this thesis by highlighting the key findings, the industrial applica-

tions and suggestions for future research work.
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Chapter 2

The Industrial Wireless Channel

This chapter discusses the theory relating to wireless channel characterization. It also

discusses propagation effects encountered in the wireless channel which alter the orien-

tation and characteristics of the EM wave detected at the receiver. In order to design

an effective radio communications system for any wireless device or network system,

the wireless channel needs to be studied and understood via measurements surveys or

channel models. In actuality, the channel state information obtained is usually fed back

to the transmitter and/or receiver design so that information is transferred with the least

interference, distortion or loss. In Section 2.3, multipath fading is discussed with respect

to variations in the wireless channel and the preservation of the spectral characteristics of

the signal. Sections 2.4 and 2.5 discuss how narrowband and wideband characteristics of

a wireless channel are obtained. In Section 2.6, ray tracing as a deterministic method for

obtaining wireless channel characteristics is discussed. By presenting a detailed descrip-

tion of the behaviour of the wireless channel and radio propagation, the complexities

associated with RF front end system design can be appreciated.
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2.1 Introduction

Wireless communications has been described as the fastest growing segment of the

telecommunications industry in [31]. This has been corroborated by Cisco’s visual net-

working index (2016), which states that mobile traffic has grown over 18-fold between

2011 and 2016. Moreover, it is anticipated that mobile internet traffic will account for

20% of total IP traffic by 2021 [32]. When an EM wave is transmitted from a transmitter

to a receiver, the signal travels through an unguided channel that experiences fluctuations

when the transmitter, receiver or objects within the channel move. These fluctuations

cause uncertainty in predicting the received signal, which subsequently impairs the abil-

ity of the system designer to evaluate parameters such as wireless coverage, bit error rate

(BER) and supportable data rates.

In Figure 2.1, the wireless communication channel within an industrial environment is

depicted. The figure clearly shows a realistic implementation whereby objects of differ-

ent material definition and heights are present between and around the transmitter and

receiver. These objects (also known as scatterers) present within the wireless channel in-

teract with the EM wave and cause the transmitted EM wave to travel via multiple paths.

This “multiple path” scenario causes the signals to arrive at the receiver terminal with

different phase, amplitude and time, consequently introducing rapid variations in the

amplitude of the received power. This phenomenon is known as Multipath Propagation

and the individual arriving signals are referred to as multipath components (MPC).

Generally, wireless channel characteristics vary from one site to another. For a specified

operating frequency, this characteristic difference can be due to site inventory, build-

ing materials, presence and mobility of humans and the building layout. In order to

understand the channel behaviour, measurements are usually carried out in either the

frequency, time domain or by using spread spectrum techniques. In the time domain,

an RF pulse with specified pulse width and repetition period is sent across the channel.

Frequency domain techniques employ swept sinusoids with known parameters across

the channel bandwidth and spread spectrum techniques cross correlate spread signals.
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Figure 2.1: Wireless communication channel [33].

Given that the deployment locations differ, wireless channel models presented by stan-

dard organisations (such as the IEEE and 3GPP) provide channel characteristics based

on the operating frequency (sub 6 GHz or millimetre wave), location (indoor or outdoor)

and topography (LoS or NLoS). For example, a pictorial overview of the IEEE 802.15.4a

parameterized ultra wideband (UWB) channel model can be viewed in Figure 2.2.

COTS devices based on widely known communication standards (such as IWAN, WiMAX,

WirelessHART) can be used to create wireless networks in industrial environments. The

radio interfaces of the access points (AP) and client modules used in these scenarios em-

ploy techniques such as multiple-input multiple-output (MIMO), orthogonal frequency

division multiplexing (OFDM) and mesh networks to maintain reliable communications

on the factory shop floor. Nonetheless, while the uptake of wireless/mobile communi-

cation is growing, a handful of challenges exist with respect to the wireless channel,

spectrum scarcity, mobility management and energy efficiency.
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Figure 2.2: Illustration of the 802.15.4a UWB channel model for 2 - 10 GHz.

2.2 Characterizing the Wireless Channel

In this thesis, the fading definitions adopted are guided by [31, 34]. According to Rap-

paport, fading is of two types. Large-scale fading accounts for the average received

signal power and losses caused by EM wave propagation mechanisms for a specified

transmitter → receiver (Tx→ Rx) separation distance. On the other hand, small-scale

fading (which is also known as fading [34]) predicts the rapid variation of the received

signal power over a few wavelengths. In other words, small-scale fading can be viewed

as the destructive or constructive effect of MPCs arriving at a simple receiver. A simple

receiver refers to one without equalization. The MPCs arriving at the receiver will have

different phases and time delay due to the Tx→ Rx separation distance, path travelled,

location and orientation of the scatterers and the position of the receiver. At a simple

receiver, these components are vectorially combined, which leads to the following [34]:

1. Changes in the amplitude of the received signal. This amplitude variation has

been observed to follow a Rayleigh distribution when a LoS is absent and a Rician

distribution when the LoS path is present.

2. Random frequency modulations due to changing Doppler shifts on multipath sig-

nals (Doppler spread).
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3. Time dispersion caused by multipath propagation delay

In Figure 2.3, the effect of the summing in-phase and out-of-phase MPCs is illustrated.

In general, as the separation distance between a transmitter and a receiver increases, the

receiver experiences both large-scale and small-scale fading as depicted in Figure 2.4,

where Pr is the received power (dBm) , Pt is the transmit power (dBm) and d is the Tx→

Rx separation distance (m).

 

Figure 2.3: Illustration of constructive and destructive interference [35].

 

Figure 2.4: Illustration of large-scale and small-scale fading effects versus distance. Path

loss and shadowing account for large-scale effects, while multipath accounts for small-

scale effects [31].
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The physical (PHY) and media access control (MAC) layers of a wireless communica-

tion system are essential in determining performance metrics such as data rate, through-

put. As a result, a critical understanding of the effects of the wireless channel and radio

front ends on the transmitted signal is essential to the overall system design. The propa-

gation properties of the wireless channel can be grouped into two categories [36]:

1. Narrowband signal characteristics

2. Wideband signal characteristics

The narrowband features provide an overview of the signal strength at the receiver, which

is usually a vectoral combination of the complex amplitudes of the paths detected. This

feature can be associated to large-scale fading. On the other hand, wideband character-

istics provide details regarding multipath propagation in the channel (small-scale fading)

as well as the channel frequency selectivity [36]. As a result, both wideband and nar-

rowband features are required to obtain a complete description of the channel. Assuming

the wireless channel is time invariant, the narrowband features presents the channel be-

haviour (impulse response) at a spot frequency, and the wideband features represent the

overall impulse response [36].

2.3 Multipath Fading in Wireless Communication

Small-scale fading can result into time dispersion (delay spread) or frequency dispersion

(Doppler spread). With respect to the time dispersion, the wireless channel can either be

described as flat fading or frequency-selective fading. On the other hand, depending on

how rapidly the transmitted signal changes with respect to the rate of change in the chan-

nel, frequency dispersions can either create a slow or fast fading wireless channel. The

coherent bandwidth (Bc) of a wireless channel is the range of frequencies over which two

frequency components have a strong potential for amplitude correlation. Doppler spread

is a measure of the spectral broadening caused by the velocity changes in the wireless

channel, transmitter or receiver while delay spread gives a measure of the frequency

selectivity or the time dispersion in the wireless channel.
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2.3.1 Flat Fading

If a mobile radio channel possesses a constant gain and linear phase response over a

specified bandwidth that is greater than the signal bandwidth, then the transmitted signal

will undergo “flat fading”. In a flat fading channel, the spectral characteristics of the

transmitted signal are preserved at the the receiver. However, amplitude fluctuations may

occur. In other words, in a flat fading channel, the signal bandwidth is much smaller than

the channel coherent bandwidth. In the time domain, the symbol period is much greater

than the delay spread. A classical example is the Rayleigh flat fading channel, which

assumes that the channel induces a time varying amplitude according to the Rayleigh

distribution

2.3.2 Frequency Selective Fading

If the wireless channel possess a constant gain and linear phase over a bandwidth that

is smaller than the bandwidth of the transmitted signal, then the wireless channel is

described as “frequency selective”. In this scenario, which is realistic; multiple copies

of the transmitted waveform arrives at the receiver. These multiple copies are usually

attenuated by different amounts and overlap in time at the receiver.

2.3.3 Fast Fading

In a fast fading channel, the channel impulse response (CIR) changes rapidly within the

transmitted signal’s symbol duration. This means that the coherence time of the channel

is smaller than the symbol period or the signal bandwidth is smaller than the Doppler

spread.

2.3.4 Slow Fading

In a slow fading channel, the CIR changes at a much slower rate than then transmitted

signal. In this case, the wireless channel can be assumed to be static over the specified

bandwidth. For a slow fading channel, the symbol period is less than the coherence time

or the signal bandwidth is greater than the Doppler spread.
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2.4 Narrowband Channel Characteristics

2.4.1 Theoretical Methods (Narrowband)

Narrowband channel features can be obtained via simple theoretical means such as the

free space path loss (log-distance) model and the two-way ground model.

Free space model (Log-distance)

This model assumes a clear LoS between between the transmitter and the receiver and

it is given by the Friis transmission equation in eqn. (2.1). It is used to determine the

signal strength for a given Tx→ Rx separation distance d, where Pt is the transmitted

power, Pr(d) is the received power at (d), Gt is the transmit antenna gain, Gr is the re-

ceive antenna gain, λ is the transmitting wavelength, n is the path loss exponent which is

equal to 2 and L is cable loss. In real life scenarios, a reference distance do with known

received power or path loss is used. The received power Pr(do) or path loss PLdo at do

can be derived from an average spot measurements with radius do. The free space path

loss (dB) can then be derived from Friis equation, and is presented in eqn. (2.2). This is

also referred to as the log-distance path loss model, as received signal power decreases

logarithmically with increasing distance.

Pr(d) =
PtGtGr

L

(
λ

4πd

)n
(2.1)

PLd = PLdo + 10n log(d/do) (2.2)

Log normal shadowing

This model accounts for signal attenuation caused by clutter in the channel. For a speci-

fied Tx→ Rx separation distance, the free space propagation model gives the same result,

even when the receiver is shadowed by an object. However, in reality, the average re-

ceived signal predicted by eqn. (2.2) will vary due to shadowing. This model adds

a zero-mean Gaussian distributed random variable Xϑ to the path loss model in eqn.

(2.2) [34]. The path loss using this model can be computed using eqn. (2.3) and the

values of the random variable can be derived either from measurements and statistical
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techniques such as linear regression.

PLd = PLdo + 10n log(d/do) +Xϑ (2.3)

Two-ray ground reflection

In typical wireless communication channels, the transmit signal seldom uses the LoS

path. The two-ray model adds a ground reflection to the LoS path adopted in the free

space propagation model. However, this model gives unstable results for short range

distances. Therefore a cross-over distance dc is defined (as shown in eqn (2.4)) to deter-

mine when to adopt the model. For a given Tx→ Rx separation distance d < dc, the free

space propagation model is used. The received power using this model can be computed

using eqn. (2.5), where ht is the transmitter height and hr is the receiver height.

dc = 4πhthr/λ (2.4)

Pr(d) =
PtGtGrh

2
th

2
r

d4L
(2.5)

2.4.2 Measurement-based Stochastic Models (Narrowband)

Radio propagation measurements have been carried out in indoor locations (such as of-

fices and factories) as well as outdoor scenes [37–50]. While both scenes require the

same measurement instruments, they present different propagation topographies with

respect to scatterers, material composition of the environment and mobility. In this sub-

section, widely known measurement-based stochastic models for outdoor and indoor

locations are discussed. It should be noted that the measurement data presented in this

subsection are generalizations from the respective measurement campaigns. It is ex-

pected that site-specific details would vary for each location.
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A. Outdoor Models

Evaluating radio coverage outdoors requires estimating the effects of the terrain and scat-

terers such as building rooftops, trees, and other physical structures larger than the signal

wavelength. These scatterers introduce attenuation of the radio signal through the EM

propagation mechanisms.

Okumura-Hata

The Okumura-Hata model [51] is based on measurement data gathered by Okumura in

Tokyo, Japan and has been widely adopted in predicting outdoor wireless coverage. The

path loss (between 150 MHz and 1500 MHz) using this model can be computed using

eqn. (2.6), where A, B and C are dependent on the operating frequency and transmit-

ter/receiver heights. The correction factors A, B, C depend on the environment, while hb,

hm, fc, a(hm) represent the transmitter and receiver antenna heights, operating frequency

and mobile antenna correction factor.

PL = A+B log(d) + C (2.6)

A = 69.55 + 26.16 log(fc)− 13.82 log(hb)− a(hm) (2.7)

B = 44.9− 6.55 log(hb) (2.8)

For a medium sized city, a(hm) is given by eqn (2.9) and for a large city, it is computed

using eqn. (2.10) and eqn. (2.11)

a(hm) = (1.1 log(fc)− 0.7)hm − (1.56 log(fc − 0.8) (2.9)

a(hm) = 8.29(log(1.54hm)2 − 1.1 for fc ≤ 300MHz (2.10)

a(hm) = 3.2(log(11.75hm)2 − 4.97 for fc ≥ 300MHz (2.11)

COST-231

The European Co-operative for Scientific and Technical Research (COST) extended

Okumura-Hata model to compute path loss and coverage at frequencies going up to

2 GHz. This was required in order to estimate large-scale radio propagation effects for

global system for mobile (GSM) communications in Europe [52]. The modified equa-

tions are given in eqn. (2.12), where C is 0 dB for medium sized and suburban areas and

3 dB for metropolitan centres. In order to obtain reliable results, the model requires that
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the transmitter and receiver heights should be between 30 m to 200 m and 1 m to 10 m,

and the Tx→ Rx separating distance be between 1 km and 20 km.

PL = 46.3 + 33.9 log(fc)− 13.82 log(hb)− a(hm)

+ (44.9− 6.55 log hb) log(d) + C
(2.12)

B. Indoor Models

Radio propagation indoors experiences the same EM mechanisms as outdoor propaga-

tion. In closed spaces such as office buildings, EM waves have to travel through walls

and across floors.

Wall-partitioned path loss models (same floor)

Generally, indoor partitions could be hard or soft [34]. Hard partitions are created with

the building structure and soft partitions are moveable. An example of a soft partition is

plasterboard used in office partitioning. In order to obtain the loss introduced by these

partitions on the same floor, signal power measurements are required. In [34], a sum-

mary table of signal loss measurements is presented for various material types. On the

same floor, the site-specific path loss can be computed using eqn. (2.13), where Lw is the

measured signal loss associated with the obstruction for a LoS path.

PLd = PLdo + 10n log(d/do) +
∑
i=0

Lw +Xϑ (2.13)

Wall-partitioned path loss models (between floors)

Obtaining the loss across floors introduces another term to eqn. (2.13). The signal atten-

uation across floors can be obtained via measurement as shown in [53]. The predicted

path loss using this model can then be calculated using eqn. (2.14), where FAF is the

floor attenuation factor in dB.

PLd = PLdo + 10n log(d/do) +
∑
i=0

Lw +Xϑ + FAF (2.14)

2.5 Wideband Channel Characteristics

Wideband propagation models provide a means of evaluating how other RF front end

features (such as modulation techniques and equalization) perform with respect to a
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specified multipath channel. In this section, widely known wideband stochastic and

measurement based statistical models for outdoor and indoor locations will be presented.

In order to obtain tractable solutions for modelling the wireless channel, it is assumed

that the channel is slowly time-varying or quasi static. However, in a scenario where

interacting objects, transmitter and receiver are fixed, a linear time-invariant system can

be assumed. In a slowly time-varying wireless channel, the scattering function of the

channel can be split into two functions: the delay spectrum and the Doppler spectrum as

shown in eqn. (2.15) [36].

S(τ, λ) = Q(τ)D(λ). (2.15)

Q(τ) = |h(τ)|2 =
N∑
i=0

|β2
i |δ(τ − τi) (2.16)

The power delay spectrum (which is also known as the delay profile) is the average of the

channel impulse response as shown in eqn. (2.16), while the Doppler spectrum (D(λ))

refers to the broadening of the frequency detected at the receiver due to the Doppler shift

of the respective MPCs.

2.5.1 Stochastic Wideband Models

N-tap Rayleigh & Rician-fading Models

In both models, the following are assumed:

1. The radio channel is slowly time-varying

2. The amplitude of the MPCs varies according to the Rayleigh distribution for a

NLoS topographies and a Rician distribution when a LoS is present.

