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ABSTRACT
The application of our research is in the art world where the scarcity
of available analytical data from a particular artist or physical access
for its acquisition is restricted. This poses a fundamental problem
for the purpose of conservation, restoration or authentication of
historical artworks. We address part of this problem by providing a
practical method to generate hyperspectral data from readily avail-
able RGB imagery of artwork by means of a two-step process using
deep neural networks. The particularities of our approach include
the generation of learnable colour mixtures and reflectances from
a reduced collection of prior data for the mapping and reconstruc-
tion of hyperspectral features on new images. Further analysis and
correction of the prediction are achieved by a second network that
reduces the error by producing results akin to those obtained by a
hyperspectral camera. Our method has been used to study a collec-
tion of paintings by Amadeo de Souza-Cardoso where successful
results were obtained.
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1 INTRODUCTION
The technique of hyperspectral imaging has been employed ex-
tensively in multitudinous fields, ranging from the more widely-
applied territories such as geoscience and agriculture to the more
recent applications like in cultural heritage and the art arena. This
is due to its particular capability to reveal a specific series of hidden
features that other technologies may not be able to uncover. These
hidden features can be useful for the purpose of conservation or
authentication of artworks [8] or even in image retrieval systems
[5] in other contexts. Nevertheless, in the art world, in particular,
the difficulty to perform analysis of cultural and historical artworks
intensifies as the number of artworks for any given artist is limited
and access to original items for data acquisition can be unattainable.
It is thus significant and useful to devise methods to estimate certain
data, for example, hyperspectral images from existing accessible
information, typically from RGB images.

One of the more recent analysis tools that have become increas-
ingly significant in various genres of studies over the past few years
is the state-of-the-art technique of Deep Neural Networks (DNNs)
given their suitability to analyse data, recognise and classify pat-
terns with their brain style processing. Although the concept and
approach of DNNs are being used extensively in other scientific
fields, their application in the art world is still reduced. Our study
aims therefore to develop practical methods applying DNNs in
the reconstruction of hyperspectral images from RGB images of
paintings. More specifically, we focus on the particular case where
a limited but incomplete set of hyperspectral data from basic oil
pigments used by an artist is available. The case study evaluated in
our research focuses on the paintings of the late Portuguese artist
Amadeo de Souza-Cardoso whose collection of pigment data and
hyperspectral images are available at the Universidade Nova the
Lisboa. While the method and results are focused on this particular
artist due to the availability of data, the methods can be generalised
and be applied to other artists and pigment media such as pencil
drawings or watercolour paintings.

Earlier studies dealingwith RGB image conversion to reflectances
have existed for a while, initially from a physics point of view, in
other words, without the involvement of machine learning algo-
rithms. Typical examples include [12] where a spectrally-based
renderer was created in an optimal metamer space to produce
physically-plausible spectra, or [1] where an easy, flexible and repet-
itive physical rendering approach was designed for the conversion
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from the RGB image to spectral information. Another physical ap-
proach for spectral reconstruction includes the manipulation of
digital cameras and exploitation of the properties of those camera
sensors, like the work done in [9] and [4]. Mathematical approaches
include for example [3] where a sparse dictionary of hyperspectral
signatures was derived from a collection of known hyperspectral
data in order to recover hyperspectral information for novel RGB
images.

In recent years, research using machine learning techniques to
reconstruct hyperspectral signals has also been studied. For ex-
ample, [2] intended to recover hyperspectral data from the RGB
image of the same object by applying a Gaussian process under
a full Bayesian model, and by training a set of known spectral in-
formation of other objects. Regarding the use of neural networks,
the study has focused on approaches like [10] where two advanced
Convolutional Neural Networks (CNNs) coined as HSCNN-R and
HSCNN-D were introduced and analysed, with the latter built upon
the former. [10] proposed the HSCNN model to recover hyperspec-
tral data from a single super-resolution RGB image with HSCNN-R
based on DNNs and a series of residual blocks, while HSCNN-D
deepens the network by replacing the residual blocks in HSCNN-R
with dense blocks accompanied by a novel fusion scheme. Other
approaches included [13] where a U-net based structure named
C2H-Net showed promising results of the spectral information
obtained because they have addressed some of the limitations of
current CNN techniques. [6] experimented with both 2D and 3D
CNNs architectures where the former focused on spatial correlation
and the latter on inter-channel correlation. Another example where
a robust HSCNN-R trained based on the mean relative absolute
error loss function (MRAELF) was developed by [14] where it was
deemed that this function was preferred when all wavelengths were
considered equally important. While all these CNN-based methods
are promising, the nature of their implementation in a practical
framework can be computationally expensive and, in many cases,
requires a large training dataset to achieve the reported results.
Furthermore, these focused on their application from a distinct
point of view based on the data accessible locally.

