358 research outputs found

    Throughput and Yield Improvement for a Continuous Discrete-Product Manufacturing System

    Get PDF
    A seam-welded steel pipe manufacturing process has mainly four distinct major design and/or operational problems dealing with buffer inventory, cutting tools, pipe sizing and inspection-rework facility. The general objective of this research is to optimally solve these four important problems to improve the throughput and yield of the system at a minimum cost. The first problem of this research finds the optimal buffer capacity of steel strip coils to minimize the maintenance and downtime related costs. The total cost function for this coil feeding system is formulated as a constrained non-linear programming (NLP) problem which is solved with a search algorithm. The second problem aims at finding the optimal tool magazine reload timing, magazine size and the order quantity for the cutting tools. This tool magazine system is formulated as a mixed-integer NLP problem which is solved for minimizing the total cost. The third problem deals with different type of manufacturing defects. The profit function of this problem forms a binary integer NLP problem which involves multiple integrals with several exponential and discrete functions. An exhaustive search method is employed to find the optimum strategy for dealing with the defects and pipe sizing. The fourth problem pertains to the number of servers and floor space allocations for the off-line inspection-rework facility. The total cost function forms an integer NLP structure, which is minimized with a customized search algorithm. In order to judge the impact of the above-mentioned problems, an overall equipment effectiveness (OEE) measure, coined as monetary loss based regression (MLBR) method, is also developed as the fifth problem to assess the performance of the entire manufacturing system. Finally, a numerical simulation of the entire process is conducted to illustrate the applications of the optimum parameters setting and to evaluate the overall effectiveness of the simulated system. The successful improvement of the simulated system supports this research to be implemented in a real manufacturing setup. Different pathways shown here for improving the throughput and yield of industrial systems reflect not only to the improvement of methodologies and techniques but also to the advancement of new technology and national economy

    Study on Ground Engineering and Management of Carbonate Oil Field A under Rolling Development Mode

    Get PDF
    Carbonate rock has the characteristics of complicated accumulation rules, large-scale development, high yield but unstable production. Therefore, the management and control of surface engineering projects of carbonate rock oil and gas reservoirs faces huge difficulties and challenges. The construction of surface engineering should conform to the principle of integrated underground and ground construction and adapt to the oilfield development model. This paper takes the newly added area A of the carbonated oil field as an example to study the ground engineering under the rolling development mode and aims to provide the constructive ideas for the surface engineering under rolling development mode. The overall regional process design adheres to the design concept of "environmental protection, efficiency, and innovation", strictly follows the design specifications, and combines reservoir engineering and oil production engineering programs, oil and gas physical properties and chemical composition, product programs, ground natural conditions, etc. According to the technical and economic analysis and comparison of area A, this paper has worked out a suitable surface engineering construction, pipeline network layout and oil and gas gathering and transportation plan for area A. Some auxiliary management recommendations are also proposed in this paper, like sand prevention management and HSE management for carbonate reservoirs

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Development of a control strategy to compensate transient behaviour due to atmospheric disturbances in solar thermal energy generation systems using short-time prediction data

    Get PDF
    La energía solar térmica concentrada (CSP) es una forma prometedora de energía renovable que puede aprovechar la energía del sol y ayudar a sustituir el uso de combustibles fósiles para la generación de electricidad. Sin embargo, enfrenta retos para aumentar su despliegue a nivel mundial. Las torres solares, un tipo de tecnología CSP, se componen principalmente de un campo solar y una torre en la que un receptor funciona como intercambiador de calor para alimentar un bloque de potencia. El campo solar está formado por miles de heliostatos, que son espejos capaces de seguir el sol y proyectar la luz solar concentrada sobre el receptor. Las torres solares con almacenamiento térmico funcionan continuamente, pero están sujetas a perturbaciones causadas por la interacción de la luz solar con la atmósfera. Este comportamiento puede afectar la integridad del receptor. Para determinar la posición de cada helióstato se utilizan complejos métodos de optimización. Sin embargo, estos métodos están sujetos a incertidumbre en los parámetros y no pueden compensar perturbaciones en tiempo real, como las nubes, debido a su costo computacional. Esta tesis aborda esta cuestión como un problema de control, reduciendo el número de variables. En lugar de encontrar el ángulo de elevación y azimutal para miles de helióstatos, se utilizan dos variables dentro de grupos de helióstatos. A continuación, se implementa una estrategia de control por retroalimentación, aprovechando esta reducción dimensional. Además, la metodología desarrollada en esta tesis utiliza información de un sistema de predicción de radiación solar a corto plazo de última generación, dentro de una novedosa estrategia de control adaptativo para el campo solar.DoctoradoDoctor en Ingeniería Mecánic

    Technology 2002: The Third National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2002 Conference and Exposition, December 1-3, 1992, Baltimore, MD. Volume 2 features 60 papers presented during 30 concurrent sessions

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    Feature Papers in Eng

    Get PDF
    This Special Issue is a collection of high-quality reviews and original papers from editorial board members, guest editors, and leading researchers discussing new knowledge or new cutting-edge developments in the field of engineering

    Estimation of Thermal and Hydraulic Characteristics of Compact Brazed Plate Heat Exchangers

    Get PDF
    This thesis work presents various performance estimation methods of compact brazed plate heat exchangers (BPHE) operating in single phase, condenser, evaporator, cascaded and transcritical applications. Such methods play a vital role in development of heat exchanger selection software and during geometry parameter estimation in the new product development process. The suitability of employing commercial computational fluid dynamics (CFD) codes for estimating single phase thermal and hydraulic performance is investigated. Parametric studies are conducted on geometries of single phase fluid sections to isolate and quantify the influence of individual geometric parameters. The influence of mesh characteristics, choice of boundary conditions and turbulent flow modeling on the accuracy of the thermal and hydraulic predictions is presented. Benefits of simulation of fluid flow in entire channels and characteristics of channel flow for different geometric patterns are also presented. A computationally light, general, robust and continuous rating calculation method is developed for implementation in BPHE selection software. The pressure-enthalpy based method provides a generic rating core for various types of applications and provides extensive post processing information of the heat transfer process. General single phase thermal and hydraulic empirical correlations are developed as functions of plate geometric parameters. For facilitating better integration of the developed calculation method with other refrigeration system simulation software, first or higher order continuity is maintained in the sub-routines used for calculating local heat transfer coefficients and refrigerant properties. A new finite grid interpolation method is developed for fast and accurate retrieval of refrigerant properties. The developed method is currently implemented in SSPG7 (BPHE selection software of SWEP International AB) for supporting transcritical CO2 calculations and cascaded heat exchanger calculations. Additionally, the methods developed for single phase and two phase test data evaluation based on meta-heuristic optimization routines is also presented. The application and results of using the developed rating models for various types of calculations is summarized. Other topics such as influence of variable fluid properties on BPHE rating calculations, influence of multi-pass flow arrangement on lumped BPHE rating calculations are briefly presented
    corecore