35 research outputs found

    The effect of network’s size on the performance of the gGateway discovery and selection scheme for MANEMO

    Get PDF
    Abstract In the era of Internet technology, new applications are developed everyday requiring continuous and seamless connections. This urges for access availability solutions to the new scenarios. One of the critical architecture is the Mobile Ad-Hoc Network Mobility (MANEMO). However, the integration of Ad-hoc and NEMO technologies came out with many complications like redundant tunnels and the existence of multiple Exit Routers. This paper presents a scheme to discover and select the optimum gateway to improve the robustness and the performance of the network irrespective of the used routing protocol. The MANEMO Gateway discovery and selection scheme (MGDSS) extends the Tree Discovery Protocol and the Neighborhood Discovery protocol used by NEMO and Ad-Hoc to carry the necessary gateway selection parameters. To compare the effect of network’s size on the performance of the proposed scheme, the standard NEMO BSP and the Multi-homed MANEMO (M-MANEMO) approaches OPNET Modeler 14.5 was used. The results show that the average data packets dropped, the end-to-end delay and the throughput of the proposed MGDSS outperform those for the standard M-MANEMO and standard NEMO BSP. Keywords: Gateway Selection, Mobile Ad Hoc NEMO, MANEMO, Network Mobility, MANET ,

    The Effect of Network’s Size on the Performance of the Gateway Discovery and Selection Scheme for MANEMO

    Get PDF
    In the era of Internet technology, new applications are developed everyday requiring continuous and seamless connections. This urges for access availability solutions to the new scenarios. One of the critical architecture is the Mobile Ad-Hoc Network Mobility (MANEMO). However, the integration of Ad-hoc and NEMO technologies came out with many complications like redundant tunnels and the existence of multiple Exit Routers. This paper presents a scheme to discover and select the optimum gateway to improve the robustness and the performance of the network irrespective of the used routing protocol.  The MANEMO Gateway discovery and selection scheme (MGDSS) extends the Tree Discovery Protocol and the Neighborhood Discovery protocol used by NEMO and Ad-Hoc to carry the necessary gateway selection parameters. To compare the effect of network’s size on the performance of the proposed scheme, the standard NEMO BSP and the Multi-homed MANEMO (M-MANEMO) approaches OPNET Modeler 14.5 was used. The results show that the average data packets dropped, the end-to-end delay and the throughput of the proposed MGDSS outperform those for the standard M-MANEMO and standard NEMO BSP

    MANET Network Management and Performance Monitoring for NHDP and OLSRv2

    Get PDF
    Mobile Ad Hoc NETworks (MANETs) are generally thought of as infrastructureless and largely ``un-managed'' network deployments, capable of accommodating highly dynamic network topologies. Yet, while the network infrastructure may be ``un-managed'', monitoring the network performance and setting configuration parameters once deployed, remains important in order to ensure proper ``tuning'' and maintenance of a MANET. This memorandum describes a management framework for the MANET routing protocol OLSRv2, and its constituent protocol NHDP. It does so by presenting considerations for ``what to monitor and manage'' in an OLSRv2 network, and how. The approach developed is based on the Simple Network Management Protocol (SNMP), and thus this paper details the various Management Information Bases (MIBs) for router status monitoring and control -- as well as a novel approach to history-based performance monitoring. While SNMP may not be optimally designed for MANETs, it is chosen due to it being the predominant protocol for IP network management -- and thus, efforts are made in this paper to ``adapt'' the management tools within the SNMP framework for reasonable behavior also in a MANET environment

    Geo-location oriented routing protocol for smart dynamic mesh network

    Full text link
    © 2016 IEEE. Wireless Mesh Network is an emerging technology with great potential to become a Self-Sustained Network. Unlike the traditional networks that dominate the current communication system and rely on a large and expensive setup of wired/wireless access points to provide connection between users, the Wireless Mesh Network is formed by the user devices (referred as Nodes) which connect to each other to form a network. However, due to the use of legacy/traditional network models for mesh networks, there exist various limitations towards its implementation. This paper presents a new approach towards the Wireless Mesh Network, incorporating a new routing scheme based on the Geo-Location of the devices. It puts forward the structure, working principle and its performance during the first implementation