Our work reported in this paper is a by-product of our primary
interest and differs from other methods by providing an approach
that uses a significantly reduced training set and architecture based
on two DNNs with one reconstructing the hyperspectral image
while the other corrects for biases from the acquisition method. In
particular, our research is centred on the specific art world, where
such work is still comparably scarce.

2 PROBLEM FORMULATION
As mentioned previously, hyperspectral imaging is particularly im-
portant for applications related to the analysis and visualisation
of artworks as it provides researchers with powerful information
related to the colour content of the object of study. This hyperspec-
tral data is typically obtained using suitable hyperspectral cameras
that, although they are non-invasive, require access to original art-
work which can be not only challenging but also expensive. To
overcome this, we focus on a method that allows the estimation of
hyperspectral data from RGB images based on the use of prior and
exemplary data. More specifically, the objective of this research

is to estimate the hyperspectral image Z̄ ∈ RW ×H×B whereW , H
and B are the width, height and number of spectral bands respec-
tively, for the RGB image of the same painting I ∈ RW ×H×3. For
the reconstruction of Z̄, two sets of reference data are available.
First, a collection of N base pigment colours Pi , i ∈ {1...N } with
associated reflectance values Pλ known to have been used in at
least one painting of the same collection. The second set of data
includes an exemplary group of hyperspectral signatures S ∈ RB

from a painting obtained with a hyperspectral camera. While the
problem described can be applied to multiple fields, our research
focuses particularly on the specific application to artworks, namely
paintings.

3 METHOD PROPOSED
The method we propose is a practical approach with low compu-
tation cost consisting of a 2-step process where two Deep Neural
Networks are used to estimate the hyperspectral image from an
RGB image of heritage artwork (Fig. 1). First, an initial hyperspectral
estimate is obtained by pixel-wise evaluation of the colour compo-
nents of a given artwork RGB image with a DNN pretrained with a
plurality of reflectances generated from a base set of data known
to have been used in artwork from the same artist. The acquisition
method, equipment, conditions and number of base pigments can
differ from those in the artwork analysed. Consequently, the initial
hyperspectral approximation presents an error when compared to
data obtained with a given hyperspectral camera. We correct for
these effects through the use of a second network trained with pre-
dicted and true hyperspectral data thus resulting in a hyperspectral
image that closely resembles the output of the hyperspectral cam-
era. We first describe the networks and data pre-processing used
and then present the results obtained with the method proposed.
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Figure 1: Block diagram of the model proposed. The first
stage network is trained with a set of colour components
and artificially generated reflectances. The second stage net-
work is trained with the predicted reflectances of the first
stage for a given set of colours and true reflectances.©Center
of Modern Art of Calouste Gulbenkian Foundation, Lisbon.
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3.1 Colour to Hyperspectral Conversion
The initial hyperspectral estimate is attained through the use of a
DNN where the colour parameters to reflectance relationship are
learned. This learning process requires a large number of training
samples in order to produce an effective reflectance estimate. Given
a limited number of base pigments and their associated reflectance
known to have been used by a particular artist, a new expanded
dataset can be generated by applying colour mixing theory. This
is based on synthesising new colours by mixing the reflectances
of two or more pigments, a practice widely used by artists in their
artwork. Contrary to the colour mixing theory of lights where the
superimposition of colours is typically of additive nature the mixing
of colours in paintings is subtractive. This is, the combination of two
or more pigments do not yield white. In this work, we propose the
use of a pure subtractive mixing approach as defined in Eq. 1 [11]
where ci is the proportion of the ith pigment colour and with the
sum of all proportions equal to 1. Other subtractive mixing models
like the Kubelka-Munk model [7] can be used if parameters like
the absorption and backscattering coefficients of the base pigments
are known.

Pλ =
n∏
i=1

Pcii,λ (1)

The effect of applying Eq. 1 on two pigment reflectances (Cerulean
Blue and Yellow Ochre) is observed in Fig. 2. The subtractive nature
of the model used generates non-linearly spaced reflectances where
lower amplitudes dominate the combined mixture reflectance.

The corresponding CIELab and colour components for each
generated mixture are then calculated using the CIE 1931 colour
matching functions and using the D65 illuminant. For this first stage
network, the CIELab components are the input data and amplitude
of the artificial mixture reflectances correspond to the output data.
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Figure 2: Effect of subtractive mixing of two pigment re-
flectances using Eq. 1 in steps of 10%.

The neural network proposed is a 7-layer deep feed-forward, fully-
connected network with 33, 35, 33, 30, 27, 25 and 20 neurons in
each hidden layer respectively and a linear activation function. The
training is performed by computing the mean squared error of the
targets. New unseen RGB paintings are analysed with the trained
network on a pixel-wise basis producing a first approximation of the
hyperspectral image based on a set of known pigment reflectances.