3. The phase of the MPCs is uniformly distributed over [0, 2π]

In Figure 2.5, the Rayleigh fading behaviour is illustrated by simulation at 900 MHz for

a mobile device travelling at 120 km/hr [34]1. From Figure 2.5, it can be seen that deep

fades occur when the signal drops below a threshold (that specifies receiver sensitivity).

The statistics of the level-crossing rate (LCR) and fade duration dictate the performance

of the receiver RF front end.
1This speed corresponds to a maximum Doppler shift of 100 Hz.
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2.5.2 Measurement-based Stochastic Models (Wideband)

A. Outdoor Wideband

COST 207 Model. This model is based on measurements using the GSM channel band-

width (200 kHz) for rural, urban, bad urban and hilly areas [54]. The model provides

scattering function parameters for the areas characterized by using four Doppler spec-

trum realizations and four power delay profiles (one for each of the locations surveyed).

The Doppler spectrum available in the COST 207 model for the tapped-delay line are

Rayleigh, Rician and Gaussian. From the measurement results provided, the power de-

lay spectrum could be estimated using one-sided single exponential functions.
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Figure 2.5: A Rayleigh signal envelope at 900 MHz.

B. Indoor Wideband

Saleh-Valenzuela Model.

The Saleh-Valenzuela (S-V) model is based on the clustering of MPCs and the exponen-

tial decay the MPCs experience as they arrive at the receiver. Using the S-V model, the

channel impulse response can be mathematically expressed as h(τ ) (shown in equation

(2.17)) and illustrated in Figure 2.6, where L is the number of clusters, K is the number

of MPCs in a cluster L, βkl and θkl are the amplitude and phase of the kth MPC in the l

th cluster, τ kl is the arrival time delay of the kth ray/MPC in the l th cluster and Tl is the
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cluster arrival time. The ray amplitude βkl is calculated by eqn. (2.18), where Γ and γ are

the exponential decay constants for the clusters and rays within a cluster. The average

power of the first component in the first cluster is β2(0,0).

h(τ) =
L−1∑
l=0

K−1∑
k=0

βkle
jθklδ(τ − Tl − τkl) (2.17)

β2
kl = β2(0, 0)e−Tl/Γe−τkl/γ (2.18)
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Figure 2.6: Saleh-Valenzuela channel impulse response model. The visually identified

clusters are represented with red solid lines with corresponding decay rate (γ), and the

envelope decay constant (Γ) is represented by the dashed solid line.

2.6 Ray Tracing for Wireless Channel Characteristics

Accurate large and small-scale effects for a given location can be obtained via de-

terministic methods. Deterministic models require a detailed 3-D computer-aided de-

sign (CAD) model of the physical location with respect to objects between and around

the transmitter/receiver. The operating principle of deterministic models is to solve

Maxwell’s equations by either using ray optics or finite-difference equations [36]. In

ray tracing, this involves two tasks: tracing propagation paths from the transmitter to the

receiver and computing the associated electric field. With respect to radio propagation, a

“ray” can be visualized as: an EM wave that travels in a straight line in a homogeneous

medium, obeys the laws of reflection, refraction and diffraction.
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2.6.1 Basic Ray Tracing Algorithms

Shooting and Bouncing Ray (SBR)

The SBR technique introduced by [55] is widely adopted in commercial ray tracing

softwares. This process starts by launching rays from a transmitter (known as a source

point) to a receiver (known as a field point). An illustration of the SBR algorithm is

presented in Figure 2.7. In order to trace rays using this technique, these three steps are

required: ray launching, ray tracing and ray reception [56].

Ray launching requires that the rays from a source are uniformly distributed and are

launched at discrete angles. This requirement ensures that the rays carry equal power

as an isotropic source. After the rays are launched, they can be traced to the field point

directly (LoS) or traced from diffracting and reflecting edges or surfaces. In scenarios

where the rays hit the floor of a building or ground in urban spaces, the method of image

technique is used to determine ground reflection points.

In Wireless Insite ®, diffracting edges are identified when adjacent rays from a trans-

mitter travel via different paths in the geometry. After the rays have been launched and

traced, the specific geometrical paths are constructed. Ray reception is carried out such

that a collection sphere is created around a field point, and EM rays passing through that

sphere are used in the EM field computation.

 

Figure 2.7: The shooting and bouncing ray (SBR) launching schematic. W1 and W2 are

arbitrary reflecting surfaces. [57].

25



Image Method

This technique is illustrated in Figure 2.8 and it is used to determine the path of a re-

flected ray. Using Figure 2.8, the path tracing can be explained as follows:

1. Locate the image of Rx (Ri) with respect to the planar reflection surface AB.

2. Connect the image Ri to Tx in order to obtain a line segment that intersects the

surface at reflection point Q.

3. Create reflected path using points Tx, Q and Rx

 

Q 

Ri 

Rx 

Tx 

A B 

Figure 2.8: Image ray tracing method.

Hybrid Method

A hybrid algorithm that combines SBR and image method was initially proposed by Tan

et. al. in [58]. This method uses SBR to determine the geometric paths, thereafter the

Image method is used to adjust the trajectory with respect to the reflection points. The

hybrid method possesses added advantages in form of the computational efficiency from

the SBR technique and the reflection point accuracy from the image method [57].

2.6.2 Evaluating Wireless Channel Characteristics

In the commercial ray tracing suite (Wireless Insite ®) used in this thesis, the hybrid

method is adopted in obtaining geometric paths and the electric field is computed in ac-

cordance with the Uniform Theory of Diffraction (UTD). At the specified field points, the
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rays passing through the collection sphere are combined to determine small and large-

scale fading effects such as path loss, delay spread or channel impulse response. Wireless

Insite is able to compute large scale power distance relationships by implementing the

Hata model, COST 231 model or the free space model. In the literature, ray tracing

techniques have been used to effectively estimate wireless channel characteristics such

as path loss, delay spread and Rician K-factor [59–64]. With respect to ray tracing, the

delay spread of a ray tracing wireless channel (τ rms) can be calculated using eqns. (2.19)

to (2.23), where ηo is the free space impedance (377 Ω), λ is the wavelength, Eθ,i and

Eφ,i are the theta and phi components of the electric field of the ith path at the receiver, θi

and φi are the directions of arrival, β defines the overlap of the transmitted and received

waveform in the frequency domain, Li is the geometric path length, c is the speed of

light. In a measurement regime, τ rms-RT becomes τ rms, Pi becomes the channel power as

a function of excess delay P(τ ), which is obtained from the complex channel impulse

response and t̄ becomes the mean excess delay(τ ).

Pi =
λ2β

8πηo
|Eθ,igθ(θi, φi) + Eφ,igφ(θi, φi)|2 (2.19)

PR =

Np∑
i=0

Pi (2.20)

ti =
Li
c

(2.21)

t̄ =
1

PR

Np∑
i=0

Piti (2.22)

τrms−RT =

√√√√ 1

PR

Np∑
i=0

Pit2i − t̄2 (2.23)

2.7 Summary

This chapter has discussed the wireless channel and how it can be characterised. For a

quasi-static wireless channel, the Doppler spread, delay spread and the power distance

relationship can be used to obtain wideband and narrowband features of a channel. An

understanding of radio propagation is required in modelling indoor locations, especially

when details of the inventory are unknown. Assuming a quasi-static or slowly time
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varying channel, a multipath rich environment like a factory or machine workshop will

cause time dispersion arising from multiple reflecting conducting surfaces. The measure

of the time dispersion (delay spread) will be used in Chapters 4 and 5 for comparing the

wideband characteristic of a site specific floor plan. In the next chapter, ambient energy

measurement results from a feasibility study at an engine plant is presented.
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Chapter 3

Ambient Energy Characterisation

In this chapter, the results of a measurement campaign carried out at Ford Dagenham

engine Plant (DEP) is presented and discussed. Irradiance measurement data is presented

in Section 3.2, followed by ambient temperature differences and input RF power density

in Section 3.4. Input RF power density across the plant varied between -127 dBm/cm2

to -113 dBm/cm2. The maximum temperature difference measured within 30 cm away

from machine parts on the production lines surveyed was 10 °C. Indoor lighting was

dominant at the plant via fluorescent tubes, with average irradiance of 1 W/m2 (-10

dBm/cm2). The results obtained from this measurement campaign showed that indoor

lighting and temperature difference were suitable ambient sources for energy harvesting

at the DEP.
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3.1 Introduction

Prior to deploying an energy harvester in any given location, it is essential to evaluate its

suitability. Consequently, measurements were taken at the DEP in order to obtain a dis-

tribution and availability of ambient energy at the plant. For each of the three domains

investigated, different parameters were measured: input RF power density (dBm/cm2)

for characterizing ambient RF energy; temperature measurements (°C) for thermal en-

ergy; and irradiance (W/m2) for ambient light energy. While ambient light, temperature

and RF have been characterised for indoor and outdoor locations in the literature, most

of indoor studies investigated office locations. Factory environments are often classi-

fied as indoor environments, however they differ in inventory, size, building height and

building materials when compared with office or home locations.

In the literature, ambient light has been characterised using radiometric and photomet-

ric measurement techniques [5, 65–68]. Radiometric characterisation of light gives an

insight into the amount of energy contained in light photons, rather than a perception

of how much light is perceivable (as in photometric characterisation) [65]. However, in

order to accurately characterise ambient light energy for energy harvesting, it is essen-

tial that a radiometric measurement approach is adopted. In the literature, light energy

is measured as the radiant flux energy per unit area (also known as irradiance). The

long term stationary data presented in [65, 69] was gathered over sixteen months in of-

fice buildings in New York, USA using a light-to-frequency converter and a LabJack

data acquisition device (DAQ). These results were used to predict energy profiles and

develop energy harvesting aware algorithms. At Location A (a students’ office on the

6th floor in [65]), the irradiance data was down sampled to 7 hours (9 am - 4 pm) for the

first day of the month and averaged over a year. With the measurement setup placed on

a windowsill and window shading in place, the average indoor irradiance was computed

as 0.3788 W/m2. In [5], illuminance (lux) was measured at residential apartments in

Southampton, UK, San Sebastian, Spain and Warsaw, Poland using light meters (ISO-

TECH 1337 and DT-8809A). The light levels measured varied from 100 lx (0.027 W/m2)

to 3700 lx (1.27 W/m2) over a 24 hour time scale. This was due to the variation in build-

ing types and use, weather, time of the day, type of artificial light used, influence of
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sunlight as well as the government lighting regulations at the measurement sites. The

lux results were converted to irradiance by using a linear fit to the illumination levels vs

power density for a COTS amorphous-Silicon (a-Si) PV cell. A photodiode sensor on

the TelosB mote in [66] was used to gather indoor and outdoor illuminance (lux). These

traces were used for determining how PV cells could be used for powering and extending

communication range in emerging computational RFIDs. Two office locations as well as

indoor residential buildings were characterized and the average illuminance for 2.5 hours

varied from 49 lx to 241 lx. These photometric results can be converted to radiometric

using the linear fit in [5]. For a 9 cm2 a-Si PV cell, the corresponding irradiance varied

from 0.0135 W/m2 to 0.07 W/m2. However peaks of 700 lx (0.22 W/m2) and 1091 lx

(0.35 W/m2) were recorded, which are less than those presented in [5].

In [70], an irradiance characterisation device was conceptualized. The prototype pre-

sented was capable of measuring irradiance as well as computing the anticipated DC

power output for a-Si and crystalline silicon cells. The setup adopted used two sensors

(ADJD-S371 red, green, blue (RGB) digital colour sensor, a light-to-digital converter)

and a microSD card for data logging. Indoor irradiance varied from 0.23 W/m2 (over a

two hours period) to 0.17 W/m2 (over 4091 seconds). Outdoor irradiance values mea-

sured were two orders of magnitude greater than indoor traces. A dye sensitized solar

cell (DSSC), resistor and a sensor node were used in [68] to obtain irradiance values over

10 days. Indoor irradiance varied from 0.2 W/m2 to 0.5 W/m2, while outdoor irradiance

was an order of magnitude greater.

Thermal energy characterization was carried out by attaching a commercially available

thermoelectric module to a Dell Alienware laptop personal computer (PC) in [71]. Us-

ing a thermal camera, heat dissipation paths for the PC electronics were identified. From

the results presented, the maximum temperature difference recorded (8.6 °C), produced

119 µW of harvestable power, with corresponding power density of 1.25 mW/cm3. Less

power was recorded in [72], where a commercial TEG was attached to a human wrist.

The harvestable power reported was 20 µW at 22 °C room temperature. The authors

also highlighted that human motion and wind could alter the temperature difference

recorded [72]. A contactless infrared thermometer (Calex PYROPEN-E) and digital

thermometers (TENMA 72-2065A, TME KS01-3 surface probe) were used for temper-
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ature measurements in [5]. At the measurement sites, the temperature difference for the

equipment characterised (radiators, cooker, boiler and water pipes) varied between 11

°C to 59.5 °C. This corresponds to 1 mW to 9 mW when a commercial TEG datasheet

was used to estimate harvestable power [73].

Input RF power density levels (indoors and outdoors) has been quantified in the literature

by using two measurement setups. The former consists of a spectrum analyser, antenna

and a PC for post processing. It is usually used to obtain details of the spectrum of

interest [5, 15, 74–79]. The latter consists of a probe as a sensor and a display meter

for visualisation [80–83]. In most cases, this setup is used to obtain an overview of the

frequency spectrum surveyed.

Narrowband or frequency selective measurements in [15] characterized ambient Wi-Fi

signals in an office location, where the received power on the measuring device peaked

at -23 dBm 1. The rectenna designed using the measurement results was able to harvest

ambient Wi-Fi and could operate at incident RF power as low as -40 dBm. This was pos-

sible because the RF power incident on the antenna array was high enough to turn on the

rectifying diodes. In [77], Wi-Fi power density was measured at distances between 7.05

m and 12.30 m away from a wireless access point. The floor on which the measurements

were taken had electrical laboratories, classrooms and offices. The recorded RF power

density were in the range of -50 dBm/cm2 to -30 dBm/cm2. While it was concluded that

the power densities were too low for energy harvesting, the rectenna designed in [15]

could be adopted. The European EM field exposure report in [79] for 2G base station

(GSM 900 and GSM 1800) showed that the RF power density varied widely from partic-

ipating countries due to different regulations. Most of the measurement data was carried

out in Austria, where the average indoor RF power density near the window and further

away was -47.17 dBm/cm2 and -44.56 dBm/cm2. For outdoor locations (which include

ground, terrace, balcony and roof top measurement), the average outdoor values were of

the same order as the recorded values indoors. However, the maximum power density

(-28.73 dBm/cm2) recorded during the entire measurement was obtained outdoors.

Wideband measurements carried out by [74] in densely populated areas in London showed

1The received power on the spectrum analyser can be converted to power density, however the antenna

gain of the monopole used was not discussed
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that ambient RF can be harvested when there is sufficient incident RF power. The highest

incident RF measured for 2G was -25 dBm/cm2 at Hampstead station and -36 dBm/cm2

for 3G at St James Park. These power densities were obtainable due to the fact that the

measurements were taken outdoors in areas with very good wireless network coverage

from UK mobile network operators. A similar measurement campaign was also carried

out by [75] for the purpose of assessing public exposure to macro cells (base stations).

Within a separation distance of 0 - 150 m from the 2G base stations characterised, the

outdoor RF power density measured was between -60 dBm/cm2 and -40 dBm/cm2, with

indoor values spread over a wider range of -80 dBm/cm2 to -40 dBm/cm2.

The measurement campaign started off by [75] was extended to microcells and picocells

using a similar measurement setup in [78]. Using microcell specifications based on the

antenna height and the total radiated power, the measurements were taken 1 - 100 m away

from 20 microcell base stations. The total outdoor RF power density of ambient EM

waves within the wideband measurement bandwidth (80 -2500 MHz) was in the range

of -70 dBm/cm2 and -20 dBm/cm2, which was largely influenced by 2G base station

downlinks. In addition, narrowband measurements were also carried out for 2G micro

cell base station downlinks by time averaging the broadcast control channel (BCCH) of

the respective microcell base stations. Analysing the power density results from [75] and

[78] showed that the power density measured near microcells were generally higher than

those measured near macrocell base stations. Apolinio et al. in [76] also characterised

RF power density across a wide bandwidth for the purpose of human exposure evaluation

by subdividing the spectrum into contiguous bands. The authors integrated the electric

field over the measurement bandwidth, consequently making it impossible to estimate

power density for RATs present within the measurement bandwidth.

