6 research outputs found

    A novel DHT Routing Protocol for MANETs

    Get PDF
    The central challenge in Mobile Ad hoc Networks (MANETs) is to provide a stable routing strategy without depending on any central administration. This work presents and examines the working of Radio Ring Routing Protocol (RRRP), a DHT based routing protocol for MANETs inspired from structured overlays in the internet. This design joins effort in answering the fundamental question of efficiency of a DHT substrate compared to conventional routing in ad hoc networks

    Designs and Analyses in Structured Peer-To-Peer Systems

    Get PDF
    Peer-to-Peer (P2P) computing is a recent hot topic in the areas of networking and distributed systems. Work on P2P computing was triggered by a number of ad-hoc systems that made the concept popular. Later, academic research efforts started to investigate P2P computing issues based on scientific principles. Some of that research produced a number of structured P2P systems that were collectively referred to by the term "Distributed Hash Tables" (DHTs). However, the research occurred in a diversified way leading to the appearance of similar concepts yet lacking a common perspective and not heavily analyzed. In this thesis we present a number of papers representing our research results in the area of structured P2P systems grouped as two sets labeled respectively "Designs" and "Analyses". The contribution of the first set of papers is as follows. First, we present the princi- ple of distributed k-ary search and argue that it serves as a framework for most of the recent P2P systems known as DHTs. That is, given this framework, understanding existing DHT systems is done simply by seeing how they are instances of that frame- work. We argue that by perceiving systems as instances of that framework, one can optimize some of them. We illustrate that by applying the framework to the Chord system, one of the most established DHT systems. Second, we show how the frame- work helps in the design of P2P algorithms by two examples: (a) The DKS(n; k; f) system which is a system designed from the beginning on the principles of distributed k-ary search. (b) Two broadcast algorithms that take advantage of the distributed k-ary search tree. The contribution of the second set of papers is as follows. We account for two approaches that we used to evaluate the performance of a particular class of DHTs, namely the one adopting periodic stabilization for topology maintenance. The first approach was of an intrinsic empirical nature. In this approach, we tried to perceive a DHT as a physical system and account for its properties in a size-independent manner. The second approach was of a more analytical nature. In this approach, we applied the technique of Master Equations, which is a widely used technique in the analysis of natural systems. The application of the technique lead to a highly accurate description of the behavior of structured overlays. Additionally, the thesis contains a primer on structured P2P systems that tries to capture the main ideas prevailing in the field

    Novel Analytical Modelling-based Simulation of Worm Propagation in Unstructured Peer-to-Peer Networks

    No full text
    Millions of users world-wide are sharing content using Peer-to-Peer (P2P) networks, such as Skype and Bit Torrent. While such new innovations undoubtedly bring benefits, there are nevertheless some associated threats. One of the main hazards is that P2P worms can penetrate the network, even from a single node and then spread rapidly. Understanding the propagation process of such worms has always been a challenge for researchers. Different techniques, such as simulations and analytical models, have been adopted in the literature. While simulations provide results for specific input parameter values, analytical models are rather more general and potentially cover the whole spectrum of given parameter values. Many attempts have been made to model the worm propagation process in P2P networks. However, the reported analytical models to-date have failed to cover the whole spectrum of all relevant parameters and have therefore resulted in high false-positives. This consequently affects the immunization and mitigation strategies that are adopted to cope with an outbreak of worms. The first key contribution of this thesis is the development of a susceptible, exposed, infectious, and Recovered (SEIR) analytical model for the worm propagation process in a P2P network, taking into account different factors such as the configuration diversity of nodes, user behaviour and the infection time-lag. These factors have not been considered in an integrated form previously and have been either ignored or partially addressed in state-of-the-art analytical models. Our proposed SEIR analytical model holistically integrates, for the first time, these key factors in order to capture a more realistic representation of the whole worm propagation process. The second key contribution is the extension of the proposed SEIR model to the mobile M-SEIR model by investigating and incorporating the role of node mobility, the size of the worm and the bandwidth of wireless links in the worm propagation process in mobile P2P networks. The model was designed to be flexible and applicable to both wired and wireless nodes. The third contribution is the exploitation of a promising modelling paradigm, Agent-based Modelling (ABM), in the P2P worm modelling context. Specifically, to exploit the synergies between ABM and P2P, an integrated ABM-Based worm propagation model has been built and trialled in this research for the first time. The introduced model combines the implementation of common, complex P2P protocols, such as Gnutella and GIA, along with the aforementioned analytical models. Moreover, a comparative evaluation between ABM and conventional modelling tools has been carried out, to demonstrate the key benefits of ease of real-time analysis and visualisation. As a fourth contribution, the research was further extended by utilizing the proposed SEIR model to examine and evaluate a real-world data set on one of the most recent worms, namely, the Conficker worm. Verification of the model was achieved using ABM and conventional tools and by then comparing the results on the same data set with those derived from developed benchmark models. Finally, the research concludes that the worm propagation process is to a great extent affected by different factors such as configuration diversity, user-behaviour, the infection time lag and the mobility of nodes. It was found that the infection propagation values derived from state-of-the-art mathematical models are hypothetical and do not actually reflect real-world values. In summary, our comparative research study has shown that infection propagation can be reduced due to the natural immunity against worms that can be provided by a holistic exploitation of the range of factors proposed in this work

