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A B S T R A C T   

The color is the primal property of the objects around us and is direct manifestation of light-matter interactions. 
The color information is used in many different fields of science, technology and industry to investigate material 
properties or for identification of concentrations of substances. Usually the color information is used as a global 
parameter in a macro scale. To quantitatively measure color information in micro scale one needs to use dedi-
cated microscope spectrophotometers or specialized micro-reflectance setups. Here, the Colorimetric Microscopy 
(C-Microscopy) approach based on digital optical microscopy and a free software is presented. The C-Microscopy 
approach uses color calibrated image and colorimetric calculations to obtain physically meaningful quantities i. 
e., dominant wavelength and excitation purity maps at micro level scale. This allows for the discovery of the local 
color details of samples surfaces. Later, to fully characterize the optical properties, the hyperspectral reflectance 
data at micro scale (reflectance as a function of wavelength for a each point) are colorimetrically recovered. The 
C-Microscopy approach was successfully applied to various types of samples i.e., two metamorphic rocks unakite 
and lapis lazuli, which are mixtures of different minerals; and to the surface of gold 99.999 % pellet, which 
exhibits different types of surface features. The C-Microscopy approach could be used to quantify the local optical 
properties changes of various materials at microscale in an accessible way. The approach is freely available as a 
set of python jupyter notebooks.   

1. Introduction 

The color is the primal property of the objects around us. The color 
which we see is a direct manifestation of light-matter interactions 
(Rivera et al., 2020). Incident photons interact with matter via several 
different complicated processes which in consequence, simplifying it, 
leads to the absorption of some of them, rest is reflected and comes to the 
detector system (i.e. our eyes or digital camera) which is later recorded 
as particular color value. The color as defined by the by the International 
Commission on Illumination (CIE) in 1931 as tristimulus color values J :

[X,Y,Z] are expressed as (C.I.E Report, 2004; Janos Schanda, 
2007):J = 1

N
∫

λ
R(λ)I(λ)j(λ)dλ and N =

∫

λ
y(λ)dλ for j(λ) : [x(λ), y(λ), z(λ)], 

where R(λ) is a spectral reflectance, I(λ) is spectral power distribution of 
light source (illuminant). The integral is computed over the visible light 
wavelength λ range. Here j(λ) denotes CIE standard observer matching 
functions, which describe the spectral sensitivity (chromatic response) 
of the standard observer. In case of the commonly used RGB sensor 
(J : [R,G,B]) this looks very similar with j(λ) being spectral sensitivity of 

the j-th channel (Lin et al., 2023). From the above one can see that there 
is a direct correspondence between the color and the optical properties 
expressed as spectral reflectance R(λ), which is related to the refractive 

index of the material (Hummel, 2011) n(λ) via R(λ) =
(n(λ)− 1)2+k(λ)2

(n(λ)+1)2+k(λ)2, 

where k(λ) is the extinction coefficient, and is related to the complex 
dielectric function (Hummel, 2011) ϵ(λ) = [n(λ) − ik(λ)]2. Since the 
color is the consequence of the basic interactions it could be calculated 
from first principles by quantum mechanical calculations using Density 
Functional Theory (DFT) (Prandini et al., 2019). The DFT approach can 
be used to successfully predict the color of various metals (Prandini 
et al., 2019). Experimentally the information about the color is 
measured by colorimeters or spectrophotometers and it is used in 
different fields of science and technology e.g., for measurements of 
nutrients (Kim et al., 2022), detection of metal ions (Kalluri et al., 2009), 
in materials science for coatings design (Chen et al., 2020) and also in 
heritage science for work conservation (Striova et al., 2018). Colori-
metric information registered by smartphone was also used to detect 
anemia in infants and young children without taking blood samples 
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(Wemyss et al., 2023). In many of these research fields the color infor-
mation is employed as a global property in macro scale. 

To characterize qualitatively local color changes in micro scale, 
which is important in materials research (Papadopoulos et al., 2018), 
photonic crystals (Sowade et al., 2016) and 2D material (Frisenda et al., 
2017) characterization, one has to use dedicated microscope spectro-
photometers or specialized micro-reflectance setups. 