In general, it can be inferred from the literature presented that the RF power density

indoors is usually lower when compared to outdoor measurements. This is due to ad-

ditional propagations effects the EM wave experiences. Some of these effects include

building penetration loss, in building reflections or attenuation caused by humans. While

it is impossible to make a fair comparison, due to the different propagation environments

in the works cited, the results affirm the intuition that the received power (density) of a

base station channel is usually higher when measured outdoors than indoors.
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3.2 Ambient Light Measurements

3.2.1 Methodology and Instrumentation (Ambient Light)

Radiometric characterisation of indoor lighting was adopted in the measurement cam-

paign carried out at the DEP. Irradiance was measured using a Kipp & Zonen SP Lite

pyranometer [84] (see Figure 3.1) connected via a cable to a data logger (Squirrel SQ2020-

2F16) [85] and placed in a fibreglass case. The data logger (shown in Figure 3.2 ), read

voltage at a sample interval of 1 minute (in µV) from the pyranometer. The measured

voltage input was converted to irradiance (W/m2) using the sensitivity of the pyranome-

ter in (µV/W/m2) and its spectral range (W/m2). Due to health and safety requirements,

measurements were taken between 10:30 am and 15:30 pm at the DEP. In addition, ir-

radiance measurements were taken at the 5GRC and HSSMI office in London. At the

DEP, the pyranometer was placed on a raised flat surface approximately 1.5 m high 2 and

desk level at other office locations.

 

Figure 3.1: SP Lite pyranometer [84]. This device was used to obtain irradiance values

at the DEP.

2As an additional safety requirement, the device was placed on a platform that can be visible to anyone

on the factory floor
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                    Figure 3.2: Squirrel SQ2020-2F16 data logger [85]. This device was used to log data

from the pyranometer.

3.2.2 Measurement Campaign Results (Ambient Light)

The irradiance values presented in Figure 3.3 were taken at the center of the DEP, while

the result in Figure 3.4 was measured on a production line further away from the center

of the plant. The measurements were taken one day apart, with the second measurement

taken on the 13th of May, 2015. Observing the raw measurement data, it was evident

that the measurement was interrupted and the affected time span was removed from the

post processed data. The average irradiance and standard deviation measured at both

locations was 1.20± 0.12 W/m2 and 0.98± 0.11 W/m2. The weather around the factory

during measurement was sunny, as readings outside varied between 400 W/m2 and 600

W/m2. Using the average irradiance (E) at the plant, an assumed efficiency (ηPV) of

14.1% for a DSSC from GCell [86], PV cell area (A) of 25 cm2, 350 µW can be realized

using eqn. (3.1).

PDC = ηPVEA (3.1)

Additional indoor irradiance values from HSSMI and the 5GRC were obtained using

the same measurement setup and procedure. The average irradiance obtained from both

office spaces were 1.53 W/m2 and 1.96 W/m2. The irradiance values from HSSMI and

5GRC are presented in Appendix A.
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Figure 3.3: Irradiance measurement at a center location at the automobile plant. This

measurement was taken between 10:45 AM and 3:30 PM. The Figure shows irradiance

values with interruptions excluded.
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Figure 3.4: Second Irradiance measurement at the automobile plant. This measurement

was taken between 11:00 AM and 5:00 PM. The Figure shows irradiance values with

interruptions excluded.
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3.3 Ambient Temperature Measurements

3.3.1 Ambient Temperature Measurement Procedure

Temperature measurements at the DEP were taken using a contactless infrared ther-

mometer (Calex PYROPEN-E shown in Figure 3.5) at six locations. These locations

were at the start and end of three production lines. Complying with the health & safety

standards at the DEP, the thermometer was held at 30 cm away from the machine parts

on the production lines. The average ambient temperature around the production lines

characterized was 24.50 °C.

3.3.2 Measurement Campaign Results (Ambient Temperature)

In Table 3.1, the temperature readings obtained at the DEP are presented. The maximum

and average temperature difference recorded was 10 °C and 3.45 ± 2.96 °C. Depending

on the COTS thermal harvester adopted, the respective performance data can be used to

estimate the obtainable DC power. For example, the TGP-751 (from Micropelt energy

harvesting [73]) will generate 1000 µW at 10 °C temperature difference and 80 µW at

the average temperature difference recorded. Prior to the measurement campaign at the

DEP, the operating temperature of a vertical cutting mill at the Ford training institute

generated a temperature difference of 4 °C 3.

 

Figure 3.5: Calex PYROPEN-E infrared thermometer [87].

3The Ford training institute is located in the same building as HSSMI on the ground floor

37



Table 3.1: Summary of temperature measurements at the DEP

Production line Temperature at the start of the

production line (°C)

Temperature at the end of the

production line (°C)

Engine assembly 26.00 35.00

Engine crankshaft 21.50 22.10

Engine block 25.90 22.60

3.4 Ambient Radio Frequency Measurements

3.4.1 Radio Frequency Measurement Procedure

Estimating the electromagnetic field at any given point requires E-field measurements

in more than one polarisation. This is due to the possibility that the orientation of the

transmitted wave might have changed due to propagation characteristics (e.g. reflection,

shielding and refraction). In the literature, horizontal and vertical polarization compo-

nents of the electric field are measured and vectorial combination is used to sum the

respective components [75, 76, 78, 79, 88]. As a result, dual-polarization measurements

with vector combination were used in the measurement campaign to estimate input RF

power density at five locations on the factory floor. The E-field displayed on the spec-

trum analyser was converted to RF power density by using eqns. (3.2) to (3.4), where

EdBµ V/m is the E-field displayed on the spectrum analyser, AF is the antenna factor 4,

Lcable is the cable loss, EVolts/m is the electric field in volts/m, Pd is the input RF power

density in dBm/cm2. It is noteworthy that some authors use both survey techniques

(spectrum analyser or probe/display) [81, 83], depending on the measurement purpose

or for result comparison. While most of these measurement campaigns use “max-hold”

trace technique on the spectrum analyzer, other measurement procedures adopt an aver-

aging method [76, 78]. The “max-hold” trace records the highest occurring value of the

electric field per frequency during a sweep. This gives rise to a scenario whereby the

4The antenna factor is used to estimate the electric field strength that generates 1 Volt at the antenna

terminals.
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power density is being over estimated. The “average-mode” trace technique shows an

instantaneous value of the signal at the end of the frequency sweep by taking the average

of a trace point and its prior reading.

EdBµV/m = EdBµV + AF − Lcable (3.2)

EV olts/m = 10((EdBµV/m−120)/20) (3.3)

Pd(mW/cm
2) =

(EV olts/m)2

3770
(3.4)

The setup adopted in this measurement campaign is made up of a log-periodic antenna

(EM-6947 from Electro-metrics; 6dBi gain), Rhode & Schwarz (R&S) ESPI-7 spec-

trum analyser and a PC: see Figure 3.6. On the spectrum analyser, both “max-hold” and

“average-mode” sweeps were activated while the antenna was rotated manually in a sim-

ilar way to [75] for horizontal and vertical polarization. In order to ensure that sufficient

detail was extracted during the frequency sweep, a resolution bandwidth (RBW) of 100

kHz was used. The RBW selected across the band covered is less than the carrier spacing

in GSM 900, GSM 1800, UMTS, DTV, and Wi-Fi. In addition to the RBW, the sweep

time was set to 37 seconds and the number of frequency points on the spectrum analyser

was 2801. These settings align with the recommendation in [79], which ensures that

the spectrum analyser is able to evaluate each of the RAT carriers independently. The

measurement locations selected for this campaign were chosen based on access to mains

power and health and safety requirements at the DEP. In Figure 3.7 the measurement

locations are shown with respect to a rectangular floor plan that depicts the factory floor

(527 m by 305 m). The selected measurement locations are a subset of possible locations

where wireless sensors can be placed. Measurements were taken during the day while

production lines were in operation. On the factory floor, different production lines for

engine crank, engine block, engine heads and engine assembly were active during the

measurement. These production lines have fixed and moving machines, which are made

of metals and alloys such as steel. These materials affect RF propagation characteristics

by introducing time dispersion in the wireless channel. All RF measurements presented

in this sub section were taken either close to a production line or a pedestrian path.
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Figure 3.6: Input RF power density measurement setup at the DEP.

3.4.2 Radio Frequency Measurement Campaign Results

Comparing the measurement data with widely known RF power density measurement

campaigns in the UK as shown in Table 3.2, it can be seen that the input RF power

density levels for GSM and 3G inside the plant are three to four orders less than the

results presented in [74] and [5]. However, the indoor measurement results in [5] (taken

at Southampton, UK ) were obtained near a window. Apart from GSM 1800, where the

measurement at the DEP exceeds those presented in [5], the ambient RF power density at

the DEP is low in comparison to [5,74]. This large difference in the measurement results

is primarily due to the location of the DEP, as the mobile network coverage in this area

is poor. Moreover, the results in [74] were obtained outside underground stations in

London where mobile coverage is good due to the dense macrocell installations.
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Table 3.2: Comparison of maximum indoor RF power density levels at the DEP

RATs Frequency

(MHz)

This work (dBm/cm2)

max-hold

[74] (dBm/cm2)

max-hold

[5] (dBm/cm2)

max-hold

This work (dBm/cm2)

average mode

Digital TV 470-610 -80 -80 - -100

GSM 900 880-960 -90 -37 -50 -111

GSM 1800 1710-1880 -70 -40 -79 -95

3G 1320-2170 -88 -50 -62 -97

Wi-Fi 2400-2500 -70 -70 -86 -101
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Figure 3.7: Sketch of RF power density measurement points at the automobile factory.

In Figures 3.8 to 3.12, the vector combination of the input RF power density at the

measurement locations are presented 5. From the measurement results, it can be observed

that the recorded power density using the “max-hold” trace technique varied over a wider

range for horizontal and vertical polarization. For example, at Location 1 the Wi-Fi

and GSM 1800 signals measured in both polarizations vary up to 20 dB/cm2. Using

the “average-mode”, the variation in horizontal and vertical polarization measurements

drops to less than 5 dB/cm2. At other locations where measurements were taken, the

5The RF power density measured at each location for both polarizations using average and max-hold

is presented in Appendix B
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strength of the Wi-Fi signal received fluctuated due to the locations of the Wi-Fi AP.

The dominant frequency across the plant was GSM-1800 and 3G, which agrees with the

results presented in [89]. The results of the “average-mode” trace have been used for

design considerations within this thesis, since it provides a more realistic estimate of the

input RF power density at the plant. However, max-hold measurements were recorded at

each of the measurement locations. With respect to the base station and mobile transmit

channels, the measurements at the plant also showed that the mobile transmit band had

higher peak ambient powers than the base station downlink channel (as seen at Locations

1, 2 and 3 ). This is due to the number of active mobile phones around the measurement

location and the distance to the 3G base station. Upon inspecting the power density

values presented, it is evident that ambient RF energy harvesting is not feasible at the

plant. This is essentially due to the distance from nearby base stations. In addition, the

building materials and the presence of metallic objects also contribute to the EM wave

attenuating effect experienced at the plant. Using the field trials carried out at Imperial

College, London, as a benchmark [74], the least input power required to cold start an

ultra-low power management module (PMM) was -25 dBm. Based on the measurement

results, a realistic power density (of -87 dBm/cm2 from the “average-mode” results)

and a RF-DC conversion efficiency of 50%, a 62 dBi gain antenna will be required to

generate 5 µW at the output terminal of a radio frequency energy harvester (RFEH).

Moreover, the rectenna will have to be in the optical line-of-sight of the transmitter due

to the pencil shaped beam. This makes ambient RF energy harvesting unrealistic based

on the available power density available at the DEP. The antenna gain, effective aperture,

power density, output power and operating wavelengths are related using eqns. (3.5) to

(3.7), where Ae is the effective aperture, λ is the wavelength, Gfm is the antenna gain

at the mid-band frequency, PRF is the input RF power of the RFEH, S is the input RF

power density, PDC is the out DC power of the RFEH, ηRF-DC is the RF-DC conversion

efficiency.

42



500 1000 1500 2000 2500 3000

Frequency (MHz)

-140

-130

-120

-110

-100

-90

-80

-70

-60

P
ow

er
 d

en
si

ty
 (d

B
m

/c
m

2 )

Average mode
Max-hold

DTV
GSM

900

MTx

GSM

900

BTx

GSM

1800

MTx

GSM

1800

BTx 3G

MTx

3G

BTx

W-Fi

Figure 3.8: Input RF Power density at Location 1 at the DEP. This result shows the vector

combination of horizontal and vertical polarization for average and max-hold modes.
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Figure 3.9: Input RF Power density at Location 2 at the DEP. This result shows the vector

combination of horizontal and vertical polarization for average and max-hold modes.
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Figure 3.10: Input RF Power density at Location 3 at the DEP. This result shows the

vector combination of horizontal and vertical polarization for average and max-hold

modes.
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Figure 3.11: Input RF Power density at Location 4 at the DEP. This result shows the

vector combination of horizontal and vertical polarization for average and max-hold

modes.
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Figure 3.12: Input RF Power density at Location 5 at the DEP. This result shows the

vector combination of horizontal and vertical polarization for average and max-hold

modes.

Ae =
λ2Gfm

4π
(3.5)

PRF = SAe (3.6)

PDC = ηRF−DCPRF (3.7)

However theoretically, an increased amount of power can be harvested by designing the

antenna to resonate across an entire band or multiple bands as seen in multi-band recten-

nas [90–93]. Wideband antennas are able to capture RF waves across a wide bandwidth,

compared to the narrowband antennas assumed in the calculation above. Adopting a

wideband antenna and matching circuit, provides the opportunity to increase the RF

power available at the input terminals of the rectifying circuit. Using the recommen-

dation in [74], the RF channel power density across the respective RATs present at the

DEP has been calculated in MATLAB and presented in Table 3.3 to 3.7 for the locations

investigated. Given the banded power density, estimates can be made for the received

power available to the rectifier circuit. From the banded power density results presented

in Tables 3.3 to 3.7, it is evident that this solution increases the available ambient RF
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power available to the rectenna, however it still proves ineffective. This is because COTS

PMMs require incident RF power several orders more than the values presented.

Table 3.3: Banded Input RF Power density at Location 1

RATs Frequency (MHz) Average-mode (dBm/cm2) Max-hold (dBm/cm2)

Digital TV 470-610 -78.00 -67.89

GSM-900 (MTx) 880-915 -99.96 -84.21

GSM-900 (BTx) 925-960 -93.35 -83.26

GSM-1800 (MTx) 1710-1785 -94.19 -59.78

GSM-1800 (BTx) 1805-1880 -88.27 -77.22

3G (MTx) 1920-1980 -76.57 -68.34

3G (BTx) 2110-2170 -85.98 -76.50

Wi-Fi 2400-2500 -90.29 -57.77

Table 3.4: Banded Input RF Power density at Location 2

RATs Frequency (MHz) Average-mode (dBm/cm2) Max-hold (dBm/cm2)

Digital TV 470-610 -91.81 -78.81

GSM-900 (MTx) 880-915 -100.37 -76.45

GSM-900 (BTx) 925-960 -98.55 -85.71

GSM-1800 (MTx) 1710-1785 -95.60 -82.76

GSM-1800 (BTx) 1805-1880 -92.78 -82.62

3G (MTx) 1920-1980 -78.62 -80.71

3G (BTx) 2110-2170 -91.68 -81.30

Wi-Fi 2400-2500 -90.91 -72.80

Table 3.5: Banded Input RF Power density at Location 3

RATs Frequency (MHz) Average-mode (dBm/cm2) Max-hold (dBm/cm2)

Digital TV 470-610 -85.28 -74.50

GSM-900 (MTx) 880-915 -87.42 -82.44

GSM-900 (BTx) 925-960 -96.04 -84.29

GSM-1800 (MTx) 1710-1785 -85.71 -68.92

GSM-1800 (BTx) 1805-1880 -88.87 -78.86

3G (MTx) 1920-1980 -73.13 -76.91

3G (BTx) 2110-2170 -89.08 -78.16

Wi-Fi 2400-2500 -90.94 -79.56
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Table 3.6: Banded Input RF Power density at Location 4

RATs Frequency (MHz) Average-mode (dBm/cm2) Max-hold (dBm/cm2)

Digital TV 470-610 -84.71 -72.83

GSM-900 (MTx) 880-915 -99.12 -84.59

GSM-900 (BTx) 925-960 -86.57 -77.32

GSM-1800 (MTx) 1710-1785 -95.17 -64.35

GSM-1800 (BTx) 1805-1880 -79.58 -70.76

3G (MTx) 1920-1980 -63.09 -54.62

3G (BTx) 2110-2170 -76.23 -66.84

Wi-Fi 2400-2500 -90.25 -72.50

Table 3.7: Banded Input RF Power density at Location 5

RATs Frequency (MHz) Average-mode (dBm/cm2) Max-hold (dBm/cm2)

Digital TV 470-610 -83.60 -72.91

GSM-900 (MTx) 880-915 -103.60 -90.61

GSM-900 (BTx) 925-960 -79.22 -69.23

GSM-1800 (MTx) 1710-1785 -95.34 -79.99

GSM-1800 (BTx) 1805-1880 -77.34 -66.55

3G (MTx) 1920-1980 -92.68 -84.00

3G (BTx) 2110-2170 -75.69 -64.72

Wi-Fi 2400-2500 -91.06 -69.60

3.5 Summary

This chapter has presented measurement data from an automobile plant in the UK. The

measurement outcome showed that indoor lighting and temperature differences between

machine parts on the production lines could be harvested. Indoor light from fluorescent

tubes was dominant during the measurement as the irradiance values obtained outside the

factory during the day were two orders greater than the indoor values, which aligns with

the literature. Moreover, this shows that the long term irradiance values can be predicted,

since indoor lighting at the plant is kept ON throughout the day. While the temperature

differences measured are sufficient for COTS TEGs, ambient temperature will fluctuate

at different times of the year. Consequently, affecting the estimated harvestable power
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profile that can be obtained using thermal energy harvesters. As a result of the location

of the automobile plant and the mobile network coverage in the vicinity, the ambient RF

power levels recorded are not sufficient for energy harvesting.