    Semantic search and composition in unstructured peer-to-peer networks

    Get PDF
    This dissertation focuses on several research questions in the area of semantic search and composition in unstructured peer-to-peer (P2P) networks. Going beyond the state of the art, the proposed semantic-based search strategy S2P2P offers a novel path-suggestion based query routing mechanism, providing a reasonable tradeoff between search performance and network traffic overhead. In addition, the first semantic-based data replication scheme DSDR is proposed. It enables peers to use semantic information to select replica numbers and target peers to address predicted future demands. With DSDR, k-random search can achieve better precision and recall than it can with a near-optimal non-semantic replication strategy. Further, this thesis introduces a functional automatic semantic service composition method, SPSC. Distinctively, it enables peers to jointly compose complex workflows with high cumulative recall but low network traffic overhead, using heuristic-based bidirectional haining and service memorization mechanisms. Its query branching method helps to handle dead-ends in a pruned search space. SPSC is proved to be sound and a lower bound of is completeness is given. Finally, this thesis presents iRep3D for semantic-index based 3D scene selection in P2P search. Its efficient retrieval scales to answer hybrid queries involving conceptual, functional and geometric aspects. iRep3D outperforms previous representative efforts in terms of search precision and efficiency.Diese Dissertation bearbeitet Forschungsfragen zur semantischen Suche und Komposition in unstrukturierten Peer-to-Peer Netzen(P2P). Die semantische Suchstrategie S2P2P verwendet eine neuartige Methode zur Anfrageweiterleitung basierend auf Pfadvorschlägen, welche den Stand der Wissenschaft übertrifft. Sie bietet angemessene Balance zwischen Suchleistung und Kommunikationsbelastung im Netzwerk. Außerdem wird das erste semantische System zur Datenreplikation genannt DSDR vorgestellt, welche semantische Informationen berücksichtigt vorhergesagten zukünftigen Bedarf optimal im P2P zu decken. Hierdurch erzielt k-random-Suche bessere Präzision und Ausbeute als mit nahezu optimaler nicht-semantischer Replikation. SPSC, ein automatisches Verfahren zur funktional korrekten Komposition semantischer Dienste, ermöglicht es Peers, gemeinsam komplexe Ablaufpläne zu komponieren. Mechanismen zur heuristischen bidirektionalen Verkettung und Rückstellung von Diensten ermöglichen hohe Ausbeute bei geringer Belastung des Netzes. Eine Methode zur Anfrageverzweigung vermeidet das Feststecken in Sackgassen im beschnittenen Suchraum. Beweise zur Korrektheit und unteren Schranke der Vollständigkeit von SPSC sind gegeben. iRep3D ist ein neuer semantischer Selektionsmechanismus für 3D-Modelle in P2P. iRep3D beantwortet effizient hybride Anfragen unter Berücksichtigung konzeptioneller, funktionaler und geometrischer Aspekte. Der Ansatz übertrifft vorherige Arbeiten bezüglich Präzision und Effizienz

    Semantic search and composition in unstructured peer-to-peer networks

    Get PDF
    This dissertation focuses on several research questions in the area of semantic search and composition in unstructured peer-to-peer (P2P) networks. Going beyond the state of the art, the proposed semantic-based search strategy S2P2P offers a novel path-suggestion based query routing mechanism, providing a reasonable tradeoff between search performance and network traffic overhead. In addition, the first semantic-based data replication scheme DSDR is proposed. It enables peers to use semantic information to select replica numbers and target peers to address predicted future demands. With DSDR, k-random search can achieve better precision and recall than it can with a near-optimal non-semantic replication strategy. Further, this thesis introduces a functional automatic semantic service composition method, SPSC. Distinctively, it enables peers to jointly compose complex workflows with high cumulative recall but low network traffic overhead, using heuristic-based bidirectional haining and service memorization mechanisms. Its query branching method helps to handle dead-ends in a pruned search space. SPSC is proved to be sound and a lower bound of is completeness is given. Finally, this thesis presents iRep3D for semantic-index based 3D scene selection in P2P search. Its efficient retrieval scales to answer hybrid queries involving conceptual, functional and geometric aspects. iRep3D outperforms previous representative efforts in terms of search precision and efficiency.Diese Dissertation bearbeitet Forschungsfragen zur semantischen Suche und Komposition in unstrukturierten Peer-to-Peer Netzen(P2P). Die semantische Suchstrategie S2P2P verwendet eine neuartige Methode zur Anfrageweiterleitung basierend auf Pfadvorschlägen, welche den Stand der Wissenschaft übertrifft. Sie bietet angemessene Balance zwischen Suchleistung und Kommunikationsbelastung im Netzwerk. Außerdem wird das erste semantische System zur Datenreplikation genannt DSDR vorgestellt, welche semantische Informationen berücksichtigt vorhergesagten zukünftigen Bedarf optimal im P2P zu decken. Hierdurch erzielt k-random-Suche bessere Präzision und Ausbeute als mit nahezu optimaler nicht-semantischer Replikation. SPSC, ein automatisches Verfahren zur funktional korrekten Komposition semantischer Dienste, ermöglicht es Peers, gemeinsam komplexe Ablaufpläne zu komponieren. Mechanismen zur heuristischen bidirektionalen Verkettung und Rückstellung von Diensten ermöglichen hohe Ausbeute bei geringer Belastung des Netzes. Eine Methode zur Anfrageverzweigung vermeidet das Feststecken in Sackgassen im beschnittenen Suchraum. Beweise zur Korrektheit und unteren Schranke der Vollständigkeit von SPSC sind gegeben. iRep3D ist ein neuer semantischer Selektionsmechanismus für 3D-Modelle in P2P. iRep3D beantwortet effizient hybride Anfragen unter Berücksichtigung konzeptioneller, funktionaler und geometrischer Aspekte. Der Ansatz übertrifft vorherige Arbeiten bezüglich Präzision und Effizienz
    corecore