Recently also several approaches utilizing color information at nano 
and micro scale were developed like: colorimetric histology (Balaur 
et al., 2021a) which utilizes special plasmonically active microscope 
slide to enhance color of biological samples without the need of dyeing 
or staining; dedicated Gires-Tournois Immunoassay Platform (GTIP) 
(Yoo et al., 2022) for label-free bright-field imaging of nanoscale bio-
particles; special combination of plasmonically active metamaterials 
together with ptychographic coherent diffractive imaging (Balaur et al., 
2021b) which yields additional contrast and enables imaging extremely 
thin and transparent objects like thin tissue sections. 

Here, the Colorimetric Microscopy (C-Microscopy) approach based 
on commonly available digital optical microscopy and a free software is 
introduced. The C-Microscopy approach uses color calibrated (D65 
illuminant) image and colorimetric calculations to obtain physically 
meaningful quantities i.e. dominant wavelength and excitation purity 
maps at micro level scale. The color details are uncovered, the micro-
scopic images are colorimetrically characterized in a quantitative way at 
a micrometer level. To fully characterize the optical properties, the 
spectral reflectance (reflectance as a function of wavelength) for a each 
point is colorimetrically recovered forming hyperspectral reflectance 
data. This allows for the full quantification of the local optical properties 
changes at micrometer scale. 

2. The idea of the colorimetric microscopy (C-Microscopy) 
approach 

The idea of the the approach of the Colorimetric Microscopy (C- 
Microscopy) based on digital optical microscopy and a free software is 
graphically presented in Fig. 1. The approach consists of the following 
steps:  

1. In the first step, a microscopic image is collected using digital optical 
microscope in reflected light mode as a color RGB image. Here, a 
digital optical microscope Delta Optical Smart 5MP PRO was used. 

The microscope has a 5MP CMOS sensor together with an illumi-
nation system consisting of 8 ultra bright white LEDs with smooth 
illumination intensity adjustment and a dedicated optical system of 
lenses, which moves relative to the sensor. The microscope is coupled 
to the tripod which allows for the height adjustments. The data were 
collected using free cross-platform software AstroDMx Capture 
1.7.1.0 (https://www.astrodmx-capture.org.uk/) under the Linux 
Mint 20.3 operating system running on PC. The data were collected 
as a series of sixteen 8-bit RGB tiff images each with a resolution of 
2592 × 1944 pixels, which were later median stacked. The data were 
captured in the manual white balance mode with 15 ms exposure 
time for each frame. After data collection image of a length cali-
bration slide, provided by microscope manufacturer, was also 
recorded.  

2. In the next step, the microscope was precisely color calibrated (D65 
illuminant). Here color calibration chart Calibrite ColorChecker 
Classic Mini was used. The calibration chart consists of 24 different 
color references, as presented in Fig. 2a). Each of the 24 colors was 
measured under the microscope using exactly the same conditions as 
for the sample measurements. The observed color values are pre-
sented in Fig. 2b). The comparison between reference color values 
and observed for each of 24 colors for red, green and blue channel is 
presented in Fig. 2d)-f). Its is seen that the observed values do not lie 
on the straight line (perfect agreement). The calibration was per-
formed using IJP-Color plugin (https://github.com/ij-plugins/i 
jp-color) for free software ImageJ/FIJI (Schindelin et al., 2012). 
The calibration was performed using reference color values for D65 
illuminant. The calibration was performed for each channel (red (r), 
green (g), blue (b)) using third order polynomial of the form constant 
+ r + g + b + r * r + r * g + r * b + g * g + g * b + b * b + r * r * r + r * 
g * b + g * g * g + b * b * b, “cubic cross-band” as in the IJP-Plugin, 
which takes into account correlations between the channels up to the 
third order. The obtained calibration coefficients are presented in 
Table S1 in Supporting Information. The performance of the cali-
bration was evaluated by plotting corrected color values after cali-
bration versus the reference color Fig. 2d)-f). It is seen that now all 
the colors lie on the straight line (perfect match). To evaluate the 
uncertainty of the performed calibration absolute color value dif-
ference between corrected and reference color versus reference color 
was plotted for each channel (red, green blue) Fig. 2g). Average 
difference of ΔR= 3.95, ΔG= 2.16 and ΔB= 3.71 for red, green and 