Due to the insufficient ambient RF power recorded during the measurement campaign,

RF power transport can be adopted by using intentional radiators (IRs). IRs can be

placed within factory spaces for the sole purpose of augmenting the available ambient

RF power. In order to model the radio coverage area of IRs, site-specific deterministic

modeling techniques are required. In Chapter 4, details of a measurement campaign at

a University machine workshop is discussed. This workshop contains inventory that can

be found in factories.
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Chapter 4

Wideband Channel Measurement

In this chapter, wideband channel measurement results from a machine workshop are

presented. The machine workshop is located at the Wolfson school of Mechanical, Elec-

trical and Manufacturing Engineering, Loughborough University. The frequency selec-

tivity of the channel over 2.3 - 2.5 GHz (ISM band) was obtained by using a frequency

domain channel sounding method discussed in Section 4.2. The measurement settings

discussed in Section 4.3 were selected so as to prevent distortion of the received signal.

In Section 4.5, details of the accompanying ray tracing model of the machine workshop

are discussed. Section 4.6 presents the measurement and ray tracing results as well as the

delay spread distance relationship. The measurement campaign discussed in this chap-

ter was used to evaluate the performance and suitability of the commercial propagation

software used.
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4.1 Introduction

Wireless channel measurements can be carried out in different ways depending on the

wireless application, some of which are [36]:

1. Spatial measurements whereby the transmitter or receiver is moved to different

locations separated by several wavelengths (greater than 10λ).

2. Local measurements whereby the transmitter or receiver is moved around a spe-

cific location over wavelengths much less than 10λ.

3. Traffic-effect or temporal measurements whereby the transmitter and receiver are

fixed and measurements are carried out with movements occurring between the

transmitter and receiver.

4. Partitioned measurements whereby the effects of hard and soft partitions are in-

vestigated.

5. Frequency-dependent measurements whereby the channel characteristics are mea-

sured at different frequencies.

6. Angle-of-arrival measurements whereby the angle of arriving MPCs are charac-

terized.

7. Time-of-arrival measurements whereby the arrival time of the MPCs are measured.

With respect to site specific deterministic modelling, ray tracing results have been com-

pared with channel measurements in the literature [60, 94–100]. Ray tracing techniques

provide a measurement alternative for determining large and small-scale radio propaga-

tion effects. In [60, 94, 98–100], ray tracing was used to obtain parameters such as path

gain; path loss; Rician K-factor; received power and rms delay spread, which account

for both propagation effects. Ray tracing for modelling large-scale fading was investi-

gated in [95, 96] while small-scale effects were considered in [97]. The environments

considered in the literature presented were indoor locations such as offices, electronic

laboratories or a merchant ship in [99]. In contrast to the environments surveyed, the

ray tracing model in this chapter investigates a multipath rich environment. With respect
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to the materials adopted in the ray tracing models, concrete was used for floor and ceil-

ing; plasterboard for open office plan separation; plywood for table tops and glass for

doors. These material definitions have been adopted in the ray tracing model presented

in Section 4.6. Objects in ray tracing models are usually an approximate representation

of the floor plan and inventory. As a result, the ray tracing model is usually tweaked

by adjusting material definitions, specifying number of reflections and diffractions or by

evaluating diffuse scattering [60, 94]. Regarding diffuse scattering, the authors in [97]

noted that at millimetre wave frequencies, the effect of diffuse scattering in the ray trac-

ing model is negligible, since the objects become larger than the wavelength. However,

in [94], second order diffuse scattering improved the accuracy of the simulation of rms

delay spread and received power. It is noteworthy that it had no effect on the maximum

excess delay reported. In Figure 4.1, a pictorial illustration of propagating paths in a ray

tracing model is shown.

The rms delay spread is defined as the second moment of the PDP and can be obtained

from eqns. (4.1) to (4.3), where N is the number of MPCs in the profile, Pn and τ n are

the power and time delay of the nth MPC. Consequently, it becomes a critical design

factor for wireless transceivers [34]. From the delay spread expression, it can be seen

that τ rms depends on the power ratios and difference in time delays and not the transmit

power [60].

τrms =
√
τ 2 − τ 2 (4.1)

τ =

∑N
n=1 Pnτn∑N
n=1 Pn

(4.2)

τ 2 =

∑N
n=1 Pnτ

2
n∑N

n=1 Pn
(4.3)
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Figure 4.1: Three-dimensional visualisation of direct, reflected and diffracted rays in a

LoS setup from Tx (blue) to Rx (red).

In order to compare the performance of the deterministic models, the mean absolute

percentage error (MAPE) of the channel sounding and ray tracing modelling results are

summarized in Section 4.5, where the results from the measurement campaign will be

put in context with the literature. In general, channel characteristics can be obtained ei-

ther in the time domain or frequency domain. In the time domain, the impulse response

(h(τ )) is obtained by probing the channel with a narrow pulse, while in the frequency

domain, the channel transfer function (CTF) is post processed using a window function

and the inverse Fourier transform. In this chapter, only vertical polarization measure-

ment and simulations were investigated. This is due to the radiation pattern of the omni

directional antennas used in both the measurement campaign and the ray tracing model.

In horizontal polarization measurements or simulations, the power radiated by the an-

tenna is directed towards the floor and the ceiling.

4.2 Channel Sounding Techniques

Time domain channel measurements can be carried out either by transmitting a spread-

spectrum signal and correlating the signal received with the transmitted sequence or by

52



transmitting a short pulse across the wireless channel. In both time domain cases, phase

information of the MPC is not available due to the envelope detection at the receiver

[34, 36].

4.2.1 Direct RF Pulse (Time Domain) Channel Sounding

The direct pulse measurement setup shown in Figure 4.2 is made up of a probing pulse

generator with pulse width Tbb and repetition Trep, RF sweep oscillator and power ampli-

fier at the transmitter. At the receiver, the pulse is detected using an envelop detector and

stored in a digital storage oscilloscope (DSO). While the envelop detector ignores phase

information of the MPCs, a coherent detector can be used in order to retain phase of the

MPCs. One of the disadvantages associated with this time domain technique is its high

peak to average power operation of the amplifiers used in the transmit RF chain. In ad-

dition, it is susceptible to noise and interference due to the pass band filter at the receiver

RF front end. The pulse repetition period Trep is the maximum detectable delay and the

delay resolution is equal to the probing pulse width Tbb. In the literature, this technique

has been used by various authors for obtaining channel characteristics [39, 101, 102].

Pulse 
Generator

fc
BPF

BW= 2/Tbb

Tx Rx

Detector DSO

Figure 4.2: Direct RF pulse time domain channel sounding measurement system.

4.2.2 Spread spectrum Channel Sounding

Sliding Correlator

The block diagram of a sliding correlator channel sounder is shown in Figure 4.3. In

this channel sounding technique, the carrier signal is spread over a large bandwidth by
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mixing (spreading) the signal with a pseudo-noise (PN) sequence (also known as chips)

of chip rate V(Hz), which is the inverse of the chip duration [34]. These PN sequences

in actuality are binary sequences with amplitude ± 1. At the receiver, the signal is

filtered and the spreading process is inverted by using a slightly slower PN sequence

similar to that used at the transmitter (U(Hz)). Autocorrelating the despread signal with

a slower PN sequence at the receiver creates a sliding correlator. Given that the incoming

MPCs will arrive with different delays, this causes the autocorrelation to peak at different

times. Consequently, the channel impulse response convolved with the pulse shape can

be displayed on an oscilloscope. The delay resolution using this technique is given by

eqn. (4.4), where Rc is the chip rate of the transmit PN sequence.

∆τ =
2

Rc

(4.4)

The advantages of using this method in comparison to the direct RF pulse method is that

it can achieve a wider coverage area due to the efficient operation of the power amplifiers,

improved dynamic range as well as lower transmit power [34,36]. On the other hand, the

time required to slide the PN sequences can introduce errors in estimating the channel,

particularly when there are rapid variations in the channel (fast fading). Additionally,

the use of coherent detector at the receiver does not resolve the problem with retaining

phase information of the MPCs. In the literature, this channel sounding technique was

used in [103–108].

4.2.3 Frequency Domain Channel Sounding

In Figure 4.4, the operating principle of a frequency domain channel measurement sys-

tem using a vector network analyser (VNA) and frequency/time transformation is pre-

sented. The VNA works as a frequency sweeper and obtains N complex samples of the

channel frequency (H(k), 0 ≤ k ≤ N) at discrete frequencies fk = fo + k∆f, 0 ≤ k ≤ N,

with equal frequency spacing of ∆f. The channel’s complex frequency response is also

known as the transfer function (i.e. transmissivity S21(f )) is evaluated by comparing the

transmitted signal on port 1 and the received signal on port 2 of the VNA [34, 36]. The

response is then converted to time by using the inverse discrete Fourier transform, as the

band-limited CTF is sampled at the measurement bandwidth. This method is suitable for
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Generator
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BPF

BW= 2Rc
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Tx chip clock

X

PN sequence 
Generator

U(Hz)

Rx chip clock

BPF
BW= 2(V-U)

Narrowband Filter

Figure 4.3: Sliding correlator channel sounding measurement system.

locations where the channel frequency response does not change rapidly (slow fading),

as the fluctuations can lead to errors in estimating the channel impulse response. The in-

herent advantage of this method is that amplitude and phase information of the MPCs is

recorded. The delay resolution using frequency domain channel sounding is the inverse

of the measurement bandwidth and the maximum detectable delay by the system can be

calculated using eqn. (4.5), where Np is the number of frequency points on the VNA and

BW is the measurement bandwidth.

τmax =
Np − 1

BW
(4.5)

In the literature, this technique has been widely adopted for indoor wireless channel

modelling [109–118].
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H(k)
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Port 2Port 1

Figure 4.4: Frequency domain channel sounding measurement system.

4.3 Wireless Channel Measurement System

The frequency domain channel sounding measurement system was adopted during the

measurement campaign. This is because the system is easy to set up and the short Tx→

Rx separation distances to be investigated. During the measurement window, the wireless

channel in the workshop was quasi static by taking the measurements out of hours.

The measurement system used in this campaign is shown in Figure 4.5, with the physical

implementation for a LoS measurement shown in Figure 4.6. The measurement system

is made up of a VNA (Agilent E8050A), two wideband vertically polarised omni direc-

tional antennas (Electrometrics 6116), a 13 m long cable connecting the receiver antenna

to port 2 on the VNA and a 3 m cable connecting the transmitting antenna to port 1 on

the VNA. In Appendix C, the antenna gain, and frequency loss graph for the cables

are presented. In the transfer function mode, the VNA compares the transmitted signal

from port 1 to the received signal on port 2 in order to evaluate the CTF. The frequency

band used during the measurement was 2.3 - 2.5 GHz, which falls within the ISM band

for wireless local area network (LAN). The maximum equivalent isotropically radiated

power (EIRP) of the system was 6.21 dBm, which is below the RF exposure limit. Since

the VNA was used for transmitting and receiving simultaneously, the received signal
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experiences a frequency shift due to the propagation delay. The frequency shift (∆F),

can be calculated using eqn. (4.6), where ts is the sweep time. Taking into consideration

∆F and the front end filter on the VNA, the intermediate frequency (IF) bandwidth of

the VNA was set to 3 kHz. This setting allows the VNA to detect the shifted received

signal without distortion. In Table 4.1, the settings and parameters used for the mea-

surements are presented. With the measurement settings shown in Table 4.1, (τmax) for

the system was 8 µs, which corresponds to a path resolution of 2400 m. The CTF ob-

tained from the measurements includes the antenna responses of both the transmitting

and receiving antennas. Given that the machine workshop inventory creates a rich mul-

tipath environment, it can be assumed that the CTF obtained is independent of the MPC

directions [119].

Agilent E5080A         
VNA

Tx
Rx

PC Laptop

S21(f)

h(t)

Port 2Port 1

Long MW 
Cable

EM 6116 
Omnidirectional

EM 6116 
Omnidirectional

Short MW 
Cable

Figure 4.5: Channel measurement system block diagram.
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Figure 4.6: Pictorial illustration of the channel measurement setup for a LoS point.

Table 4.1: Measurement setup parameters

Parameter Value

Frequency points 1601

Sweep time 800 ms

Transmit power 5 dBm

IF bandwidth 3 kHz

∆F = (
τmax
ts

)BW (4.6)

The link budget for the frequency domain channel sounder at 2.3, 2.4 and 2.5 GHz i.e.,

the lower, mid-point and upper band of the frequency band for the maximum seperation

distance of 12 m is presented in Table 4.2. The path loss was calculated using a path loss

exponent of 2.81 [37], which represents the worst case scenario for an indoor factory

location. From the link budget, the system margin shows that the measurement system

was operated above the noise floor. Thus, amplifiers on either the transmit or receive

chain were not required.
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Table 4.2: Link budget for the frequency domain channel sounder. A 13 m MW cable is

connected to the receiver and a 3 m MW cable is connected to the transmitter

Parameter Values

2.3 GHz 2.4 GHz 2.5 GHz

Transmitter power 5.0 dBm 5.0 dBm 5.0 dBm

Transmit cable loss 1.2 dB 1.2 dB 1.2 dB

Transmit antenna gain 1.2 dBi 1.2 dBi 1.2 dBi

Path loss at 12 m 88.8 dB 89.3 dB 89.8 dB

Receive antenna gain 1.2 dBi 1.2 dBi 1.2 dBi

Receive cable loss 4.5 dB 4.5 dB 4.5 dB

Received power -87.1 dBm -87.6 dBm -88.1 dBm

Receiver sensitivity -136 dBm -136 dBm -136 dBm

System margin 48.9 dB 48.4 dB 47.9 dB

4.4 Measurement Environment and Procedure

The dimensions of the machine workshop are 17 m by 11 m by 4.5 m. The workshop

room is located on the ground floor with concrete ceiling lined with heating, ventilating

and air-conditioning (HVAC) pipes. The walls are made of brick and there are metallic

enclosures carrying cables from the floor to the roof. The windows are made of glass

with metal bars. The workshop room is packed with metallic equipment like lathes,

drills, workbenches, and other machine tools as listed in Appendix D. Within the ma-

chine workshop, the receiver locations were classified into two topographies, which are:

LoS measurements and NLoS measurements. In LoS measurements, there was a visible

direct path between the transmitter and receiver, while NLoS topographies were as a re-

sult of obstructions introduced by machine parts, metallic cupboards or pillars. Using a

practical inter sensor node distance from [99, 120], the Tx→ Rx separation distance for

both LoS and NLoS receiver locations were between 2 and 12 m. Prior to the measure-

ments, the VNA was calibrated using a full 2-port calibration method. The calibration

process removes the measurement errors generated by the connectors and MW cables.