3.2 World-Bias Correction
In the second stage of themethod proposed, the initial hyperspectral
image predicted is evaluated through a second neural network that
minimises the error due to the intrinsic nature of the data acquisi-
tion process through a given hyperspectral camera. To achieve this,
the second stage network is trained with a collection of estimated
reflectances from the first network and the corresponding true re-
flectances extracted from a ground truth RGB and hyperspectral
image. This is, the input to this network is the reflectance amplitude
of a given pixel estimated by the first network while the output
is the 33-point, world-bias corrected reflectance amplitude. The
network proposed is a 4-layer deep feed-forward, fully-connected
network with 33, 35, 35 and 33 neurons on each hidden layer re-
spectively and with a linear activation function. The correction
applied by this network is less complex than the initial colour to
reflectance estimation which allows for a lower number of hidden
layers required. The performance of the network is computed using
the mean square error function.

4 EXPERIMENTAL RESULTS
4.1 Artificial Colour Mixtures
For this work, we use data previously collected by the Department
of Conservation and Restoration of the Universidade Nova de Lis-
boa from the collection of artworks done by Souza-Cardoso. The
data contains a database of reflectances from 17 oil pigments ac-
quired using a variety of hyperspectral cameras and known to have
been used by Souza-Cardoso. These pigments include Vermilion,
Carmine, Raw Sienna, Terra Rosa, Cadmium Orange, Ochre Yellow,
Chrome Yellow, Cobalt Violet, Cerulean Blue, Cobalt Blue, Prussian
Blue, Cadmium Green, Viridian, Ultramarine, Emerald, Black and
Lead White. Artificial mixtures using 3 out of the 17 pigments in
steps of 10% were generated using the subtractive mixing model in
1 yielding a total of 44880 mixtures. The respective CIELab colour
components for each mixture were also computed.

4.2 Input Data
The data used for evaluation consisted of hyperspectral images of
11 paintings from the collection of Souza-Cardoso with a spectral
resolution of 400 nm to 720nm in steps of 10nm acquired with a
hyperspectral camera in a previous project by the Department of
Conservation and Restoration of the Universidade Nova de Lisboa.
For the evaluation, RGB images were generated from the available
hyperspectral data applying the D65 illuminant and used as input
data for the method proposed. Fig. 3 shows the RGB representation
of the selected paintings used through this research for which
hyperspectral images were acquired.
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68P11 77P2 77P5 77P8

77P9 77P16 77P20 86P19

86P21 86P23 92P209

Figure 3: RGB representation of the hyperspectral images
used. ©Center of Modern Art of Calouste Gulbenkian Foun-
dation, Lisbon.

4.3 Error Measurement
To evaluate the performance of the hyperspectral reconstruction
Z̄ with respect to the ground truth Z we employ the use of Mean
Relative Absolute Error (MRAE) defined in Eq. 2 over the Root
Square Mean Error as a more suitable metric since this is scale-
independent allowing an easier comparison to other methods. A
second metric function we use is the Spectral Angle Mapper (SAM)
defined in Eq. 3 which computes the angle between the estimated
reflectance ẑi j and the ground truth reflectance zi j , averaged over
all pixels of the image.

MRAE =
1
n

n∑
i=1

| ẑi j − zi j |

zi j
(2)

SAM =
1
n

n∑
i=1

cos−1
ẑTi jzi j

∥ẑi j ∥2∥zi j ∥2
(3)

4.4 Reconstructed Hyperspectral Data
Each of the 11 hyperspectral images in the dataset was converted to
RGB and CIELab colour components which then were fed through
the 2-stage process to estimate the hyperspectral cube. An example
of a reconstructed reflectance obtained for a point of image 86P21 is
shown in Fig. 4 along with the ground truth version for comparison.
As observed, the overall signature of the reconstructed reflectance
shows a similar pattern as that of its ground truth version.

The overall quantitative results of the comparison between orig-
inal and reconstructed hyperspectral images are shown in Table
1 where the total MRAE and SAM values for each image are pre-
sented.

In addition, to aid visual comparison of the results, hyperspectral
images at selected wavelengths are displayed in Fig. 6 for painting
exhibit 86P21; hyperspectral images are displayed in 8-bit greyscale
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Figure 4: Comparison of ground truth and reconstructed re-
flectances for pixel 50,50 in painting 86P21.

Table 1: Reconstruction error measured using MRAE and
SAM.