Fig. 1. Graphical representation of the idea of the colorimetric microscopy (C-Microscopy) approach. The data are acquired using digital optical microscope in the 
form of color RGB image. The microscope is color calibrated (D65 illuminant) using color calibration chart. Next, the colorimetric calculations are performed based 
on CIE 1931 chromaticity diagram (D65 illuminant) to determine the dominant wavelength and excitation purity of the color. The calculations are performed pixel by 
pixel to form a map of a dominant wavelength and excitation purity. The color details are uncovered, the microscopic image of the sample is colorimetrically 
characterized in a quantitative way at a micrometer level. Later, also hyperspectral reflectance is colorimetrically recovered, see details later in the text. 
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blue channel respectively was obtained. This defines the average 
systematic uncertainty for each channel related to the performed 
color calibration. The average ΔRGB= 6.78 was obtained, corre-
sponding to the relative average ΔRGB= 1.78%, which expresses 
relative average precision of the performed color calibration. 
Exemplary data and ImageJ/FIJI script for color chart creation from 
measurements are provided for the color calibration step. The data 
are available from Zenodo (Benedykt R. Jany, 2023) (https://doi. 
org/10.5281/zenodo.7789585). The performed calibration was 
applied to the collected microscopic images. Finally each image is 
color calibrated (D65 illuminant). This guarantees that the colors of 
the samples at microscale after calibration are reliably reproduced 
always in the same way independently on the initial microscope 
conditions.  

3. In the following step, the colorimetric calculations are performed to 
extract from the D65 calibrated images physically meaningful 

quantities. Each RGB pixel on the image is first converted to the CIE 
1931 xy chromaticity coordinates. Next dominant wavelength and 
excitation purity is calculated for each pixel (C.I.E. Report, 2004; 
Hunt, 2011), see Fig. 1. The dominant wavelength is defined as a 
cross section point at the spectral locus border of the chromaticity 
diagram of the line between “some color” and a “white point” on the 
diagram. The dominant wavelength of a “some color” is a wave-
lengths of a monochromatic light which in consequence gives color 
appearance of the same hue as a “some color”. This might be also 
interpreted as a dominant reflected wavelength from the sample 
surface. The excitation purity is defined as ratio of the distance be-
tween “white point” and “some color” to the distance between “white 
point” and dominant wavelength point on the chromaticity diagram. 
The excitation purity describes how pure is the color i.e. for the pure 
colors on the spectral locus the excitation purity is equal to 1, when 
the color approaches towards the “white point” (is more and more 

Fig. 2. Color calibration (D65 illuminant) of microscope. Reference a) observed b) and corrected c) colors of used calibration chart (Calibrite ColorChecker Classic 
Mini). Measured versus reference color value for the Red d), Green e) and Blue f) channel. Observed and corrected color values indicated. Absolute color value 
difference between corrected and reference color versus reference color for each channel (red, green blue) g). Relative average precision of color calibration of 1.78 % 
is achieved, expressed as Delta RGB. Schematic of systematic uncertainty calculation using Monte-Carlo simulation for dominant wavelength and excitation purity 
related to color calibration h). Obtained relative systematic uncertainties, related to color calibration, for dominant wavelength i) and excitation purity j) as a 
function of dominant wavelength. Mean relative systematic uncertainty of 0.59 % is obtained for dominant wavelength and 4.7% for excitation purity. 
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mixed with white) the excitation purity decreases. The dominant 
wavelength and excitation purity are colorimetric quantities (not 
spectroscopic) which describe the color in quantitative way. The 
calculations are performed pixel by pixel to form a maps of a 
dominant wavelength and excitation purity and their histograms. 
The correlation plot between excitation purity and dominanat 
wavelngth is also calculated. The dominant wavelength construction 
cannot be performed for the colors lying between the violet end and 
red end on the diagram. These colors are mixtures of red and blue, 
there does not exist single wavelength of monochromatic light to 
describe them. These areas are indicated on the maps as white color. 
This finally allows for the uncovering of color details, not visible 
directly on the microscopic images, which results in the colorimetric 
characterization and interpretation in a physical meaningful quan-
titative way the collected microscopic images of the samples. Later, 
also hyperspectral reflectance, where the reflectance R in measured 
for each x, y pixel position on the image, is colorimetrically recov-
ered from measured calibrated color values, see details later in the 
text. 