During the measurement campaign, the transmitter was fixed while twelve receiver lo-

cations (as shown in Figure 4.7) were used to obtain LoS and NLoS delay spread.
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Figure 4.7: Loughborough University Machine Workshop Layout. The floor plan shows

the transmitter and receiver locations. The six LoS and NLoS receiver locations are

represented as Li and Ni.

4.5 Machine Workshop Ray Tracing Model

The ray tracing model of the machine workshop was implemented in a commercial ray

tracing software (Wireless Insite [121]). In the ray tracing model shown in Figure 4.8,

the following material definitions were used: concrete for the floors and ceiling, brick

for the walls, glass for the windows and the entrance door. The model also includes two

metal doors represented with exit signs. In Figure 4.8, metal boxes are used for overhead

HVAC pipes and pillars. The HVAC pipe layout and ceiling is set to invisible in order

to aid visual inspection of the inventory. The workshop inventory is representative of

factory environments and includes large and small metal objects (such as mills, lathes,

workbenches, carts, drawers, shelves) that are found in factories. The simulation settings

and parameters for the ray tracing model are summarized in Table 4.3.
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Figure 4.8: Top view of Loughborough University machine workshop ray tracing model.

In the figure, blue objects are defined as PEC, brown objects are defined as wood and the

yellow line represents a glass partition.

Table 4.3: Ray tracing model parameters

Parameter Value

Frequency band 2.3 - 2.5 GHz

Antenna type λ/2 dipoles

Transmitter Antenna gain 2 dBi

Receiver Antenna gain 2 dBi

Transmitter power 0 dBm

Number of reflections 6

Number of diffractions 2

Number of transmissions 2

Ray tracing method SBR

Ray spacing 0.25 degrees

Signal waveform Sinusoidal

Antenna polarisation Vertical
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4.6 Measurement Results and Ray Tracing Comparison

The delay vs power relationship of the CTF was obtained by using the time domain

mathematical option on the VNA. This option implements the IFFT process to obtain

time dispersion of the channel. So as to suppress the effect of the band limited IFFT, a

Kaiser window with β =7 (as recommended in [119]) was applied to the CTF. Moreover,

this window option allows MPCs to be identified by reducing energy dispersion into

subsequent delay bins. A 30 dB threshold was applied to the profiles obtained from the

measurement system and the ray tracing software. This threshold excludes MPCs that

are 30 dB below the strongest MPC. To make a fair comparison between the delay spread

results obtained from the VNA and the predictions made by Wireless Insite, a common

maximum excess delay (tη) was applied 1. The excess delay was selected from the ray

tracing profile for each receiver location. Thus, the τ rms obtained from both the VNA

and Wireless Insite were from 0 to tη.

The τ rms obtained from the VNA measurements and Wireless Insite are presented in

Table 4.4 and Table 4.5 compares the error measures obtained with the literature 2. The

error measures were calculated using eqn. (4.7), where Ai is the measured value, Bi is

the ray tracing value, n is the number of measurement points. In general, ray tracing

simulations are regarded as accurate and representative of the measurement when the

path loss and delay spread predictions at the receiver locations are within 5 dB and 20

ns [100, 124].

MAPE =
100

n

n∑
i=0

|Ai −Bi

Ai
| (4.7)

1The ray tracing and measurement power profiles from which the τ rms was calculated from are pre-

sented in Appendix E
2In the literature [122,123], this error measure has been used to evaluate the performance of prediction

and interpolation tools. In addition, it has been used extensively in weather and stock market forecasting
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Table 4.4: Comparison of rms delay spread obtained from VNA and ray tracing model

Path VNA (ns) Wireless Insite (ns)

T→ L1 18.51 15.43

T→ L2 15.92 15.90

T→ L3 15.22 11.80

T→ L4 12.56 12.99

T→ L5 17.76 13.29

T→ L6 15.57 11.46

T→ N1 19.07 13.39

T→ N2 21.94 15.10

T→ N3 21.97 19.92

T→ N4 26.76 14.68

T→ N5 26.44 19.52

T→ N6 13.22 9.49

Table 4.5: Error measure comparison for measurement and ray tracing prediction

Author Frequency (GHz) Parameter MAPE

This work 2.4 Delay spread 22.13

[100] 1.3 Delay spread 48.81

[98] 2.4 Delay spread 28.39

[95] 2.4 Received power 57.56

[60] 3.5 Delay spread 14.77

[97] 60.0 Delay spread 20.43

In Figure 4.9, the delay spread as a function of distance is presented. The figure shows

that the delay spread is larger for NLoS and it increases with distance for both topogra-

phies. This phenomenon has been observed in the literature [50, 99, 110, 119].
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Figure 4.9: RMS delay spread as a function of distance for all VNA measurement and

ray tracing simulations.

4.7 Summary

The delay spread prediction at each receiver location was within 20 ns. Thus, the ray

tracing results in this work can be regarded as accurate and the data obtained from the

commercial ray tracing software can be used to estimate the delay spread in indoor lo-

cations. The environment investigated in this chapter contrasts with the literature. As a

result, the new measurement data can be used to model RF receivers situated in multi-

path rich environments like machine workshops. By using ray tracing modelling, it is

possible to obtain and analyse wireless channel characteristics without access to the mea-

surement site. The ray tracing commercial software used in this chapter will be adopted

in Chapter 5 to deterministically model machine workshop spaces without knowledge of

the inventory.
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Chapter 5

Fractal Based Radio Propagation

Modelling

In this chapter, a novel fractal laying technique is presented for populating multipath rich

environments like machine workshops. The concept of fractals is introduced in Section

5.2 and the fractal laying algorithm is discussed in detail in Section 5.3. In Section 5.4,

the Saleh-Valenzuela statistical wideband model is presented. The delay spread for LoS

and NLoS topographies using the fractal overlaying technique is presented in form of

cumulative density functions (CDF) in Section 5.5 and the statistical features obtained

from the model are presented in Section 5.6.
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5.1 Introduction

Fractals are typically non ending patterns which can occur in nature or can be created

mathematically. A “fractal object is self-similar in that subsections of the object are

similar in some sense to the whole object” [125]. In general, fractals can be natural

or artificial. Naturally occurring fractals could be of the branching form or spiral form.

Some examples of the natural occurring branching fractals are: blood vessels or neurons,

lighting bolt, oak trees and natural occurring spiral fractals include: hurricanes, spiral

galaxy and the agave cactus plant [126]. Artificial fractals are mathematically generated

and some widely known examples include Sierpinski triangle, Cantor set, Sierpinski

square and Koch curve. In artificial fractals, subsequent fractal levels or iterations are

obtained by recursively evaluating the fractal mathematical algorithm. In the literature,

fractals have been applied in medical research [127–132] and antenna designs [133–

138].

With respect to modelling factory like spaces without knowledge of the exact inventory,

the author in [27] used a physical-statistical approach to model a factory floor space

by generating random cluster centres and scatterer locations. The scattering objects in

the wireless channel were modelled as finite lossy dielectric cylinders and geometric re-

lations were used to calculate the arrival time of the MPCs. In this regard, this work

shows how fractals can be used to rapidly generate inventory in order to populate ma-

chine workshops. The mundane task of accurately specifying objects in the ray tracing

software has been studied and an algorithm for machine workshops of similar dimen-

sions has been presented. In this thesis, a fractal overlaying rule for placing objects on a

machine workshop floor is discussed.

Two University machine workshops were investigated in this thesis. These are: the Me-

chanical, Electrical and Manufacturing Engineering workshop at Loughborough Uni-

versity and the workshop floor plan at Clemson University presented in [139]. The CDF

delay spread obtained from the exact inventory at both sites was compared to the fractal

overlaying algorithm on both floor plans. With the help of the fractal overlay algorithm

presented, similar spaces can be rapidly modelled using fractal objects. Consequently,

increasing the generality and applicability of ray tracing modelling techniques.
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5.2 2-Dimensional Fractals

The Sierpinski square (also known as Sierpinski carpet) is created by dividing a square

into nine congruent squares. The central square is then removed, leaving eight squares

as shown in Figure 5.1). Subsequent iterations are created by applying this algorithm

to the remainder squares from the previous iteration. For example, in the Sierpinski

square, after n = 0, 1, 2, 3, 4 iterations, the number of black squares is equal to 1, 8, 64,

512. The area of the black squares after the nth iteration can be calculated using eqn.

(5.1) [125, 140].

 

Figure 5.1: A Sierpinski carpet after four iterations [140].

Nn = 8n

Ln =
1

3n

An = L2
nNn

= (
8

9
)n

(5.1)

The Sierpinski triangle (also known as Sierpinski sieve) is geometrically created by re-

moving the inverted half-scale copy of the original triangle (as shown in Figure 5.2). By

applying this process recursively, the layout for subsequent iterations can be obtained.

The fractional area of the black section of the fractal is given by eqn. (5.2), after the nth

iteration. For the first iteration in the Sierpinski triangle, one-quarter of the area is re-

moved [125,140]. In eqns. (5.1) and (5.2), Nn is the number of black squares or triangles

and Ln is the length of a white triangle or square.

Nn = 3n

Ln =
1

2n

An = L2
nNn

= (
3

4
)n

(5.2)
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Figure 5.2: A Sierpinski triangle after four iterations [141].

The recursive technique of removing a part of an object is also present in the Cantor set

fractal. In order to create a Cantor set, the middle third of the interval is removed. This

process is repeated with the remaining two pieces in the second iteration. As described

above, subsequent iterations can be created by repeating the removal process. The length

of each segment created after the nth iteration is given by eqn. (5.3). In Figure 5.3,

a Cantor set fractal of five subdivisions is shown. The fractals presented have been

modified to suit the application in this thesis and are explained in subsequent subsections.

Ln = (
1

3
)n (5.3)

 

Figure 5.3: A Cantor set after five iterations [142].

5.3 Fractal Based Modelling

Two machine workshops (Loughborough University and [139] were modeled in a com-

mercial ray tracing software (Wireless Insite®). The machine workshop shown in Figure

5.4 shows the redrawn machine workshop layout from [139]. The dimensions of the

Clemson University workshop are 16 m by 10.5 m and the inventory was similar to the
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Loughborough University workshop, however the layouts were distinctly unique. With

respect to the material definitions, similar materials were used in both workshop models.

The fractal object placement algorithm can be summarized as follows:

1. Define a square cell using the shorter dimension (Lsc1) of the machine shop. A

cell in this work is defined as a square boundary that imposes space constraints for

placing the fractal objects.

2. Using the defined square cell, place fractal objects from the first and second fractal

iteration/level. These objects can be referred to as “Level 1” and “Level 2” objects.

3. Define a second square cell. This cell is smaller than the cell defined in 1). The

length of the second square cell in meters can be expressed as: Lsc2 = Lsc1 - 1.

4. Repeat 2) using the cell size defined in 3).

5. Define the smallest square cell with length Lsc3; Lsc3 = Lsc2 - 1.

6. Repeat 2) using the cell size defined in 5).

Using the step-by-step method described, a machine floor space of similar dimensions

can be populated with fractal objects of two levels from three different cell sizes. The

ray tracing implementations of the fractal overlay on the workshop floor plans are shown

in Figures 5.5, 5.6 and 5.7. In the fractal overlay algorithm, the fractal objects of the

Sierpinski square are modified to fit the cell size. Consequently, the object locations

have been approximated in line with the grid size.

A numeric label was attached to each of the level 2 objects for each cell, by numbering

left to right and top to bottom. This provides an opportunity to mix the material definition

of the level objects. For example, a percentage of the level 2 objects can be defined as

PEC or wood. From the Sierpinski square layout, the level 1 objects were selected as 1 m

by 1 m. As a result of the Sierpinski square rule, the level 2 objects are dimensioned one-

third of the level 1 objects. Based on the height distribution of objects at the workshops,

the height of level 1 objects was set to 3 m and level 2 objects were set to 2 m.

With the square cells defined, the fractals were used to populate the respective machine

shop floors. For both machine shop models, λ/2 dipoles were used and the signal band-

69



 

 

 

Figure 5.4: Clemson University Machine Workshop adapted from [139]. Blue objects

represent PEC and wooden objects are coloured in brown.

width was set at 200 MHz (2.3 GHz - 2.5 GHz) in order to cover the license free spec-

trum. At millimetre wave (60 GHz), the simulation bandwidth was also set to 200 MHz.

In both machine shop models, five pseudo randomly located active transmitters (Tx) with

fifty receivers (Rx) were used for obtaining the overall delay spread distribution on the

workshop floor plans. This combination creates 250 different Tx→ Rx receiver locations.

With respect to average power delay profiles (APDPs), the machine workshop at Lough-

borough University was used with one active transmitter and ten receiver locations 1.

The transmitter and receiver locations used for the fractal statistical analysis are shown

in Figure 5.8. With the selected fractal overlay in place, the topographies of the receiver

locations with respect the transmitter created seven NLoS points and three LoS points

(R5, R7 and R10). Given that the floor plans of both workshops are of similar dimen-

sions, the fractal overlay of both workshops gives rise to approximately 46 objects. All

the transmitters and receivers locations used were placed at a height of 1.5 m.

1Due to the large amount of channel profiles obtainable using the virtual array method, one out of the

five transmit antennas and ten out of the receiver locations were selected for the PDP analysis
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a) 

 
b) 

Figure 5.5: a) Clemson University Sierpinski square fractal layout for 9m cell, b) Clem-

son University Sierpinski square fractal overlay for 9m, 10m and 11m cells. The red

dots are receivers and green dots are transmitters.
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a) 

 
b) 

 

Figure 5.6: a) Clemson University Sierpinski triangle fractal layout for 9 m cell, b)

Clemson University Sierpinski triangle fractal overlay for 9 m, 10 m and 11 m cells.
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Figure 5.7: Loughborough University Cantor set fractal overlay layout. Due to the pat-

tern of the Cantor set, objects for different cell sizes overlap.
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Figure 5.8: Transmitter and receiver locations used for fractal APDP analysis on the

Loughborough University workshop floor plan.
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5.4 Fractal Overlay Statistical Features

As described in Chapter 2, large-scale fading effects within an area (of 10λ - 40λ) on the

machine workshop floor is relatively constant [143]. Thus, small-scale fading effects can

be studied using virtual arrays [111]. The virtual array adopted is made up of a uniform

linear array (ULA) of 4 λ/2 dipoles at the transmitter and a uniform rectangular array

(URA) of twelve λ/2 dipoles at the receiver end. The separation between each element

in the corresponding array is λ/2. The virtual array set up (of 48 elements) is depicted

in Figure 5.9 and it aligns with the IEEE 802.15.4a requirement presented in [144]. The

fractal features data pool contains 960 profiles (48 x 10) for 2.4 GHz and (48 x 10) for

60.0 GHz. The PDP between the ath element of the ULA and the bth element of the URA

P(τ , a, b) shows the power/time distribution between a and b. The APDP between a and

b was obtained by spatially averaging the PDPs such that the first MPC of each profile

arrives in the same delay bin for all P(τ , a, b).

Figure 5.9: Virtual antenna array setup.

Saleh-Valenzuela Model Parameters

The cluster arrival rate (Λ[1/nsec]), ray arrival rate (κ[1/nsec]), cluster decay factor (Γ)

and ray decay factor (γ) make up the Saleh-Valenzuela (S-V) model parameters. In

this thesis, “visual inspection” has been used to identity clusters. This manual cluster

identification technique has been widely adopted in the literature [110,145,146], as well

as the IEEE 802.11 TGn Channel model [147].

1. Cluster Arrival Rate: The inter cluster arrival rate (Λ) was calculated using the

inter cluster arrival time (∆Tl = Tl - Tl-1). The ∆Tl was then averaged for the

respective APDP, thus Λ = 1/∆Tl.
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2. Ray Arrival Rate: The ray arrival rate (κ) was obtained based on the recommen-

dations in [110, 111, 149] and the delay bin was selected as 5 ns.

3. Cluster Power Decay: The cluster decay (Γ) for LoS or NLoS was obtained by

graphing the peak cluster power and arrival time for similar topographies. The

cluster power decay was then obtained by performing linear regression with the

normalized power in dBm and the delay (ns). The slope of the regression line was

then converted to the decay constant using eqn. (5.4).

Γ =
−10

ln10kreg,l
(5.4)

where kreg,l is the slope of the regression line on dB scale for cluster l.

