20,338 research outputs found

    Deliverable DJRA1.3: Tool prototype for creating and stitching multiple network resources for virtual infrastructures

    Get PDF
    This document describes the prototype FEDERICA Slice Tool developed for the virtualization of network elements in FEDERICA and for creating and stitching network resources over this virtual infrastructure. An SNMP-based resource discovery prototype is also introduced as a new functionality to be integrated in the tool.The deliverable also presents aviability study for the use of traffic prioritization in the FEDERICA infrastructure and some network performance measurements on a real slice within FEDERICA.This document reports the final results of JRA1.2 Activity in the development of a tool prototype for creating sets ofvirtual resourcesinFEDERICA.The prototype goal is to simplify and automate part of the work for NOC.The tool may also serve,with different privileges, a FEDERICA user to operate on his/her slice. The tool described here was designed with the objective of providing an interactive application with a graphical interface to operate on resources for the NOC and the end users (researchers). The tool simplify the creation and configuration of resources in a slice and it is a mandatory step to ensure scalability of the NOC effort. It offers an interactive Graphical User Interface that translates the users’ actions to commands in the substrate (networknodesandV-nodes)andslice elements(VirtualMachines).User accounts may be created for the NOC and for researchers, each with specific privileges to enable different sets of capabilities. The NOC account has full access to all the resources in the substrate, while each user’account has full access only to the virtual resources in his/her slice. The tool has been developed using the Java programming language as Open Source code and relies on the open source Globus® Toolkit. Testing has been performed in a laboratory environment and on some FEDERICA substrate equipment (1switch, 2VMwareServers) in their standard configuration. For testing the router, web services and GUI an additional computer was used, using a public IP address.Postprint (published version

    Low Cost Quality of Service Multicast Routing in High Speed Networks

    Get PDF
    Many of the services envisaged for high speed networks, such as B-ISDN/ATM, will support real-time applications with large numbers of users. Examples of these types of application range from those used by closed groups, such as private video meetings or conferences, where all participants must be known to the sender, to applications used by open groups, such as video lectures, where partcipants need not be known by the sender. These types of application will require high volumes of network resources in addition to the real-time delay constraints on data delivery. For these reasons, several multicast routing heuristics have been proposed to support both interactive and distribution multimedia services, in high speed networks. The objective of such heuristics is to minimise the multicast tree cost while maintaining a real-time bound on delay. Previous evaluation work has compared the relative average performance of some of these heuristics and concludes that they are generally efficient, although some perform better for small multicast groups and others perform better for larger groups. Firstly, we present a detailed analysis and evaluation of some of these heuristics which illustrates that in some situations their average performance is reversed; a heuristic that in general produces efficient solutions for small multicasts may sometimes produce a more efficient solution for a particular large multicast, in a specific network. Also, in a limited number of cases using Dijkstra's algorithm produces the best result. We conclude that the efficiency of a heuristic solution depends on the topology of both the network and the multicast, and that it is difficult to predict. Because of this unpredictability we propose the integration of two heuristics with Dijkstra's shortest path tree algorithm to produce a hybrid that consistently generates efficient multicast solutions for all possible multicast groups in any network. These heuristics are based on Dijkstra's algorithm which maintains acceptable time complexity for the hybrid, and they rarely produce inefficient solutions for the same network/multicast. The resulting performance attained is generally good and in the rare worst cases is that of the shortest path tree. The performance of our hybrid is supported by our evaluation results. Secondly, we examine the stability of multicast trees where multicast group membership is dynamic. We conclude that, in general, the more efficient the solution of a heuristic is, the less stable the multicast tree will be as multicast group membership changes. For this reason, while the hybrid solution we propose might be suitable for use with closed user group multicasts, which are likely to be stable, we need a different approach for open user group multicasting, where group membership may be highly volatile. We propose an extension to an existing heuristic that ensures multicast tree stability where multicast group membership is dynamic. Although this extension decreases the efficiency of the heuristics solutions, its performance is significantly better than that of the worst case, a shortest path tree. Finally, we consider how we might apply the hybrid and the extended heuristic in current and future multicast routing protocols for the Internet and for ATM Networks.