4. In the final step, the systematic uncertainties related to the per-
formed color calibration are propagated to the calculated colori-
metric quantities i.e. dominant wavelength and excitation purity. 
The uncertainty propagation is performed using Monte-Carlo 
method, see Fig. 2h. Three Gaussian distributions with sigma 
ΔR= 3.95, ΔG= 2.16 and ΔB= 3.71 (for red, green and blue channel 
respectively) and mean taken from uniform distribution (100,000 
points), for each Gaussian distribution 1000 points was generated. 
For each generated point in RGB space colorimetric calculations 
were performed, dominant wavelength and excitation purity were 
calculated. Next, for each generated mean RGB value represented as 
three dimensional Gaussian distribution in RGB space, relative 
dominant wavelength systematic uncertainty and relative excitation 
purity systematic uncertainty were calculated as a ratio of standard 
deviation to mean value of the resulted dominant wavelength and 
excitation purity distribution. The calculated systematic un-
certainties are presented as a function of dominant wavelength in 
Fig. 2i)-j). It is seen that relative systematic uncertainty of the 
dominant wavelength Fig. 2i) changes with dominant wavelength 
from ~0.3 % to ~3.5 % and relative systematic uncertainty of the 
excitation purity Fig. 2j) changes with dominant wavelength from 
~1 % to ~12 %. The mean relative systematic uncertainty of 0.59 % 
is obtained for dominant wavelength and 4.7 % for excitation purity. 
This shows that dominant wavelength and excitation purity values 
could be extracted by this approach in a reliable way, as indicated by 
the uncertainties. 

All the colorimetric calculations are performed using D65 illuminant 
and CIE 2 deg standard observer which mimics the illumination of the 
microscope (Gutiérrez, 2021). The colorimetric calculations are imple-
mented in python using freely available software libraries as a building 
blocks like Numpy (Walt et al., 2011) and Color Science (Mansencal 
et al., 2022) . All calculations were performed on the standard desktop 
PC running Linux Mint 20.3 operating system. The program uses as an 
input D65 calibrated RGB image (tiff, png, jpg) and outputs for the 
convenience report file in the PDF format with calculated maps and 
distributions. The maps are also saved as a tiff files for later processing e. 
g. in ImageJ/FIJI (Schindelin et al., 2012). The python jupyter note-
books, together with exemplary data, which perform colorimetric cal-
culations, Monte-Carlo uncertainties propagation and colorimetric 
recovery of hyperspectral reflectance are freely available from Zenodo 
(Benedykt R. Jany, 2023) (https://doi.org/10.5281/zenodo.7789585). 

3. Applications of C-Microscopy approach to different samples 

The approach of C-Microscopy was successfully applied to various 
types of samples with different colors like two metamorphic rocks green- 

pink unakite and blue-yellow lapis lazuli, which are mixtures of different 
minerals. The approach was also applied to the analysis of the surface of 
gold 99.999% pellet, which exhibits different types of surface features. 

3.1. Metamorphic rocks unakite and lapis lazuli 

The C-Microscopy approach was applied to two samples of meta-
morphic rocks unakite and lapis lazuli in the form of polished plates (see  
Fig. 3). Unakite is a metamorphic rock, a type of granite consisting 
mainly of three different minerals green epidote, pink orthoclase feld-
spar and white quartz (Franz and Liebscher, 2004). When polished it is 
used as a semiprecious stone. Lapis lazuli is also a metamorphic rock it 
consists mainly of the following minerals: blue lazurite, yellow pyrite 
and white calcite (Colomban, 2014). Lapis lazuli when polished is used 
in jewelry. After grinding lapis lazuli to a powder it is used as a natural 
pigment ultramarine. Ultramarine pigment during the Renaissance was 
the most expensive blue pigment used by the painters (Emerson, 2015). 
The macro scale view of the measured samples is presented in Sup-
porting Information in Fig. S7. Fig. 3a) shows optical microscopy image, 
color calibrated (D65 illuminant), of the Unakite surface. From the op-
tical microscopy image itself it is not so obvious where are the regions of 
the three different minerals and how they merge into another. After 
applying C-Microscopy approach to the calibrated image the maps of 
dominant wavelength Fig. 3b) and excitation purity Fig. 3c) together 
with their distributions Fig. 3d)-e) are derived. The dominant wave-
length clearly shows two regions: yellow green region related to the 
green epidote and orange-red region related to the ping orthoclase 
feldspar Fig. 3b). The white quartz is mixed into epidote and feldspar, 
changing its color purity, which is clearly visible on the excitation purity 
maps Fig. 3c) as the regions of low intensity. The dominant wavelength 
changes from around 560 nm to ~680 nm, indicating strong light ab-
sorption in other areas of visible spectrum. The mean dominant wave-
length (averaged over whole microscopic image) of the Unakite is 
586.6 nm and the mean excitation purity is 0.375, Fig. 2d)-e). The 
correlation between excitation purity and dominant wavelength is also 
calculated in the C-Microscopy approach, see Fig. S1 in the Supporting 
Information. From the correlation one can indicate the “purest dominant 
wavelength” (the dominant wavelength for the highest excitation pu-
rity) for the sample which is ~590 nm with an average excitation purity 
of ~0.4 (averaged over whole microscopic image). 

