4 research outputs found

    Machine learning based lightweight interference mitigation scheme for wireless sensor network

    Get PDF
    The interference issue is most vibrant on low-powered networks like wireless sensor network (WSN). In some cases, the heavy interference on WSN from different technologies and devices result in life threatening situations. In this paper, a machine learning (ML) based lightweight interference mitigation scheme for WSN is proposed. The scheme detects and identifies heterogeneous interference like Wifi, bluetooth and microwave oven using a lightweight feature extraction method and ML lightweight decision tree. It also provides WSN an adaptive interference mitigation solution by helping to choose packet scheduling, Acknowledgement (ACK)-retransmission or channel switching as the best countermeasure. The scheme is simulated with test data to evaluate the accuracy performance and the memory consumption. Evaluation of the proposed scheme’s memory profile shows a 14% memory saving compared to a fast fourier transform (FFT) based periodicity estimation technique and 3% less memory compared to logistic regression-based ML model, hence proving the scheme is lightweight. The validation test shows the scheme has a high accuracy at 95.24%. It shows a precision of 100% in detecting WiFi and microwave oven interference while a 90% precision in detecting bluetooth interference

    EM Monitoring and classification of IEMI and protocol-based attacks on IEEE 802.11n communication networks

    Get PDF
    International audienceThe development of connected devices and their daily use are today at the origin of the omnipresence of Wi-Fi wireless networks. However, these Wi-Fi networks are often vulnerable, and can be used by malicious people to disturb services, intercept sensitive data or to gain access to system. In railways, trains are now equipped with wireless communication systems for operational purposes or for passenger services. In both cases, defense strategies have to be developed to prevent misuses of the networks. The first objective of this study is to propose a monitoring solution, which is independent of the communication networks, to detect the occurrence of attacks. The second objective is to develop a method able to classify attacks of different types: the intentional electromagnetic interference (IEMI), i.e., jamming attacks, and the protocol-based attacks. This study focuses on the IEEE 802.11n Wi-Fi protocol. To perform these analyses, we propose to monitor and to analyze electromagnetic (EM) signals received by a monitoring antenna and a receiver collecting EM spectra. After that, we build a classification protocol following two steps: the first consists in the construction of a Support Vector Machine (SVM) classification model using the collected spectra and the second step uses this SVM model to predict the class of the attack (if any). A time-based correction of this prediction using the nearest neighbors is also included in this second step

    An SVM-Based Method for Classification of External Interference in Industrial Wireless Sensor and Actuator Networks

    No full text
    In recent years, the adoption of industrial wireless sensor and actuator networks (IWSANs) has greatly increased. However, the time-critical performance of IWSANs is considerably affected by external sources of interference. In particular, when an IEEE 802.11 network is coexisting in the same environment, a significant drop in communication reliability is observed. This, in turn, represents one of the main challenges for a wide-scale adoption of IWSAN. Interference classification through spectrum sensing is a possible step towards interference mitigation, but the long sampling window required by many of the approaches in the literature undermines their run-time applicability in time-slotted channel hopping (TSCH)-based IWSAN. Aiming at minimizing both the sensing time and the memory footprint of the collected samples, a centralized interference classifier based on support vector machines (SVMs) is introduced in this article. The proposed mechanism, tested with sample traces collected in industrial scenarios, enables the classification of interference from IEEE 802.11 networks and microwave ovens, while ensuring high classification accuracy with a sensing duration below 300 ms. In addition, the obtained results show that the fast classification together with a contained sampling frequency ensure the suitability of the method for TSCH-based IWSANASISTIMELINESSSMART (Smarta system och tjänster för ett effektivt och innovativt samhälle
    corecore