728 research outputs found

    Hyperspectral image reconstruction of heritage artwork using RGB images and deep neural networks

    Get PDF
    The application of our research is in the art world where the scarcity of available analytical data from a particular artist or physical access for its acquisition is restricted. This poses a fundamental problem for the purpose of conservation, restoration or authentication of historical artworks. We address part of this problem by providing a practical method to generate hyperspectral data from readily available RGB imagery of artwork by means of a two-step process using deep neural networks. The particularities of our approach include the generation of learnable colour mixtures and reflectances from a reduced collection of prior data for the mapping and reconstruction of hyperspectral features on new images. Further analysis and correction of the prediction are achieved by a second network that reduces the error by producing results akin to those obtained by a hyperspectral camera. Our method has been used to study a collection of paintings by Amadeo de Souza-Cardoso where successful results were obtained. CCS CONCEPTS • Computing methodologies → Neural networks; Artificial intelligence; • Applied computing → Arts and humanities.info:eu-repo/semantics/publishedVersio

    Earth observations from DSCOVR EPIC instrument

    Full text link
    The National Oceanic and Atmospheric Administration (NOAA) Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. There are two National Aeronautics and Space Administration (NASA) Earth-observing instruments on board: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764, and 779 nm. We discuss a number of preprocessing steps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts per second for conversion to reflectance units. The principal EPIC products are total ozone (O3) amount, scene reflectivity, erythemal irradiance, ultraviolet (UV) aerosol properties, sulfur dioxide (SO2) for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.The NASA GSFC DSCOVR project is funded by NASA Earth Science Division. We gratefully acknowledge the work by S. Taylor and B. Fisher for help with the SO2 retrievals and Marshall Sutton, Carl Hostetter, and the EPIC NISTAR project for help with EPIC data. We also would like to thank the EPIC Cloud Algorithm team, especially Dr. Gala Wind, for the contribution to the EPIC cloud products. (NASA Earth Science Division)Accepted manuscrip

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration

    Get PDF
    Author Posting. © Optical Society of America, 2014. This article is posted here by permission of Optical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Optical Society of America A: Optics, Image Science, and Vision 31 (2014): 312-321, doi:10.1364/JOSAA.31.000312.Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging.T. Treibitz is an Awardee of the Weizmann Institute of Science—National Postdoctoral Award Program for Advancing Women in Science and was supported by NSF grant ATM-0941760. D. Akkaynak, J. Allen, and R. Hanlon were supported by NSF grant 1129897 and ONR grants N0001406-1-0202 and N00014-10-1-0989 and U. Demirci by grants R01AI093282, R01AI081534, and NIH U54EB15408. J. Allen is grateful for support from a National Defense Science and Engineering Graduate Fellowship

    Spectral imaging of human portraits and image quality

    Get PDF
    This dissertation addresses the problem of capturing spectral images for human portraits and evaluating image quality of spectral images. A new spectral imaging approach is proposed in this dissertation for spectral images of human portraits. Thorough statistical analysis is performed for spectral reflectances from various races and different face parts. A spectral imaging system has been designed and calibrated for human portraits. The calibrated imaging system has the ability to represent not only the facial skin but also the spectra of lips, eyes and hair from various races as well. The generated spectral images can be applied to color-imaging system design and analysis. To evaluate the image quality of spectral imaging systems, a visual psychophysical image quality experiment has been performed in this dissertation. The spectral images were simulated based on real spectral imaging system. Meaningful image quality results have been obtained for spectral images generated from different spectral imaging systems. To bridge the gap between the physical measures and subjective visual perceptions of image quality, four image distortion factors were defined. Image quality metrics were obtained and evaluated based statistical analysis and multiple analysis. The image quality metrics have high correlation with subjective assessment for image quality. The image quality contribution of the distortion factors were evaluated. As an extension of the work other researchers in MCSL have initiated, this dissertation research will, working with other researchers in MCSL, put effort to build a publicly accessible database of spectral images, Lippmann2000

    Quantifying colors at micrometer scale by colorimetric microscopy (C-Microscopy) approach

    Get PDF
    The color is the primal property of the objects around us and is direct manifestation of light-matter interactions. The color information is used in many different fields of science, technology and industry to investigate material properties or for identification of concentrations of substances. Usually the color information is used as a global parameter in a macro scale. To quantitatively measure color information in micro scale one needs to use dedicated microscope spectrophotometers or specialized micro-reflectance setups. Here, the Colorimetric Microscopy (C-Microscopy) approach based on digital optical microscopy and a free software is presented. The C-Microscopy approach uses color calibrated image and colorimetric calculations to obtain physically meaningful quantities i.e., dominant wavelength and excitation purity maps at micro level scale. This allows for the discovery of the local color details of samples surfaces. Later, to fully characterize the optical properties, the hyperspectral reflectance data at micro scale (reflectance as a function of wavelength for a each point) are colorimetrically recovered. The C-Microscopy approach was successfully applied to various types of samples i.e., two metamorphic rocks unakite and lapis lazuli, which are mixtures of different minerals; and to the surface of gold 99.999 % pellet, which exhibits different types of surface features. The C-Microscopy approach could be used to quantify the local optical properties changes of various materials at microscale in an accessible way. The approach is freely available as a set of python jupyter notebooks
    • …
    corecore