4. Ray Power Decay: The ray decay constant (γ) was calculated in a similar way as

the cluster decay constant. For a specified cluster l, the ray decay was obtained

from a linear regression of the logarithmic powers and the delay for MPCs within a

cluster l, with the log power as the dependent variable and delay as the independent

variable.

5.5 Time Dispersion Prediction Using Fractal Overlays

Using the machine workshop models with their corresponding inventories, the τ rms was

calculated at 250 receiver locations in Wireless Insite. In the simulation, the propagation

paths were used to determine the topographies of the receiver locations (NLoS or LoS).

In Figure 5.10, the NLoS and LoS CDFs of the delay spread computed for both machine

workshops was compared to the values obtained using the Cantor set and Sierpinski tri-

angle fractal overlays. Due to the characteristics of the Cantor set and Sierpinski triangle

fractals (which can be seen in Section 5.2), both fractals have sparse level 2 objects. As

a result, they offer little flexibility regarding overlaying objects for the first and second

iterations. Moreover, the Cantor set creates LoS topographies for approximately 70 %

of the receiver points since it has only two visible objects (as shown in Figure 5.7) and

the Sierpinski triangle absorbs 55 - 65% of the receiver points in its fractal objects 2. As

a result, only the Sierpinski square layout will be discussed further in this chapter.
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Figure 5.10: Simulation of delay spread CDF at 2.4 GHz using Cantor set and Sierpinski

triangle fractal overlays a) NLoS b) LoS. All objects in the simulation were PEC.

In Figures 5.11 and 5.12, the CDF of the simulated delay spread at 2.4 GHz and 60 GHz

is presented. Both Figures (5.11 and 5.12) also show the delay spread obtained when the

material definition of a percentage of the level 2 objects is changed to wood. The primary

purpose of mixing the level 2 objects is to observe the effect of the material definitions on

the EM wave propagation. As the amount of wooden content increases, the delay spread

2The delay spread CDFs presented in this chapter have been normalised
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Figure 5.11: Simulation of NLoS delay spread CDF using Sierpinski square fractal over-

lay and overlay mixture. a) Clemson University workshop and b) Loughborough Uni-

versity workshop.

for NLoS and LoS reduced. This is the expected behaviour, as the environment becomes

more absorbent than reflective. Thus, a non reflecting environment can be created by

defining the fractal objects as wood or paper, and a highly reflecting environment can

be created by adding metal objects in smaller fractal cells for the overlay algorithm

described.
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Figure 5.12: Simulation of LoS delay spread CDF using Sierpinski square fractal overlay

and overlay mixture. a) Clemson University workshop and b) Loughborough University

workshop.

Thirty percent absorbent material mixture was chosen as a compromise between the

number of level 2 objects and the reducing effect on the delay spread. Using the Sier-

pinski square overlay, 90% of the arriving paths were within 15.04 ns (NLoS) and 10

ns (LoS) within both workshop models at 2.4 GHz. While the Sierpinski square overlay

mixture had most of its MPCs arriving within 17.78 ns (NLoS) and 15 ns (LoS), which
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is closer to the delay spread results from the exact models at 2.4 GHz. At 60 GHz, 90%

of the arriving NLoS paths are within 15.52 ns for the Sierpinski square fractal overlay,

and 15.01 ns for the fractal overlay mixture. The corresponding LoS values are 12.44 ns

and 11.70 ns.

Further exploring the Sierpinski square layout, the number of edges per m2 was reduced

by using triangular solids. The triangular solids inherit all the design parameters of the

Sierpinski square overlay fractal layout, with the edges of each object reduced by two. In

Figures 5.13 and 5.14, the CDFs for using the triangular objects fractal layout is shown

for the same NLoS and LoS topographies. From the results, it can be observed that when

the number of edges are reduced, the mean delay spread prediction error is reduced at

both 2.4 GHz and 60 GHz. This shows an inverse relationship between the number of

edges per m2 and the mean delay spread. Thus, the number of edges per/m2 and the

introduction of wooden objects both have dominant effects on the fractal overlay results.

With the triangular objects fractal overlay, 90% of the arriving paths were within 17.98

ns (NLoS) and 15.78 ns (LoS) in both workshop models at 2.4 GHz. The triangular

objects fractal overlay mixture had most of its paths arriving within 18.82 ns (NLoS)

and 16.60 ns (LoS). At 60 GHz, 90% of the arriving NLoS paths were within 17.38 ns

for the triangular objects fractal overlay and the overlay mixture. The corresponding

LoS values were 14.39 ns and 12.62 ns.

In Table 5.1, the mean, standard deviation, and maximum values of the delay spread

obtained from all the scenarios considered is presented. From Table 5.1, it is evident that

the triangular objects fractal overlay reduces the effect of mixing the level 2 objects. As a

result, this can be used when the amount of absorbent material is uncertain. With respect

to the fractal objects, level 2 objects have a greater effect on the mean and standard

deviation of the delay spread when compared to level 1 objects.

Upon investigating the summary of the statistics presented in Table 5.1, it can be ob-

served that the LoS delay spread for the Clemson University workshop model was

greater than the NLoS component. This is most likely due to the workshop layout, which

can introduce additional reflection and diffraction surfaces. Thus, generating more prop-

agation paths at the scatterers. In the literature, a similar phenomenon has been observed

in [103], where the LoS component was higher than its NLoS component. In general,
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Figure 5.13: Simulation of NLoS delay spread CDF using Triangular objects fractal

overlay and overlay mixture. a) Clemson University workshop and b) Loughborough

University workshop.

lower delay spread was observed at 60 GHz which aligns with the literature [94, 148].

The ability of the fractal overlay to preserve the topographies of the receiver locations

was investigated, and the results are presented in Table 5.2. Regardless of the topography

of the receiver point in the workshop models, the fractal overlay technique has shown its

ability to predict the delay spread for NLoS and LoS topographies.
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Figure 5.14: Simulation of LoS delay spread CDF using Triangular objects fractal over-

lay and overlay mixture. a) Clemson University workshop and b) Loughborough Uni-

versity workshop.
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Table 5.1: Summary of mean RMS delay spread, standard deviation and maximum at

2.4 GHz and 60 GHz for the fractal overlay combinations used at Clemson University

model and Loughborough University workshops. Triangular objects in the Sierpinski

square layout are represented as TO

2.4 GHz 60 GHz

Workshop/Topography Fractal/Model µ (ns) Std. Max (ns) µ (ns) Std. Max (ns)

Model 12.27 3.28 20.74 10.34 3.82 19.75

Sierpinski Square (SS) 9.18 3.59 22.48 9.72 4.21 24.81

Clemson/NLoS Triangular objects (TO) 11.97 3.15 22.64 9.93 4.22 27.58

Mixed (SS) 12.69 3.82 22.69 9.22 4.51 24.74

Mixed (TO) 12.75 3.62 21.18 9.13 3.77 21.19

Cantor set 12.26 6.39 28.73

Sierpinski Triangle 8.43 4.88 21.79

Model 13.16 4.10 22.08 11.61 4.20 23.26

Sierpinski Square (SS) 6.83 2.44 12.08 8.20 3.35 16.43

Clemson/LoS Triangular objects (TO) 10.12 3.08 19.33 9.15 3.60 23.39

Mixed (SS) 9.94 3.72 17.42 7.23 3.21 14.25

Mixed (TO) 9.63 3.51 20.40 7.87 3.47 19.56

Cantor set 10.42 3.72 22.84

Sierpinski Triangle 10.33 3.35 15.30

Model 12.28 4.00 20.25 10.24 3.83 22.62

Sierpinski Square (SS) 9.75 4.08 27.35 10.27 3.90 20.82

Lboro/NLoS Triangular objects (TO) 13.31 3.69 24.26 11.23 4.78 30.26

Mixed (SS) 13.28 3.54 25.17 9.41 3.96 21.73

Mixed (TO) 13.14 4.17 26.21 10.52 5.37 33.54

Cantor set 11.75 6.64 27.87

Sierpinski Triangle 6.97 3.94 17.17

Model 11.71 3.06 18.18 9.70 3.21 19.70

Sierpinski Square (SS) 6.35 2.35 12.37 7.69 3.11 17.92

Lboro/LoS Triangular objects (TO) 11.22 3.81 19.10 9.57 3.57 18.33

Mixed (SS) 9.98 3.23 17.27 6.12 2.55 13.13

Mixed (TO) 11.52 4.18 20.69 8.19 3.41 18.82

Cantor set 10.41 3.20 27.04

Sierpinski Triangle 9.48 3.77 15.69
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Table 5.2: Summary of receiver point classification using Loughborough and Clemson

University models

Site Sierpinski Triangular Cantor Sierpinski

Square (%) solids(%) Set(%) Triangle(%)

Lboro 47.3 50.6 48.5 23.3

Clemson 50.0 55.6 62.2 27.6

5.6 Validation of Fractal Overlay Model

The fractal model (triangular objects fractal overlay) was validated using the S-V model

parameters at 2.4 GHz. In Table 5.3, a summary of the model parameters which are

obtained from the visually identified clusters is presented. In the Loughborough Uni-

versity workshop model, the ray decay (γ) was between 0.72 and 20 for NLoS and LoS

sites. It also generally increased with the cluster arrival time which aligns with the result

in [110]. In total, 38 clusters were investigated with average cluster number of 3 for LoS

and 4 for NLoS at 2.4 GHz and 4 for LoS/NLoS at 60 GHz. The statistical simulation

of the delay spread was obtained by applying a 200 MHz filter to the UWB S-V model

implementation in [149]. A comparison of the delay spread prediction using the band-

width limited S-V model and the fractal overlay is presented in Table 5.43. With respect

to the manual cluster identification technique, it should be noted that clusters generally

overlap. However the rays within a cluster decay much faster than the power of the first

ray in the following cluster [39]. Thus, the clusters have been identified assuming the

inter cluster time is sufficiently large, such that the clusters can be identified with the

naked eye [39]. Upon inspecting the APDPs generated from the fractal overlay model,

the following features (which are in agreement with [110]) were observed:

1. Clusters have different decay constants, and the ray decay constant within a cluster

increases with delay.

2. Some of the clusters show more than one decay.

3Based on the recommendations in [110,111,149], the the delay bin was selected as 5 ns. Consequently,

the rays arrive at regular intervals of 5 ns
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3. For all the LoS receiver locations, the first MPC is the strongest and arrives first.

After which attenuated MPCs follow. This also occurs with some of the NLoS

locations.

In Appendix F, the APDPs used to obtain the S-V parameters at 2.4 GHz and 60 GHz

are presented.

Table 5.3: S-V Channel parameters from Loughborough University machine workshop

at 2.4 and 60 GHz

S-V parameter LoS 2.4 GHz NLoS 2.4 GHz LoS 60 GHz NLoS 60 GHz

Γ 10.90 12.83 12.08 11.39

γ 7.70 9.70 6.70 6.90

Λ 0.04 0.06 0.04 0.045

κ 0.20 0.20 0.20 0.20

Table 5.4: Fractal overlay (Triangular solids) and S-V model delay spread comparison

for Loughborough University machine workshop

Scenario Fractal overlay (ns) S-V model (ns)

LoS (2.4 GHz) 11.22 11.00

NLoS (2.4 GHz) 13.31 14.00

5.7 Summary

This chapter has presented in-depth details of a novel technique that can be used to

rapidly model delay spread in workshop environments. The fractal overlay formed from

three “cells” has been used to populate the machine workshop plan using the fractal al-

gorithm presented. The delay spread obtained from the Saleh-Valenzuela model showed

a maximum of 5% MAPE. The results presented in this chapter show that this technique

can be used to model performance of a communication technology in an indoor location

without information of the inventory. In Chapter 6, spatial interpolation techniques are

used to predict the received power at unsampled points. These unsampled points repre-

sent areas where measurement results have not been taken but are suitable locations for

sensor nodes or energy harvesting devices.
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Chapter 6

Predicting Received Power and Energy

Profiles Using 2-D Interpolation

While the sparse spot RF power density measurements presented in Chapter 3 of this

thesis are insufficient to provide a detailed overview of the ambient power distribution at

the DEP, it is also practically impossible to take measurements at every feasible location

where an energy harvesting device can be placed. This chapter discusses how spatial

interpolation techniques can be used as a compromise between both extremes. In Section

6.2, the interpolation techniques used are discussed. Section 6.3 investigates how the

interpolation techniques perform using measurement data from Chapters 3 and 4. An

overlaying grid of the interpolated values is generated and used in Section 6.4, where

the energy available to an energy harvesting devices is integrated across a specified path

over time.
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6.1 Introduction

In reality, it is practically impossible to obtain measurement results for a large number

of x, y coordinates at a plant due to constraints such as accessibility to mains power and

risk assessment requirements. These constraints also apply to smaller floor spaces like

machine workshops, as these locations usually have restrictions with respect to working

hours and health & safety. With the aid of a power density grid for both sites, it is possi-

ble to extend the measured results to other feasible coordinates where energy harvesting

devices might be placed. Moreover, it is possible that these devices are placed in hard

to reach areas which might not be suitable for measurements. In general, interpolation

techniques are premised on the fact that events occurring within a predefined cluster are

closely correlated. In geographic information systems (GIS), spatial interpolation has

been used for: contouring display data, mathematically determining surface properties

at specified points and spatial decision making [122, 150–153]. Moreover, other 2-D

interpolation techniques such as bilinear interpolation, cubic convolution and nearest

neighbour have been used in the literature for image processing [154–161].

With respect to the interpolation techniques adopted, two different approaches were used

to determine the most suitable interpolation technique for both locations. For the Lough-

borough University workshop model, fifty percent of the points from the interpolated

grid were compared to the exact values from the deterministic model. In the ray trac-

ing software, a XY grid of receiver points was created. The number of receiver points

in the XY grid of the ray tracing model was 160 at 1 m spacing. In the DEP model,

the locations at which measurements were taken were predicted using the interpolation

techniques. Consequently creating a scenario where four measurement points were used

to predict the value at the fifth point. In this chapter, the three interpolation techniques

adopted for estimating power levels at the DEP and Loughborough University machine

workshop will be discussed and compared using the MAPE.
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6.2 2-D Grid Interpolation Techniques

Spatial interpolation techniques (or methods) can be viewed as a weighted combination

of observed data [123]. This weighted sum can be generalized using the prediction

formula shown in eqn. (6.1), where z (xo, yo) is the predicted value of a primary variable

at an unsampled point, z (xi, yi) are the observed values of the primary varaiable, λi is the

weight allocated to the respective observations and n represents the number of sample

points used in the interpolation method [162].

z(xo, yo) =
n∑
i=1

λiz(xi, yi) (6.1)

Scattered data interpolation methods can be grouped into three categories, namely: Non-

geostatistical interpolation methods, geostatistical interpolation methods and combined

methods. Non-geostatistical interpolation methods include nearest neighbour, inverse

distance weighting, radial basis functions and natural neighbours, while kriging and its

variants are geostatistical methods [123,163,164]. The difference between geostatistical

and non-geostatistical interpolation techniques is that geostatistical methods estimates

the variability of the predicted values at the unsampled location. Combined interpo-

lation methods such as gradient plus inverse distance squared and clustering assisted

regression method combine non-geostatistical and geostatistical methods. Irrespective

of the interpolation method classification, spatial interpolation techniques can be char-

acterized by the following features [165]:

Global versus Local

Spatial interpolation techniques that use all the sampled data points in predicting the

weighted average are regarded as global methods. On the other hand, local methods use

a subset of the sampled points. The sampled points used in the prediction are determined

by a constraint set a priori.

Exactness

This measures the accuracy of the interpolation technique. A spatial interpolation tech-

nique that predicts the same value of a primary variable at a sampled point is referred to

as an exact method, otherwise it is referred to as inexact.
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Deterministic or stochastic

Deterministic interpolation methods only provide estimations of the primary variable at

an unsampled point, while stochastic methods compute the estimated values as well as

uncertainties associated with the prediction.

Univariate versus multivariate

Interpolation techniques that use only the primary variable (such as power density or

received power) to predict values at unsampled points are referred to as univariate. Mul-

tivariate interpolation methods use a primary and at least one dependent variable in pre-

dicting unsampled data.

Convex versus non-convex

Interpolation techniques that predict values that are bounded by the maximum and min-

imum observations are referred to as convex interpolation methods. While predictions

from non-convex methods could yield values outside the range of the observed data.

The features of the interpolation techniques used to predict the RF power (and RF power

density) at locations other than the measurement or observation points are summarized

in Table 6.1.