Another example shows optical microscopy image, color calibrated 
(D65 illuminant), of the Lapis Lazuli surface Fig. 3f). Applying C-Mi-
croscopy approach to the calibrated image the maps of dominant 
wavelength Fig. 3g) and excitation purity Fig. 3h) together with their 
distributions Fig. 3i)-j) are derived. The dominant wavelength clearly 
shows the pyrite region as a yellow wavelength and lazurite as blue 
region wavelength. In the blue lazurite region in the dominant wave-
length Fig. 3g) a structure is visible (light blue and dark blue regions) 
due to the appearance of white calcite. In the excitation purity map this 
is visible as a darker regions Fig. 3g). Combining information from 
dominant wavelength map and excitation purity map one can easily 
indicate regions of pure blue lazurite. The dominant wavelength here 
changes from ~380 nm to ~490 nm (excluding pyrite region), this in-
dicates strong light absorption in other areas of visible spectrum. The 
mean dominant wavelength (averaged over whole microscopic image) 
of the Lapis Lazuli is 448 nm and the mean excitation purity is 0.527, 
Fig. 3i)-j). The correlation between excitation purity and dominant 
wavelength, see Fig. S2 in the Supporting Information, shows the “purest 
dominant wavelength” (the dominant wavelength for the highest exci-
tation purity) for the sample at ~550 nm with an average excitation 
purity of ~0.55 (averaged over whole microscopic image). 

The measured by C-Microscopy at microscale color of Lapis Lazuli in 
CIE 1931 xy chromaticity coordinates (D65 illuminant) was compared 
with color of Mineral Lazurite Powder and artificial blue pigments 
(Ultramarine, Prussian Blue, Cobalt Blue), see Table S2 and details in 
Supporting Information. The color value of Lapis Lazuli, expressed as xy 
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chromaticity coordinates (D65 illuminant), is significantly different 
from color of artificial paint pigments. This allows for the differentiation 
between the natural Lapis Lazuli and artificial blue pigments, thus 
making it possible to use C-Microscopy approach in the field of heritage 
science. 

The samples of Unakite and Lapis Lazuli were colorimetrically 
characterized in a physical interpretable way at micrometer level. 

3.2. Surface of gold 99.999 % pellet 

The C-Microscopy approach was next applied to the surface of gold 
99.999 % pellet (Kurt J. Lesker Company), see Fig. 4. Gold is a noble 
metal widely used in different fields of science and technology 

(Blumenstein, 2011; Jany, 2017; Sierant, 2021) but also in everyday use 
as a jewelry (Brody, 2013). It is also exceptionally interesting to study 
gold optical properties since recent studies on gold surface show that 
light interaction with metal surface is much more complex than thought 
(Strait, 2019). The light causes to move the electrons in the gold in the 
same or in the opposite direction as the photons (Strait, 2019). There is a 
speculation that the light may interact not only with free electrons in the 
metal but also with the core electrons (Buchanan, 2019). Gold is also 
chemically inert, it does not change over time, so it is an ideal “gold 
standard” of the color. Fig. 4a) shows color calibrated (D65 illuminant) 
optical microscopy image of gold surface. The average color of gold was 
calculated in CIE 1931 xy chromaticity coordinates (D65 illuminant), 
see Table 1. The measured average color of gold agrees with a 

Fig. 3. Results of colorimetric microscopy (C-Microscopy) imaging of Unakite and Lapis Lazuli polished plates. Color calibrated (D65 illuminant) optical microscopy 
image of Unakite a) and Lapis Lazuli f). Dominant wavelength map of Unakite b) and Lapis Lazuli g). The regions of green epidote and pink orthoclase feldspar for the 
Unakite and the pyrite (yellow) inclusions for Lapis Lazuli are clearly visible. Excitation purity map of Unakite c) and Lapis Lazuli h). Local changes at micrometer 
level of dominant wavelength and excitation purity are clearly visible on the maps for both samples. Distributions of dominant wavelength and excitation purity for 
Unakite d), e) and Lapis Lazuli i), j). The Unakite dominant wavelength peaks at 583.6 nm while the Lapis Lazuli at 448 nm. The samples were colorimetrically 
characterized at micrometer level. 
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theoretical gold color value (McPeak et al., 2015; Manas, 2020) as well 
as the color value from measured gold reflectance (Bass, 1995) within 
the range of calculated uncertainties. This validates the correctness of 
the presented C-Microscopy approach. As one can see from the optical 
microscopy image Fig. 4a), the surface of gold is not homogeneous in 
color. It exhibits different types of grooves on the surface. To visualize 
better this effects the optical microscopy image is presented as 3D sur-
face plot, see Fig. 4b). The image luminance is interpreted as a height in 
the plot (Barthel, 2006; Surface-plot-3D). 