    Towards a network management solution for vehicular delay-tolerant networks

    Get PDF
    Vehicular networks appeared as a new communication solution where vehicles act as a communication infrastructure, providing data communications through vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications. Vehicular Delay-Tolerant Networks (VDTNs) are a new disruptive network architecture assuming delay tolerant networking paradigm where there are no end-to-end connectivity. In this case the incial node transmits the data to a closed node, the data will be carried by vehicles, hop to hop until the destination. This dissertation focuses on a proposal of a network management solution, based standard protocol Simple Network Management Protocol (SNMP) to VDTN networks. The developed solution allows control a VDTN netowork through a Network Management System (NMS) with the objective to detect and, if it’s possible, anticipate, possible errors on network. The research methodology used was the prototyping. So, it was built a network management module to the laboratorial prototype, called VDTN@Lab. The system built include a MIB (Management Information Base) placed in all vehicular network nodes. The solution was built, demonstrated, validated and evaluated their performance, being ready for use.As redes veiculares foram desenhadas para permitir que os veículos possam transportar dados criando assim um novo tipo de redes, caracterizando-se por dois tipos de comunicação: comunicações veículo-para-veículo (V2V) ou comunicações veículo-parainfra-estrutura (V2I). Redes veiculares intermitentes (do Inglês Vehicular Delay-Tolerant Networks - VDTNs) surgiram como uma nova arquitectura de rede de dados onde os veículos são utilizados como infra-estruturas de comunicação. As VDTNs caracterizam-se por serem redes veiculares baseadas no paradigma de comunicações intermitentes. Nas redes VDTN não existe uma ligação permanente extremo a extremo entre o emissor e o receptor. Neste caso, o nó inicial transmite os dados para um nó que esteja junto dele e assim sucessivamente, os dados vão sendo transportados pelos veículos, salto a salto até ao destinatário final. Esta dissertação centra-se na proposta de uma solução de gestão de rede, baseada no protocolo estandardizado Simple Network Management Protocol (SNMP) para redes VDTN. A solução construída permite controlar uma rede VDTN através de um sistema de gestão de rede (do Inglês Network Management System - NMS) com o objectivo de detectar e, se possível antecipar, possíveis erros na rede. A metodologia de investigação utilizada foi a prototipagem. Assim, foi construído um módulo de gestão de redes para o protótipo laboratorial, chamado VDTN@Lab. O sistema construído inclui uma MIB (Management Information Base) que é colocada em todos os nós de uma rede veicular, tanto fixos como móveis. A solução foi construída, demonstrada, validade e avaliado o seu desempenho, estando assim pronta para ser utilizada

    Local Pruning for Information Dissemination in Dynamic Networks for Solving the Idempotent Semiring Algebraic Path Problem

    Get PDF
    We present a method, inspired from routing in dynamic data networks, to solve the Semiring Algebraic Path Problem (SAPP) for dynamic graphs. The method can be used in dynamic networks such as Mobile Ad Hoc Networks, where the network link states are highly dynamic. The algorithm makes use of broadcasting as primary mechanism to recompute the SAPP solution. The solution suffers from broadcast storm problems, and we propose a selective broadcasting mechanism that reduces the broadcast storm. We call this method local pruning and prove its correctness

    Cross-Layer Service Discovery Mechanism for OLSRv2 Mobile Ad Hoc Networks

    Get PDF
    Service discovery plays an important role in mobile ad hoc networks (MANETs). The lack of central infrastructure, limited resources and high mobility make service discovery a challenging issue for this kind of network. This article proposes a new service discovery mechanism for discovering and advertising services integrated into the Optimized Link State Routing Protocol Version 2 (OLSRv2). In previous studies, we demonstrated the validity of a similar service discovery mechanism integrated into the previous version of OLSR (OLSRv1). In order to advertise services, we have added a new type-length-value structure (TLV) to the OLSRv2 protocol, called service discovery message (SDM), according to the Generalized MANET Packet/Message Format defined in Request For Comments (RFC) 5444. Each node in the ad hoc network only advertises its own services. The advertisement frequency is a user-configurable parameter, so that it can be modified depending on the user requirements. Each node maintains two service tables, one to store information about its own services and another one to store information about the services it discovers in the network. We present simulation results, that compare our service discovery integrated into OLSRv2 with the one defined for OLSRv1 and with the integration of service discovery in Ad hoc On-demand Distance Vector (AODV) protocol, in terms of service discovery ratio, service latency and network overhead.This work is partially supported by the Spanish Ministry of Science and Innovation through the Continuity of Service, Security and QoS for Transportation Systems (CONSEQUENCE) (TEC2010-20572-C02-01/02) and INcident monitoRing In Smart COmmunities (INRISCO) (TEC2014-54335-C4-2-R) projects. We thank the editor and anonymous reviewers for their constructive comments, which helped us to improve our manuscript

    Distributed Topology Control for Stable Path Routing in Multi-hop Wireless Networks

    Get PDF
    In this paper, we introduce the stable path topology control problem for routing in mobile multi-hop networks. We formulate the topology control problem of selective link-state broadcast as a graph pruning problem with restricted local neighborhood information. We develop a multi-agent optimiza- tion framework where the decision policies of each agent are restricted to local policies on incident edges and independent of the policies of the other agents. We show that under a condition called the positivity condition, these independent local policies preserve the stable routing paths globally. We then provide an efficient algorithm to compute an optimal local policy that yields a minimal pruned graph, which we call the Stable Path Topology Control (SPTC) algorithm. Using simulations, we demonstrate that this algorithm, when used with the popular ETX metric, outperforms topology control mechanisms commonly used for Mobile Ad Hoc Networks

    Power Considerations for Sensor Networks

    Get PDF

    A Novel Hybrid Authentication Model for Geo Location Oriented Routing in Dynamic Wireless Mesh Networks

    Get PDF
    Authentication is an essential part of any network and plays a pivotal role in ensuring the security of a network by preventing unauthorised devices/users access to the network. As dynamic wireless mesh networks are evolving and being accepted in various fields, there is a strong need to improve the security of the network. It’s features like self-organizing and self-healing make it great but get undermined when rigid authentication schemes are used. We propose a hybrid authentication scheme for such dynamic mesh networks under three specified scenarios; full authentication, quick authentication and new node authentication. The proposed schemes are applied on our previous works on dynamic mesh routing protocol, Geo location Oriented Routing Protocol (GLOR Simulation results show our proposed scheme is efficient in terms of resource utilization as well as defending against security threats
    corecore