Table 6.1: Features of interpolation techniques adopted [164]

Interpolation method Global/local Exactness Deterministic/Stochastic Convex/non-convex

IDW Global Inexact Deterministic Convex

Kriging Local Exact Stochastic can be non-convex

RBF (Gaussian) Global Exact/inexact Deterministic can be non-convex

6.2.1 Inverse Distance Weighting

Inverse distance weighting (IDW) is a global interpolation technique that uses all the

sampled data points to estimate the value at an unsampled point [123, 163]. This tech-

nique is based on the assumption that points further away from the unsampled point

have less influence. This is evident through its weighted average which assigns smaller

weights to points further away from the unsampled point. For a given (x, y) coordinate,

the interpolated value of the received power or power density (Pd) can be computed using

Shepard’s algorithm [166] in eqns. (6.2) to (6.4), where hi is the Euclidean distance be-
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tween the measurement points and the interpolated location, p is referred to as the power

parameter, wi is the interpolation weight. When the power parameter is set to 2, the IDW

method becomes analogous to the inverse square law. The interpolated power density in

eqn. (6.4) is thus obtained as a weighted average of the sampled power density at the

scattered locations (xi, yi). In Section 6.3, eqns. (6.2) to (6.4) are used to estimate the

received power and received power density. Since the interpolated values are based on a

weighted average, the interpolated values are bounded by the maximum and minimum

values of the sampled data points.

wi =
h−pi∑n
j=0 h

−p
j

(6.2)

hi =
√

(x− xi)2 + (y − yi)2 (6.3)

Pd(x, y) =
n∑
j=0

wiPd(xi, yi) (6.4)

6.2.2 Radial Basis Function

Radial basis functions (RBF) are another form of deterministic and global spatial inter-

polation method that have been adopted in fields such as artificial neural networks. In

RBF, data is approximated by a sum of translated RBFs of the form of eqn. (6.5), where

ϕr is the radial basis function. The expansion coefficients (wi) are selected based on the

interpolation condition of the observed data points. In most applications, the Euclidean

distance is adopted for the norm. The RBF can be implemented using Gaussian, inverse

quadratic and thin plate spline functions [167–169]. The Gaussian RBF is described us-

ing eqn. (6.6), where ζ is a choice parameter. These equations are used in Section 6.3 to

estimate the received power and received power density.

y(x) =
n∑
i=0

wiϕ(||x− xk||) (6.5)

ϕr = e−(ζr)2 (6.6)
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6.2.3 Kriging

Geostatistical interpolation using kriging can be summarized into a two staged process:

1. Creating a variogram and covariance functions to estimate the spatial correlation

between the sampled points

2. Predicting the primary variable at the unsampled points

A variogram is a plot of the semivariance which provides a description of the data set’s

spatial continuity. The semivariance γ(h) can be mathematically defined as shown in

eqn. (6.7), where h is the distance between point xi and xo. This point-to-point pairing

of the sampled data is depicted in Figure 6.1, where the red point is paired with the

remaining points and the semivariance is estimated. This process is repeated for each

of the sampled points. In order words, pairs with larger separation distance will have

a high semivariance, which infers less correlation between the data points. Thereafter,

the points are fitted with a known semivariogram model such as the Gaussian variogram.

After completing this spatial correlation process, interpolation is then computed using

an estimator of choice [163, 164].

 

Figure 6.1: Illustration of semivariance pairing using coloured points [170].
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γ(xi, xo) = γ(h) =
1

2n

n∑
i=0

(z(xi)− z(xi + h)) (6.7)

Kriging Estimator

The generic kriging estimator is shown in eqn. (6.8), whereby the weights are selected

such that variance between the prediction and actual value is minimized [163, 164].

ẑ(xo)− µ =
n∑
i=0

λi[z(xi) + µ(xo)] (6.8)

In eqn. 6.8, ẑ(xo) is the estimated value at unsampled point xo, z(xi) are sampled values of

the primary variable, µ is a known stationary mean that is assumed to be constant and λi

are the kriging weights. The kriging estimator has variants which are modified versions

of eqn. (6.8), some of which include: simple kriging, ordinary kriging, kriging with a

trend and block kriging. In this regard, ordinary kriging was adopted as it is mostly used

and does not require a data mean a priori. In ordinary kriging, the sum of the weights

is equal to 1 and µ in eqn. (6.8) is replaced by the local mean µ(xo). The weights λi

are computed from the semivariance. Thus, they are the solution to a system of linear

equations that reduce the mean square error between the estimates and the measured

values [171]. In comparison with IDW and RBF, kriging factors in a covariance pro-

cess that accounts for the statistical relationship amidst the sampled points [172]. The

estimated power density was computed in a similar manner, with the weighting function

interdependent on the separation distance and the spatial orientation of the measured

quantity [173]. Using eqn. (6.9), the power density can the be geostatically estimated.

Pd(x, y) =
n∑
j=0

λiPd(xi, yi) (6.9)
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6.3 Evaluating Interpolation Techniques in Multipath Rich

Environments

In order to compare the prediction ability of the interpolation techniques used in this

section, the MAPE has been adopted. The interpolation algorithms were implemented

in MATLAB, with Kriging and RBF evaluated using [174, 175].

6.3.1 Evaluating Interpolation Techniques at Dagenham Engine Plant

With respect to the DEP, the MAPE was calculated at the five measurement locations.

This was carried out by interpolating the measured power density at the respective loca-

tions. In Figures 6.2 to 6.6, the interpolated power density is presented for each location

at the DEP. The MAPE at the DEP is summarized in Table 6.2, which shows that the

interpolation methods generally perform better in the mobile transmit channel than the

base station downlink. This is also evident in the low MAPE for Wi-Fi, which has its APs

and user equipment located within the DEP. From the results presented in [30], increas-

ing the p parameter increases the prediction error of the IDW method and the choice

of the p parameter aligns with [171] and the inverse square law. In addition, Kriging

Gaussian [176] and RBF showed non-convex behaviour at Locations 1, 2, 3 and 5.
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Figure 6.2: Comparison of IDW, Kriging, RBF with the measured value at DEP (Loca-

tion 1).
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Figure 6.3: Comparison of IDW, Kriging, RBF with the measured value at DEP (Loca-

tion 2).
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Figure 6.4: Comparison of IDW, Kriging, RBF with the measured value at DEP (Loca-

tion 3).

500 1000 1500 2000 2500 3000

Frequency (MHz)

-150

-140

-130

-120

-110

-100

-90

-80

P
ow

er
 d

en
si

ty
 (d

B
m

/c
m

2 )

IDW(p=2)

Kriging

RBF(Gaussian)
Measured Value

Figure 6.5: Comparison of IDW, Kriging, RBF with the measured value at DEP (Loca-

tion 4).
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Figure 6.6: Comparison of IDW, Kriging, RBF with the measured value at DEP (Loca-

tion 5).

Table 6.2: MAPE comparison of interpolated values for RATs at the DEP

RATs Frequency (MHz) IDW (p = 2) Kriging Gaussian RBF Gaussian

Digital TV 470-610 142 151 100

GSM-900 (MTx) 880-915 20 25 151

GSM-900 (BTx) 925-960 57 69 41

GSM-1800 (MTx) 1710-1785 12 14 10

GSM-1800 (BTx) 1805-1880 49 46 53

3G (MTx) 1920-1980 50 45 28

3G (BTx) 2110-2170 69 67 73

Wi-Fi 2400-2500 11 11 10

6.3.2 Evaluating Interpolation Techniques at Loughborough Uni-

versity workshop

In order to extend the usability and adaptability of the interpolation techniques used at

the DEP, their ability to predict received power at the Loughborough University work-

shop was investigated. In this subsection, interpolation prediction was carried out at

center frequency of 2.4 GHz. The technique adopted to evaluate the performance of the

interpolation methods at the Loughborough University workshop involved predicting the
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received power at randomly selected receiver locations. Using the ten receiver locations

in Figure 5.4 as control points, the MAPE was calculated for 12% , 23%, 35% and 50%

of the receiver points obtained from the XY receiver grid in the deterministic model. The

downward trend of the MAPE shown in Table 6.3 is intuitive. This is because the aver-

age prediction error reduces with sample size. The percentage threshold of 80 receiver

points was selected as a compromise between the number of receiver locations on the

XY grid, and the error between the subsequent iterations of the MAPE.

Table 6.3: MAPE performance comparison of the spatial interpolation methods used in

predicting XY grid receiver power in the LU workshop model (2.4 GHz)

No. of points IDW (p = 2) Kriging Gaussian RBF Gaussian

19 78 93 73

37 68 81 68

56 71 79 79

80 66 78 71

6.4 Estimating Ambient Energy Profiles Using Interpo-

lated Grids

Using any of the interpolation techniques described, a power density grid map can be

created that estimates the RF power density at several locations within the DEP or the

workshop. In this regard, two case scenarios have been studied and are discussed. The

description in Scenario 1 is applicable to the DEP and Scenario 2 applies to the work-

shop floor plan.

Scenario 1

A pallet travelling through an arbitrary production line at the DEP. It is essential to note

that the paths traced do not show the exact production lines at the plant, however, these

paths are conceptualized in order to obtain power budget estimates for wireless sensor

nodes to be deployed on pallets at the plant.
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Scenario 2

A wearable sensor device attached to a workshop technician who walks a predefined

path along the workshop aisles to a machine equipment.

In both use case scenarios, the path length and travel time determine the ambient RF en-

ergy that can be accumulated. It is noteworthy that additional losses will arise from the

RFEH conversion and power management circuitry. In order to obtain a theoretical esti-

mate of how much power can be possibly harvested over the entire period, the following

assumptions and specifications have been adopted:

1. Pallet speed = 0.1m/s. The pallet speed was obtained by observing pallets at the

DEP during the measurement campaign.

2. Time require to travel between each grid point = 10 seconds.

3. Distance between grid points = 1 m. The grid spacing has been chosen as a com-

promise between computation time of the deterministic model and indexing with

respect to estimating the interpolated grid.

4. Total grid points in x-direction (DEP) = 305. This represents the length of the

DEP grid in x direction. An appropriate scale has been adopted to obtain the

interpolated grid.

5. Total grid points in y-direction (DEP) = 527. This represents the length of the DEP

grid in y direction.

6. Total grid points in x-direction (LU Workshop) = 16. This represents the length of

the LU workshop grid in x direction.

7. Total grid points in y-direction (LU Workshop) = 10. This represents the length of

the LU workshop grid in y direction.

8. Walking speed = 1.4 m/s.

9. A realistic RF-DC conversion efficiency of 40%.

10. Negligible battery charging and power management circuit loss.
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Figure 6.7: Depiction of conceptual paths on a DEP rectangular floor plan.

6.4.1 Predicting Energy Profiles at Dagenham Engine Plant

At the DEP, the power density grid was created for each frequency point in the surveyed

frequency spectrum (200 - 3000 GHz). Three paths are shown with respect to a rectan-

gular floor plan of the DEP shown in Figure 6.7. For an RFEH operating at 2.4 GHz, the

power profile can be obtained by first converting the received power density to received

power using an effective antenna aperture of 100 cm2. In Table 6.4, the summary of the

energy profiles for the paths travelled is shown.

Table 6.4: Summary of energy profile a pallet travelling a conceptual path at the DEP at

2.4 GHz

Line Path distance (m) Travel time (mins) Energy accumulated (pJ)

Green 522 87.0 73.4

Red 622 103.6 90.0

Blue 642 107.0 95.4
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6.4.2 Predicting Energy Profiles at Loughborough University work-

shop

The interpolation grid for the University workshop was obtained from the ten sampled

points discussed in Chapter 4 for 2.4 GHz. In Tables 6.5 to 6.7 each grid point (repre-

senting 1 m) on the floor plan is shown. The overall distribution of the received power

from the XY grid is shown in Figure 6.8. The received power at each receiver point in

the XY grid is a combination of the transmit power (0 dBm) from the five transmitters

discussed in Section 5.3. Applying use case Scenario 2, a conceptual path of a wearable

device is depicted in Figure 6.9 with respect to the floor plan. At 2.4 GHz, the energy ac-

cumulated by the wearable device can be estimated as an integral sum of the grid power

points over the device travel time. Assuming an average walking speed of 1.4 m/s, it

will take 10 seconds to cover the path shown in Figure 6.9 with dash red lines. When

comparing the exact inventory and the interpolated power grid, the effect of the MAPE

becomes negligible, as the sum of powers along the path are of the same order. Using the

same path, the sum of powers from the ray tracing model is 2.4 mW and 1.5 mW from

the interpolated received power grid. This difference results to approximately 0.5 dBm.

Based on the requirement of a COTS PMM like the BQ25504, a minimum of 0.1µW

is required at cold start. With the assumed RF-DC conversion efficiency, the ambient

power from the workshop model is able to provide the required start up power for the

PMM. Unlike the received power values from the DEP grid, the power distribution in the

workshop model is sufficient for RF energy harvesting. Additionally, the Loughborough

University workshop has a smaller floor plan area. While this estimate represents a best

case scenario, additional signal attenuation can be experienced due to human presence.

99



 

Figure 6.8: Received power distribution for Loughborough University workshop (XY

grid). The blue shapes indicate the top view of the machines in the deterministic model

 

Figure 6.9: Scenario 2 use case energy path profile.
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Table 6.5: XY received power grid for Loughborough University workshop using IDW

(p = 2). The grid shows 16 by 10 grid points which represent the receiver locations in

the deterministic model

-38.23 -38.04 -37.67 -36.87 -35.76 -35.70 -36.44 -37.01 -37.32 -37.43 -37.41 -37.27 -37.04 -36.76 -36.58 -36.61 
-38.52 -38.48 -38.41 -37.98 -36.06 -35.78 -36.67 -37.19 -37.44 -37.52 -37.47 -37.28 -36.94 -36.47 -36.14 -36.26 
-38.84 -38.97 -39.39 -40.95 -40.32 -37.60 -37.39 -37.50 -37.60 -37.63 -37.56 -37.38 -37.03 -36.34 -35.72 -36.03 
-39.16 -39.36 -39.71 -40.46 -39.84 -37.90 -37.55 -37.67 -37.75 -37.74 -37.67 -37.57 -37.45 -37.08 -36.30 -36.43 
-39.49 -39.77 -40.06 -39.94 -38.94 -37.56 -37.41 -37.75 -37.88 -37.83 -37.73 -37.72 -37.89 -38.20 -37.74 -37.34 
-39.78 -40.29 -41.16 -41.57 -39.78 -38.32 -37.94 -38.03 -38.05 -37.90 -37.65 -37.57 -37.91 -38.21 -38.22 -38.05 
-39.95 -40.52 -41.53 -42.15 -40.46 -39.16 -38.60 -38.41 -38.29 -38.02 -37.40 -36.87 -37.61 -39.06 -39.39 -38.77 
-39.96 -40.35 -40.77 -40.84 -40.35 -39.63 -39.05 -38.77 -38.69 -38.58 -37.67 -36.61 -37.56 -40.12 -40.34 -39.23 
-39.90 -40.18 -40.48 -40.75 -40.69 -39.99 -39.35 -39.05 -39.18 -39.80 -39.49 -37.96 -38.13 -39.16 -39.49 -39.08 
-39.81 -40.07 -40.38 -40.74 -40.70 -40.07 -39.47 -39.20 -39.35 -39.88 -39.76 -38.77 -38.50 -38.73 -38.89 -38.81 

 

 

 

 

x 

y 

Table 6.6: XY received power grid for Loughborough University workshop using kriging

Gaussian. The grid shows 16 by 10 grid points which represent the receiver locations in

the deterministic model

-38.23 -38.23 -38.23 -38.24 -37.48 -37.51 -38.22 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.18 -38.22 
-38.23 -38.23 -38.24 -38.95 -38.99 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.16 -36.23 -38.02 
-38.23 -38.23 -38.23 -38.41 -38.42 -38.19 -38.17 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.21 -37.93 -38.18 
-38.23 -38.23 -38.23 -38.24 -38.23 -37.99 -37.90 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.25 -38.23 -38.23 
-38.23 -38.23 -38.33 -38.74 -38.25 -38.22 -38.22 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.24 -38.23 -38.23 
-38.23 -38.23 -38.43 -39.61 -38.27 -38.23 -38.23 -38.23 -38.23 -38.23 -38.21 -37.89 -38.19 -38.32 -38.32 -38.23 
-38.23 -38.23 -38.24 -38.25 -38.24 -38.23 -38.23 -38.23 -38.23 -38.24 -38.19 -37.19 -38.14 -38.85 -38.85 -38.24 
-38.23 -38.23 -38.24 -38.54 -38.54 -38.24 -38.23 -38.23 -38.24 -38.53 -38.52 -38.22 -38.23 -38.25 -38.25 -38.23 
-38.23 -38.23 -38.24 -38.54 -38.54 -38.24 -38.23 -38.23 -38.24 -38.45 -38.45 -38.24 -38.23 -38.23 -38.23 -38.23 
-38.23 -38.23 -38.23 -38.24 -38.24 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 -38.23 