Looking into excitation purity and dominant wavelength C-Micro-
scopy maps Fig. c)-d) one can see that the area of the grooves exhibits 
dominant wavelength shifted towards the red and small excitation pu-
rity. The changes of excitation purity with the dominant wavelength are 
clearly visible on the correlation plot Fig. S3 in Supporting Information. 
The effect of the red shift in the grooves is not directly seen on the 
microscopic image itself. Recently, the effect of red shift of the color in 
the grooves on the surface of gold, caused by the multiple reflections, 
was attributed to solve the puzzle of gold color variation towards the red 
color (Manas, 2020). The grooves look like black on the images but 
actually they are deep dark orange/red. The observed gold color in-
homogeneity was attributed for a long time to variety of different factors 

like: ”sample effects” (Aspnes et al., 1980; Winsemius et al., 1975) and 
even “gold rust” (Corregidor et al., 2013; Gusmano et al., 2004), but 
finally explained by the “structural color” caused by the grooves (Manas, 
2020). Here, these “red grooves” are directly visible by the C-Micro-
scopy approach at microscale. From the histograms Fig. 4e)-f) one can 
see that the average dominant wavelength is 578.6 nm and the average 
excitation purity is 0.422. Additionally to the “red grooves” on the 
sample surface much smaller and brighter “red spots” are also visible. 
The line profile through the typical “red area” in dominant wavelength 
is presented in Fig. 4g), as indicated in Fig. 4a) by red line. It is seen that 
the dominant wavelength changes smoothly from low value to high (in 
the center) for the “red groove”, while for the “red spot” the changes are 
very rapid. Next, particle analysis (Schindelin et al., 2012) was per-
formed on the “red areas”, extracted by segmentation using thresholding 
dominant wavelength map above 583 nm. Fig. 4h)-i) shows color coded 
shape descriptor maps (derived using BioVoxxel Toolbox (Brocher, 
2022, 2023) for ImageJ/FIJI (Schindelin et al., 2012)) of feret diameter 
(in microns) and circularity (4 *π * Area/(perimeter*perimeter)) of the 
“red areas” respectively. It is seen that the shape (circularity) depends of 
the “red areas” size (feret diameter). This is clearly visible on the plot 
Fig. 4j), showing derived circularity as a function of feret diameter of the 

Fig. 4. Results of colorimetric microscopy (C-Microscopy) imaging of the surface of Gold 99.999% pellet. Color calibrated (D65 illuminant) optical microscopy image 
of Gold surface a). 3D surface plot image of Gold surface b). Different type of grooves are visible on the surface. Excitation purity and dominant wavelength maps c), 
d). Local changes of the color are visible on the surface. The area of the grooves exhibits dominant wavelength shifted to the red. This is effect is not directly visible on 
microscopic image itself. Excitation purity and dominant wavelength distributions e), f). Dominant wavelength line profile through the “red area” g), as indicated in 
a) by red line. Particle analysis resulted shape descriptors color coded maps of feret diameter h) and circularity i) (4 *π * Area/perimeter2) for the “red area”. Particles 
analysis resulted plot of circularity versus feret diameter for the “red area”. It is seen that the shape of the “red area” (circularity) depends on the size (feret diameter). 
The surface of the gold is colorimetrically characterized at micrometer level. 

Table 1  
Average color of Gold in CIE 1931 xy chromaticity coordinates (D65 illuminant). The measured color of the gold in this work (Au 99.999% Pellet) agrees with 
a theoretical gold color value as well as the color value form measured gold reflectance within the range of calculated uncertainties.  