Image MRAE SAM
68P11 0.0750 0.0815
77P2 0.1384 0.1737
77P5 0.1239 0.0929
77P8 0.1649 0.1473
77P9 0.1755 0.1603
77P16 0.4938 0.1220
77P20 0.9959 0.1155
86P19 0.2524 0.1293
86P21 0.2763 0.1670
86P23 0.7010 0.1685
92P209 0.4610 0.1695

for visualisation. The error map between the ground truth and the
reconstruction highlights the regions where the largest discrepancy
is found for the wavelengths selected which appear higher towards
the upper end of the spectrum. Finally, a comparison of the RGB
images generated from the original and reconstructed hyperspectral
images is shown in Fig. 5 with the colour difference measured as
the Euclidean distance of the CIELab colour vectors for each pixel.

4.5 Discussion
The results obtained with the Souza-Cardoso dataset suggest that
the method proposed can indeed be used to estimate hyperspectral
images. As observed in Fig. 4, the estimated reflectance closely
follows the true reflectance obtained with a hyperspectral camera.
The divergence in the reflectance predicted at higher wavelengths
was found to be present on all images analysed. This was confirmed
by visual examination of the reconstructed hyperspectral cubes
and error computation of the dataset as shown in Fig. 6 where
the hyperspectral slice at wavelength 720nm exhibits the highest
error. This suggests a potential discrepancy between the acquisition
process (e.g. changes in illumination, equipment calibration, data
normalisation) of the reference pigment reflectances and the actual
hyperspectral data from the images evaluated.
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Figure 5: Comparison between RGB version of the ground
truth and the reconstructed hyperspectral image of image
86P21. Error map shown as the Euclidean difference of
the CIELab colour vectors generated using illuminant D65.
©Center of Modern Art of Calouste Gulbenkian Foundation,
Lisbon.

TheMRAE values measured between the ground truth and recon-
structed images show some variability between all images as this
highly penalizes errors. On the other hand, the error measured with
SAM shows a more consistent behaviour indicating a good overall
reflectance correlation across all images evaluated. This gives an
insight into the overall error of the reconstructed reflectances sug-
gesting that while the overall trend of the reconstructed spectra
follows the ground truth spectra, there is an error associated with
the prediction process. This is thought to be attributed to the lack
of base pigments with a higher response at longer wavelengths.
The effect can be further exacerbated by other sources of error
including differences in the acquisition methods used between the
reflectances of the reference pigments and the hyperspectral im-
ages of the paintings; while different methods should yield similar
reflectance curves, the effect of the illumination and inherent re-
sponse of the hardware used can result in different reflectances for
the same material.

5 CONCLUSION AND FUTUREWORK
Our paper presents a practical method where readily available
hyperspectral signatures of reference oil paint pigments are used in
conjunction with two DNN structures to reconstruct hyperspectral
cubes of paintings, that is when a new unseen RGB image of a
painting is provided, a corresponding hyperspectral data can be
recovered through such system. The first DNN is trained with the
reflectance of artificial colour mixtures and their corresponding
colour representation allowing reflectance prediction in the new
unseen RGB images. The second DNN serves as a regulator to learn
and adjust the inherent characteristics such as illumination and
camera properties. Although the results of our method show some
errors, in particular at higher wavelengths, the proposed method
has achieved promising results for use in the application studied.

The concept of artificial colour mixtures in our study was limited
to mixtures of 3 pigment reflectance curves. However, it is recog-
nised that in practice such a mixture rarely is limited in real life;
oftentimes the mixture might contain more pigments depending
on the style of the artist being studied. This aspect could be also

a contributing factor to the errors measured in the case study pre-
sented. In other words, the artificial mixture can be generated by
any chosen number of pigments with any arbitrary percentages.
However, increasing the number of pigments in the mixture and
the resolution of their concentrations, results in an increased com-
putational load that grows exponentially potentially rendering the
implementation prohibitive.

In conclusion, our approach successfully provides an alternative
point of view in terms of spectral reconstruction and is interest-
ing in the art field, when neither hyperspectral cubes of the art-
works, nor high-resolution RGB images are easily attainable, yet
pre-acquired hyperspectral curves of base materials are available.
If the reflectance data of known base pigments is unavailable, the
proposed method could be used by building the dictionary of base
reflectances from user-selected points of the hyperspectral image of
a given painting. Artificial mixtures could then be generated from
the selected reflectances thereby allowing to describe other paint-
ings in terms of the chosen data. Thus, to reduce the reconstruction
error, a wide selection of points with different colour would be
required.

As mentioned previously, the original objective of this work is to
compensate for the limited amount of data available for a particular
artist, namely hyperspectral information. To follow the current
research, a study of the generalisation of the method to explore the
generation of hyperspectral data for watercolour paintings and pen
drawings is planned. Other work includes the enhancement of the
reconstruction method by means of more complex networks and
the evaluation of alternative methods for benchmarking.
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