 

y 

x 

Table 6.7: XY received power grid for Loughborough University workshop using RBF

Gaussian. The grid shows 16 by 10 grid points which represent the receiver locations in

the deterministic model

-37.02 -36.88 -36.71 -36.22 -35.33 -35.16 -35.73 -36.00 -35.93 -35.82 -35.70 -35.59 -35.48 -35.36 -35.24 -35.15 
-37.52 -37.40 -37.54 -37.54 -36.29 -35.61 -36.07 -36.37 -36.31 -36.19 -36.06 -35.94 -35.80 -35.62 -35.43 -35.38 
-38.08 -38.02 -38.84 -41.14 -39.77 -37.27 -36.76 -36.80 -36.72 -36.59 -36.45 -36.32 -36.18 -35.93 -35.64 -35.60 
-38.71 -38.63 -39.36 -41.63 -40.70 -37.88 -37.06 -37.15 -37.16 -37.03 -36.88 -36.78 -36.80 -36.72 -36.31 -36.07 
-39.46 -39.31 -39.57 -40.02 -39.18 -37.76 -37.32 -37.58 -37.66 -37.52 -37.33 -37.25 -37.61 -37.99 -37.37 -36.71 
-40.38 -40.34 -40.94 -41.11 -39.76 -38.61 -38.26 -38.32 -38.25 -38.01 -37.57 -37.26 -37.78 -38.60 -38.10 -37.27 
-41.54 -41.53 -42.44 -42.63 -40.87 -39.76 -39.36 -39.16 -38.92 -38.45 -37.38 -36.58 -37.38 -39.16 -39.16 -37.98 
-43.06 -42.67 -42.53 -41.84 -40.92 -40.57 -40.34 -40.04 -39.71 -39.07 -37.68 -36.71 -37.68 -40.21 -40.47 -38.75 
-45.45 -44.38 -42.85 -41.11 -40.67 -41.27 -41.42 -41.09 -40.68 -40.10 -39.13 -38.41 -38.95 -40.20 -40.14 -39.11 
-51.39 -48.04 -44.90 -42.33 -41.83 -42.71 -42.93 -42.47 -41.94 -41.39 -40.84 -40.40 -40.28 -40.28 -40.01 -39.56 

 

x 

y 
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6.5 Summary

In this chapter, widely known and accepted interpolation techniques have been used to

estimate RF power density levels at unsampled locations and the available energy pro-

files for low power devices has been estimated. The inverse distance weighting global

interpolation method showed the least prediction error at both the DEP and the Univer-

sity workshop. Also the energy profile estimated in the University workshop showed

that RF energy harvesting was feasible using IRs. This was accomplished by using five

IRs simultaneously transmitting at 0 dBm over a floor plan area of 187 m2. Extending

this power distance versus floor area relationship to a factory of similar dimension of the

DEP (160,735 m2), about 4,297 active transmitters (0 dBm; 2 dBi) will be required to

create a receive power threshold of -40 dBm across the entire floor area 1. In the next

chapter, the industrial application of this thesis is presented as well as ideas for future

research.

1This value aligns with the Friis transmission formula assuming a circular coverage area for the trans-

mitting antenna
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Chapter 7

Conclusions and Future Work

7.1 Summary of Research Novelty

This thesis has presented ambient energy measurement data obtained from an automobile

factory in the UK. The ambient energy domains characterized provide system design

parameters regarding the energy profile obtainable at the plant. The results presented

are representative of factories in the UK with most factories located on the outskirts of

many cities or away from residential areas. Thus, the measurement data gathered can be

reversed engineered to determine if a particular energy harvesting technique is suitable

at a particular plant.

Also, this research work has characterized a machine workshop with respect to small-

scale fading effects. Unlike most of the measurement data in the literature, the delay

spread results obtained provide valuable time dispersion information for machine work-

shops and factory like environments. This time dispersion of the wireless channel can

be used in designing efficient RF receivers that would be located in workshop areas.

In addition, this thesis presented a technique for obtaining delay spread in workshop en-

vironments without information of the inventory. The algorithm presented can be used in

deterministically modelling machine workshops so as to obtain information about radio

coverage and transceiver performance for wireless communication technologies. This

technique provides a means of rapidly generating objects in a propagation software,

which can then be used to obtain additional information relating to BER, throughput,

carrier to interference ratio and signal to noise ratio prior to deploying the wireless com-
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munication technology.

Furthermore, the suitability of spatial interpolation for predicting received power was

investigated in this research. The error measures obtained from the interpolation tech-

niques can be used to guide system designers in applying these techniques to wireless

propagation. It was also shown that by using spatial interpolation, it is possible to rapidly

obtain the distribution of received power by interpolating sparse control points. Using

spatial interpolation methods, an overlaying grid of the received power was created in

this thesis. This grid was used to mathematically estimate how much power a sensor

device is exposed to during its time of flight. This method can be used to determine the

applicability of a RFEH based on the RF coverage provided by the transmitter(s) in the

location.

7.2 Industrial Applications

The 3-D fractal overlay technique presented in this thesis shows a novel approach to

populating floor spaces in deterministic wireless channel modelling. Deterministic mod-

elling of the wireless channel requires that the floor space be correctly specified in the

ray tracing software. In some scenarios, the exact information on the inventory is not

available prior to deploying a wireless communication network. Using fractal overlays,

commercial software vendors can include this feature in floor editing modules of ray

tracing packages. Consequently, providing a means of allowing system designers to

rapidly obtain approximate channel behaviour of floor spaces without inventory knowl-

edge.

7.3 Suggestions for Future Work

This thesis has focused on modelling the wireless communication channel in multipath

prone environments. The model presented can be used to replicate multipath environ-

ments, which can then be used to mathematically compute the received power and prob-

able harvestable ambient power. Based on the ability of the model to predict the time

dispersion in the workshop models investigated, the following areas provide potential
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and opportunities for future research work.

1. Investigating how the fractal overlay algorithm can be used to predict delay spread

in residential and office environments. The communication channel in these en-

vironment presents different characteristics due to the type of inventory and floor

space. Obtaining a fractal overlay algorithm that caters for more than one envi-

ronment provides opportunities for adapting this technique in deterministic mod-

elling.

2. Angular spread and small-scale fading parameters such as angle-of-arrival can be

investigated to extend the suitability of the fractal overlaying model. While delay

spread gives information on the time dispersion, the ability to model arrival angles

allows the technique to be applied to MIMO and beamforming scenarios.

3. Carrying out ultra-wideband ray tracing simulations for similar workshop environ-

ments in order to evaluate the delay spread prediction ability of the fractal overlay

model. This provides an opportunity to extend the capabilities of the fractal algo-

rithm presented in this work.
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Appendix A

Irradiance Measurements at HSSMI

and 5GRC

In Figure A.1, indoor irradiance values measured at HSSMI main office space is pre-

sented. The main office space has one out of four sides open to external lighting. It is

evident from the magnitude of indoor irradiance values that the predominant source of

indoor light at HSSMI was via fluorescent tubes1. The average irradiance and standard

deviation of the measurement was 1.53 ± 0.10 W/m2. This measurement at was taken

on the 11th of May, 2015, 3 meters away from the glass windows. The weather on that

day was sunny at mid day and overcast in the early and late hours of the day.

1Outdoor values were two orders more
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Figure A.1: Irradiance measurement at HSSMI main office

Additional measurements were also taken at the 5G Research Center, Loughborough

University on the 8th of December, 2014. The average irradiance and standard deviation

at the center was 1.96 ± 0.59 W/m2. In Figure A.2, the irradiance from the center is

presented. Rapid fluctuations can be observed in the Figure, this was due to the move-

ment of cloud. The measurement setup was placed on a desk near the window and the

dimensions of the measurement site were 11 m by 4 m.
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Figure A.2: Irradiance measurement at 5GRC, Loughborough University
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Appendix B

Horizontal and Vertical Polarization

Power Density Measurements

This appendix presents the horizontal and vertical components of the input RF power

density measured at the DEP. In Figure B.1 and Figure B.2, the average and max-hold

measurements at Location 1 are shown.

500 1000 1500 2000 2500 3000

Frequency (MHz)

-145

-140

-135

-130

-125

-120

-115

-110

-105

-100

-95

-90

P
ow

er
 d

en
si

ty
 (d

B
m

/c
m

2 )

Horizontal Polarization

Vertical Polarization

Figure B.1: Horizontal and vertical polarization measurements for average mode at the

DEP (Location 1)
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Figure B.2: Horizontal and vertical polarization measurements for max-hold at the DEP

(Location 1)

In Figures B.3 and B.4, the average and max-hold measurements at Location 2 are

shown.
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Figure B.3: Horizontal and vertical polarization measurements for average mode at the

DEP (Location 2)
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Figure B.4: Horizontal and vertical polarization measurements for max-hold at the DEP

(Location 2)

In Figures B.5 and B.6, the average and max-hold measurements at Location 3 are

shown.
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Figure B.5: Horizontal and vertical polarization measurements for average mode at the

DEP (Location 3)
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Figure B.6: Horizontal and vertical polarization measurements for max-hold at the DEP

(Location 3)

In Figures B.7 and B.8, the average and max-hold measurements at Location 4 are

shown.
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Figure B.7: Horizontal and vertical polarization measurements for average mode at the

DEP (Location 4)
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Figure B.8: Horizontal and vertical polarization measurements for max-hold at the DEP

(Location 4)

In Figures B.9 and B.10, the average and max-hold measurements at Location 5 are

shown.
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Figure B.9: Horizontal and vertical polarization measurements for average mode at the

DEP (Location 5)
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Figure B.10: Horizontal and vertical polarization measurements for max-hold at the DEP

(Location 5)

Supplementary RF power density measurements were carried out at HSSMI and CEME

reception area. Both measurement locations are in the CEME building, with the recep-

tion area on the ground floor and HSSMI on the second floor. The measurements at the

CEME reception was taken close to the Cafe during lunch time, while the measurement

at HSSMI was taken on the same day one hour apart. At both locations, the antenna

was facing the entrance. The front of the CEME building is made with see through re-

inforced glass. In Figures B.11 to B.14, the max-hold and average power density results

for horizontal and vertical polarization at CEME and HSSMI are presented.
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Figure B.11: Horizontal and vertical polarization measurements for average mode at

CEME reception
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Figure B.12: Horizontal and vertical polarization measurements for max-hold at CEME

reception
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Figure B.13: Horizontal and vertical polarization measurements for average mode at

CEME reception
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Figure B.14: Horizontal and vertical polarization measurements for max-hold at CEME

reception
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Appendix C

Measurement Cable and Antenna

Parameters

This appendix shows the antenna gain and factors of the EM 6116 omni-directional

antenna.

Table C.1: Electro-Metrics EM6116

Frequency (MHz) Antenna Factor (dB/m) Gain (dBi)

2000 34.05 2.22

2500 37.00 1.21

3000 38.83 0.96

3500 38.86 2.27

4000 38.51 3.78

4500 40.39 2.92

5000 41.07 3.16

5500 41.63 3.42

6000 42.76 3.05

6500 43.74 2.76

7000 43.44 3.71

7500 43.81 3.94

8000 44.24 4.07

8500 45.07 3.76

9000 46.71 2.62

9500 46.79 23.01

10000 47.85 2.40
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In Figure C.1 to C.3, the frequency loss graphs for the three MW cables used are pre-

sented.

 

Figure C.1: Frequency vs dB loss for 3 m MW cable

 

Figure C.2: Frequency vs dB loss for 13 m MW cable
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Figure C.3: Frequency vs dB loss for 20 m MW cable
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Appendix D

Inventory of Loughborough University

Machine Workshop

This appendix lists the inventory present in the Loughborough University workshop in

no particular order.

Table D.1: Workshop inventory

Label Description

D Edwards 3.25mm Truecut

E M300 Harisson

F Colchester Student

G Colchester Triump

I Startite 24-T-1Q

H Metal saw

T2,T3 Wooden shelf 2m high

T4 Wooden table

C3 PEC shelf 2m high

M,O Electrical motors

C0 PEC shelf (2.2m high) with tools

B1 SMX SLV Machine tool

A1 Cut 20P

A2 Haas milling machine

C2 PEC boxes(0.5m high)

P Pillars

T1 Work bench with tools
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Appendix E

Power Delay Profiles for Computing

Delay Spread

This appendix presents the individual power delay profiles measured and modelled at

the receiver locations. These profiles are imported to MATLAB for time dispersion

computation. The measurement profiles are displayed up to 600 ns, as this exceeds the

delay in large factory environments.
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Figure E.1: Measurement power delay profile at receiver location L1

144



 

20 30 40 50 60 70 80 90 100

Time (ns)

-85

-80

-75

-70

-65

-60

-55

-50

P
ow

er
 (d

B
m

)

Figure E.2: Ray tracing profile at receiver location L1
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Figure E.3: Measurement power delay profile at receiver location L2
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Figure E.4: Ray tracing profile at receiver location L2
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Figure E.5: Measurement power delay profile at receiver location L3
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Figure E.6: Ray tracing profile at receiver location L3
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Figure E.7: Measurement power delay profile at receiver location L4
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Figure E.8: Ray tracing profile at receiver location L4
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Figure E.9: Measurement power delay profile at receiver location L5
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Figure E.10: Ray tracing profile at receiver location L5
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Figure E.11: Measurement power delay profile at receiver location L6
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Figure E.12: Ray tracing profile at receiver location L6
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Figure E.13: Measurement power delay profile at receiver location N1
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Figure E.14: Ray tracing profile at receiver location N1
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Figure E.15: Measurement power delay profile at receiver location N2
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Figure E.16: Ray tracing profile at receiver location N2
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Figure E.17: Measurement power delay profile at receiver location N3
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Figure E.18: Ray tracing profile at receiver location N3
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Figure E.19: Measurement power delay profile at receiver location N4
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Figure E.20: Ray tracing profile at receiver location N4
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Figure E.21: Measurement power delay profile at receiver location N5

154



 

20 30 40 50 60 70 80 90 100 110 120

Time (ns)

-90

-85

-80

-75

-70

-65

P
ow

er
 (d

B
m

)

Figure E.22: Ray tracing profile at receiver location N5
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Figure E.23: Measurement power delay profile at receiver location N6
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Figure E.24: Ray tracing profile at receiver location N6
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Appendix F

APDPs Obtained from Virtual Arrays

for Fractal Overlay Model

This appendix shows the APDPs obtained from the virtual arrays at 2.4 and 60 GHz.

The APDP figures also highlight the visually identified clusters (in black lines) through

which the S-V model parameters were obtained. The dark lines only depict the clusters

and do not represent the slope of the regression line.
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Figure F.1: APDP at receiver location 1 (2.4 GHz).
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Figure F.2: APDP at receiver location 2 (2.4 GHz).
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Figure F.3: APDP at receiver location 3 (2.4 GHz).
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Figure F.4: APDP at receiver location 4 (2.4 GHz).
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Figure F.5: APDP at receiver location 5 (2.4 GHz).
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Figure F.6: APDP at receiver location 6 (2.4 GHz).
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Figure F.7: APDP at receiver location 7 (2.4 GHz).
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Figure F.8: APDP at receiver location 8 (2.4 GHz).
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Figure F.9: APDP at receiver location 9 (2.4 GHz).
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Figure F.10: APDP at receiver location 10 (2.4 GHz).
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Figure F.11: APDP at receiver location 1 (60 GHz).
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Figure F.12: APDP at receiver location 2 (60 GHz).
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Figure F.13: APDP at receiver location 3 (60 GHz).
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Figure F.14: APDP at receiver location 4 (60 GHz).
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Figure F.15: APDP at receiver location 5 (60 GHz).
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Figure F.16: APDP at receiver location 6 (60 GHz).
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Figure F.17: APDP at receiver location 7 (60 GHz).
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Figure F.18: APDP at receiver location 8 (60 GHz).
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Figure F.19: APDP at receiver location 9 (60 GHz).
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Figure F.20: APDP at receiver location 10 (60 GHz).
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