Sample Description Average Gold Color 
CIE 1931 xy coordinates D65 illuminant 

This Work (Au 99.999 % Pellet) x: 0.392 ± 0.012 y: 0.400 ± 0.013 (95% CL) 
Theoretical value (McPeak et al., 2015; Manas, 2020) x: 0.38 y: 0.40 
From measured gold reflectance (Bass, 1995) x: 0.3895 y: 0.4062  
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“red areas”. As the size of the “red areas” increases the circularity de-
creases, the shape changes from round to non regular and more elon-
gated one. Additionally, two regions on the plot are clearly visible: (1) 
the region of “red grooves” with the mean feret diameter of 22.97 µm 
and mean circularity of 0.191 (non regular and more elongated struc-
tures); (2) the region of “red spots” with the mean feret diameter of 
3.23 µm and mean circularity of 0.700 (more round structures). 

To fully characterize the optical properties of the gold surface, the 
spectral reflectance (reflectance as a function of wavelength) was 
colorimetrically recovered for each point on the microscopic image, see  
Fig. 5a). This forms a hyperspectral reflectance data cube, where the 
reflectance R in measured for each x, y pixel position on the image, see 
Fig. 5d). For the reflectance recovery from measured color calibrated 
(D65 illuminant) image, method developed by Otsu et al. (2018). was 
used. The method uses data driven approach for the spectra recovery. 
Database of measured spectra is first separated into clusters for which a 
set of basis functions is precomputed by applying Principal Component 
Analysis (PCA). During the spectra reconstruction, the input color is first 
used to match to the precomputed cluster. This solves the metamerism 
problem, that different spectra can correspond to the same color (Otsu 
et al., 2018). The reflectance spectrum is reconstructed using the basis 

function set corresponding to the cluster. The reflectance spectrum is 
reconstructed in the range of 380–730 nm. The method outperforms 
other reconstruction methods (Smits, 1999; Meng et al., 2015) signifi-
cantly by giving the lowest spectra reconstruction error (Otsu et al., 
2018). The method is used here as implemented in Color Science library 
(Mansencal et al., 2022). It is worth to notice that since the colorimetric 
measurements are performed at micro meter scale, the effects of the 
surface roughness are visible as local changes. The amount of data and 
the data coverage (x,y chromaticity diagram coverage) used to derive 
the reconstruction is a limiting factor and main source of errors of the 
final reflectance reconstruction (Otsu et al., 2018). Fig. 5b) shows mean 
reflectance map resulted from colorimetric recovery. Regions of 
different reflectance ranging from 0.2 to 0.8 are visible on the surface. 
Fig. 5c) shows colorimetrically recovered mean gold reflectance as a 
function of the wavelength. The reflectance is a global average reflec-
tance over the reflectances over the whole image region. This is 
compared with a measured gold surface reflectance (Bass, 1995). The 
reflectances were normalized to maximum value of 1 for the compari-
son. It is seen that the colorimetrically recovered reflectance spectrum 
agrees very well with the measured gold surface reflectance. To quantify 
the agreement between the spectra, correlation coefficient was 

Fig. 5. Hyperspectral data recovery for the colorimetric microscopy (C-Microscopy) imaging of the surface of Gold 99.999% pellet at microscale. Color calibrated 
(D65 illuminant) optical microscopy image of Gold surface a). Colorimetrically recovered mean reflectance map b). Colorimetrically recovered normalized gold 
reflectance as a function of the wavelength together with measured gold reflectance spectra c). The reflectance is a global average reflectance over the whole image 
region. The colorimetrically recovered reflectance spectra agrees with the measured one, correlation coefficient r = 0.99182. Graphical representation of colori-
metrically recovered hyperspectra reflectance data d). Results of k-means clustering into eight clusters of reflectance hyperspectral data: cluster spectra e) and 
corresponding cluster labels in the form of the maps. Colors of the corresponding cluster reflectance in the CIE 1931 coordinates f). It is seen that different cluster 
regions in microscale exhibits different type of the reflectance spectra and in consequence color. The global gold reflectance spectra is the average of the local 
reflectances in the microregions. The local optical properties of the surface of gold were characterized at microscale. 
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calculated and is equal to r = 0.99182, this shows a very high similarity, 
which validates the reflectance recovery. This shows also the level of 
precision and correctness of colorimetric recovered reflectance. The 
visualization of the recovered hyperspectral reflectance is presented as a 
movie in Supporting Information. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.micron.2023.103557. 