    IP and ATM - a position paper

    Get PDF
    This paper gives a technical overview of different networking technologies, such as the Internet, ATM. It describes different approaches of how to run IP on top of an ATM network, and assesses their potential to be used as an integrated services network

    IP and ATM - current evolution for integrated services

    Get PDF
    Current and future applications make use of different technologies as voice, data, and video. Consequently network technologies need to support them. For many years, the ATM based Broadband-ISDN has generally been regarded as the ultimate networking technology, which can integrate voice, data, and video services. With the recent tremendous growth of the Internet and the reluctant deployment of public ATM networks, the future development of ATM seems to be less clear than it used to be. In the past IP provided (and was though to provide) only best effort services, thus, despite its world wide diffution, was not considered as a network solution for multimedia application. Currently many of the IETF working groups work on areas related to integrated services, and IP is also proposing itself as networking technology for supporting voice, data, and video services. This paper give a technical overview on the competing integrated services network solutions, such as IP, ATM and the different available and emerging technologies on how to run IP over ATM, and tries to identify their potential and shortcomings

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Deliverable DJRA1.2. Solutions and protocols proposal for the network control, management and monitoring in a virtualized network context

    Get PDF
    This deliverable presents several research proposals for the FEDERICA network, in different subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each topic one or more possible solutions are elaborated, explaining the background, functioning and the implications of the proposed solutions.This deliverable goes further on the research aspects within FEDERICA. First of all the architecture of the control plane for the FEDERICA infrastructure will be defined. Several possibilities could be implemented, using the basic FEDERICA infrastructure as a starting point. The focus on this document is the intra-domain aspects of the control plane and their properties. Also some inter-domain aspects are addressed. The main objective of this deliverable is to lay great stress on creating and implementing the prototype/tool for the FEDERICA slice-oriented control system using the appropriate framework. This deliverable goes deeply into the definition of the containers between entities and their syntax, preparing this tool for the future implementation of any kind of algorithm related to the control plane, for both to apply UPB policies or to configure it by hand. We opt for an open solution despite the real time limitations that we could have (for instance, opening web services connexions or applying fast recovering mechanisms). The application being developed is the central element in the control plane, and additional features must be added to this application. This control plane, from the functionality point of view, is composed by several procedures that provide a reliable application and that include some mechanisms or algorithms to be able to discover and assign resources to the user. To achieve this, several topics must be researched in order to propose new protocols for the virtual infrastructure. The topics and necessary features covered in this document include resource discovery, resource allocation, signalling, routing, isolation and monitoring. All these topics must be researched in order to find a good solution for the FEDERICA network. Some of these algorithms have started to be analyzed and will be expanded in the next deliverable. Current standardization and existing solutions have been investigated in order to find a good solution for FEDERICA. Resource discovery is an important issue within the FEDERICA network, as manual resource discovery is no option, due to scalability requirement. Furthermore, no standardization exists, so knowledge must be obtained from related work. Ideally, the proposed solutions for these topics should not only be adequate specifically for this infrastructure, but could also be applied to other virtualized networks.Postprint (published version

    OSHI - Open Source Hybrid IP/SDN networking (and its emulation on Mininet and on distributed SDN testbeds)

    Full text link
    The introduction of SDN in IP backbones requires the coexistence of regular IP forwarding and SDN based forwarding. The former is typically applied to best effort Internet traffic, the latter can be used for different types of advanced services (VPNs, Virtual Leased Lines, Traffic Engineering...). In this paper we first introduce the architecture and the services of an "hybrid" IP/SDN networking scenario. Then we describe the design and implementation of an Open Source Hybrid IP/SDN (OSHI) node. It combines Quagga for OSPF routing and Open vSwitch for OpenFlow based switching on Linux. The availability of tools for experimental validation and performance evaluation of SDN solutions is fundamental for the evolution of SDN. We provide a set of open source tools that allow to facilitate the design of hybrid IP/SDN experimental networks, their deployment on Mininet or on distributed SDN research testbeds and their test. Finally, using the provided tools, we evaluate key performance aspects of the proposed solutions. The OSHI development and test environment is available in a VirtualBox VM image that can be downloaded.Comment: Final version (Last updated August, 2014

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    ISDN3: The next generation networks

    Get PDF
    Two generations of Integrated Services Digital Network (ISDN), namely ISDN1 and ISDN2, have been developed in the last century. In our view, the convergence of ATM, Internet and active networks will form the basis for the next generation networks called ISDN3. In this paper, we first review ISDN1 and ISDN2 as well as the Internet and active networks. We then discuss some fundamental questions related to the design of ISDN3. Finally, we compare ISDN3 with ISDN1 and ISDN2, and outline what ISDN3 might look like.published_or_final_versio
    corecore