To characterize the local changes of the reflectance spectra the 
hyperspectral reflectance data were clustered, grouped together into 
regions with similar properties by K-Means clustering using mini batch 
k-means method as implemented in Scikit-Learn (Pedregosa et al., 
2011). The optimal number of clusters (groups) is determined using 
elbow method from the plot of inertia versus number of clusters, see 
Fig. S4 in Supporting Information. In this case the data were clustered 
into eight clusters. The results are presented in Fig. 5e),g), which shows 
cluster labels and corresponding cluster spectra. The cluster labels 
Fig. 5g) show eight found regions on the gold surface exhibiting different 
local reflectance properties. It is seen that the regions correspond also to 
the different local surface morphologies i.e. grooves, hills etc., when 
compared with Fig. 4b). Detailed morphological analysis of cluster la-
bels by employing Minkowski Functionals analysis (Hilou et al., 2020; 
Armstrong et al., 2019) shows directly that different cluster exhibits 
different surface morphology, see Supporting Information Fig. S6. 
Different optical properties are directly linked with local morphology. 
The cluster spectra Fig. 5g) quantify the regions by showing mean 
reflectance spectra corresponding to each region. Looking closely into 
reflectances Fig. 5g) one can notice that they exhibit different depen-
dence on the wavelength, related to different optical absorption 
changes. The differences between the spectra are better seen in the first 
derivative of the reflectance, see Supporting Information Fig. S5. These 
differences in consequence are manifested as different color, see Fig. 5f). 
The Fig. 5f) shows colors of the corresponding cluster reflectance in the 
CIE 1931 coordinates. It is seen that the color of the clusters changes 
from yellow to light red. 

The studied gold surface was decomposed into microregions with 
different local optical properties by hyperspectral reflectance spectra 
clustering analysis. 

This shows that at the microlevel the ordinary gold surface is not 
homogeneous in terms of optical response due to the presence of 
different surface features i.e. grooves, hills etc. This gives the possibility 
of tuning optical properties of gold and other different metals by 
intensional surface micro modification. This kind of similar structural 
color effects have been observed for the copper surface after modifica-
tion by picosecond laser in terms of sequential color change (Peixun 
et al., 2013). The optical effects were only globally characterized by 
global reflectance at macro scale (Peixun et al., 2013). Here, the 
observed optical effects on gold surface are characterized at its origin at 
the micro level scale using C-Microscopy approach. This gives a full 
understanding and quantification of the local optical properties which 
here are the consequence of the particular surface features. 

The python jupyter notebook to colorimetrically recover hyper-
spectral reflectance data from color calibrated (D65 illuminant) image is 
freely available from Zenodo (Benedykt R. Jany, 2023) (https://doi. 
org/10.5281/zenodo.7789585). 

4. Conclusions 

The Colorimetric Microscopy (C-Microscopy) approach using digital 
optical microscopy and a free software was introduced. The approach 
uses color calibrated (D65 illuminant) image and colorimetric calcula-
tions to obtain physically meaningful quantities i.e. dominant wave-
length and excitation purity maps of the specimens at micro level scale. 
The systematic uncertainties related to color calibration procedure are 
propagated to measured quantities using Monte-Carlo calculations to 
gain full control of the systematic effects and to confirm the reliability of 
the obtain measurements. This resulted in the successful colorimetric 

characterization and interpretation in a physical meaningful quantita-
tive way the collected microscopic images of the studied samples i.e. two 
metamorphic rocks lapis lazuli and unikite and well as the surface of 
pure 99.999 % gold pellet. The areas of different minerals were clearly 
visible for the metaphoric rocks. In the case of gold surface the effect of 
the red shift in the surface grooves was identified, which was not directly 
seen on the raw microscopic image. Later, in the C-Microscopy 
approach, the hyperspectral reflectance data were colorimetrically 
recovered. This allowed for the gold surface decomposition into 
microregions with different local optical properties. It was found that at 
the microlevel the ordinary gold surface is not homogeneous in terms of 
the optical response due to the presence of different surface features. 
This gives the possibility of tuning optical properties of metals by 
intentional surface micro modification. The introduced C-Microscopy 
approach could be used to quantify the local optical properties changes 
of various materials at microscale in an accessible way in contrast to the 
not so common microscope spectrophotometers or specialized micro- 
reflectance setups. The approach gives also the possibility to incorpo-
rate and to use the colorimetric information for the broad range of 
microscopic measurements. It is also worth to notice that the presented 
approach is not limited to microscopic images only, it could be used to 
analyze any type of color calibrated image. The presented Colorimetric 
Microscopy (C-Microscopy) approach is freely available as a set of py-
thon jupyter notebooks. 
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