161 research outputs found

    Investigation of reduced hypercube (RH) networks : embedding and routing capabilities

    Get PDF
    The choice of a topology for the interconnection of resources in a distributed-memory parallel computing system is a major design decision. The direct binary hypercube has been widely used for this purpose due to its low diameter and its ability to efficiently emulate other important structures. The aforementioned strong properties of the hypercube come at the cost of high VLSI complexity due to the increase in the number of communication ports and channels per node with an increase in the total number of nodes. The reduced hypercube (RH) topology, which is obtained by a uniform reduction in the number of links for each hypercube node, yields lower complexity interconnection networks compared to hypercubes with the same number of nodes, thus permitting the construction of larger parallel systems. Furthermore, it has been shown that the RH at a lower cost achieves performance comparable to that of a regular hypercube with the same number of nodes. A very important issue for the viability of the RH is to investigate the efficiency of embedding frequently used topologies into it. This thesis proposes embedding algorithms for three very important topologies, namely the ring, the torus and the binary tree. The performance of the proposed algorithms is analyzed and compared to that of equivalent embedding algorithms for the regular hypercube. It is shown that these topologies are emulated efficiently on the RH. Additionally, two already proposed routing algorithms for the RH are evaluated through simulation results

    Processor allocation strategies for modified hypercubes

    Get PDF
    Parallel processing has been widely accepted to be the future in high speed computing. Among the various parallel architectures proposed/implemented, the hypercube has shown a lot of promise because of its poweful properties, like regular topology, fault tolerance, low diameter, simple routing, and ability to efficiently emulate other architectures. The major drawback of the hypercube network is that it can not be expanded in practice because the number of communication ports for each processor grows as the logarithm of the total number of processors in the system. Therefore, once a hypercube supercomputer of a certain dimensionality has been built, any future expansions can be accomplished only by replacing the VLSI chips. This is an undesirable feature and a lot of work has been under progress to eliminate this stymie, thus providing a platform for easier expansion. Modified hypercubes (MHs) have been proposed as the building blocks of hypercube-based systems supporting incremental growth techniques without introducing extra resources for individual hypercubes. However, processor allocation on MHs proves to be a challenge due to a slight deviation in their topology from that of the standard hypercube network. This thesis addresses the issue of processor allocation on MHs and proposes various strategies which are based, partially or entirely, on table look-up approaches. A study of the various task allocation strategies for standard hypercubes is conducted and their suitability for MHs is evaluated. It is shown that the proposed strategies have a perfect subcube recognition ability and a superior performance. Existing processor allocation strategies for pure hypercube networks are demonstrated to be ineffective for MHs, in the light of their inability to recognize all available subcubes. A comparative analysis that involves the buddy strategy and the new strategies is carried out using simulation results

    Data broadcasting and reduction, prefix computation, and sorting on reduced hypercube (RH) parallel computers

    Get PDF
    The binary hypercube parallel computer has been very popular due to its rich interconnection structure and small average internode distance which allow the efficient embedding of frequently used topologies. Communication patterns of many parallel algorithms also match the hypercube topology. The hypercube has high VLSI complexity. however. due to the logarithmic increase in the number of connections to each node with the increase in the number of dimensions of the hypercube. The reduced hypercube (RH) interconnection network. which is obtained by a uniform reduction in the number of links for each hypercube node. yields lower-complexity interconnection networks when compared to hypercubes with the same number of nodes. It has been shown elsewhere that the RH interconnection network achieves performance comparable to that of the hypercube. at lower hardware cost. The reduced VLSI complexity of the RH also permits the construction of larger systems. thus. making the RH suitable for massively parallel processing. This thesis proposes algorithms for data broadcasting and reduction. prefix computation, and sorting on the RH parallel computer. All these operations are fundamental to many parallel algorithms. A worst case analysis of each algorithm is given and compared with equivalent- algorithms for the regular hypercube. It is shown that the proposed algorithms for the RH yield performance comparable to that for the regular hypercube

    Efficient hypercube communications

    Get PDF
    Hypercube algorithms may be developed for a variety of communication-intensive tasks such as sending a message from one node to another, broadcasting a message from one node to all others, broadcasting a message from each node to all others, all-to-all personalized communication, one-to-all personalized communication, and exchanging messages between nodes via fixed permutations. All these communication patterns are special cases of many-to-many personalized communication. The problem of many-to-many personalized communication is investigated here. Two routing algorithms for many-to-many personalized communication are presented here. The algorithms proposed yield very high performance with respect to the number of time steps and packet transmissions. The first algorithm yields high performance through attempts to equibalance the number of messages at intermediate nodes. This technique tries to avoid creating a bottleneck at any node and thus reduces the total communication time. The second algorithm yields high performance through one-step time-lookahead equibalancing. It chooses from the candidate intermediate nodes the one which will probably have the minimum number of messages in the next cycle

    Efficient embedding of virtual hypercubes in irregular WDM optical networks

    Get PDF
    This thesis addresses one of the important issues in designing future WDM optical networks. Such networks are expected to employ an all-optical control plane for dissemination of network state information. It has recently been suggested that an efficient control plane will require non-blocking communication infrastructure and routing techniques. However, the irregular nature of most WDM networks does not lend itself to efficient non-blocking communications. It has been recently shown that hypercubes offer some very efficient non-blocking solutions for, all-to-all broadcast operations, which would be very attractive for control plane implementation. Such results can be utilized by embedding virtual structures in the physical network and doing the routing using properties of a virtual architecture. We will emphasize the hypercube due to its proven usefulness. In this thesis we propose three efficient heuristic methods for embedding a virtual hypercube in an irregular host network such that each node in the host network is either a hypercube node or a neighbor of a hypercube node. The latter will be called a “satellite” or “secondary” node. These schemes follow a step-by-step procedure for the embedding and for finding the physical path implementation of the virtual links while attempting to optimize certain metrics such as the number of wavelengths on each link and the average length of virtual link mappings. We have designed software that takes the adjacency list of an irregular topology as input and provides the adjacency list of a hypercube embedded in the original network. We executed this software on a number of irregular networks with different connectivities and compared the behavior of each of the three algorithms. The algorithms are compared with respect to their performance in trying to optimize several metrics. We also compare our algorithms to an already existing algorithm in the literature

    Combinatorial Structures in Hypercubes

    Get PDF

    Diamond-based models for scientific visualization

    Get PDF
    Hierarchical spatial decompositions are a basic modeling tool in a variety of application domains including scientific visualization, finite element analysis and shape modeling and analysis. A popular class of such approaches is based on the regular simplex bisection operator, which bisects simplices (e.g. line segments, triangles, tetrahedra) along the midpoint of a predetermined edge. Regular simplex bisection produces adaptive simplicial meshes of high geometric quality, while simplifying the extraction of crack-free, or conforming, approximations to the original dataset. Efficient multiresolution representations for such models have been achieved in 2D and 3D by clustering sets of simplices sharing the same bisection edge into structures called diamonds. In this thesis, we introduce several diamond-based approaches for scientific visualization. We first formalize the notion of diamonds in arbitrary dimensions in terms of two related simplicial decompositions of hypercubes. This enables us to enumerate the vertices, simplices, parents and children of a diamond. In particular, we identify the number of simplices involved in conforming updates to be factorial in the dimension and group these into a linear number of subclusters of simplices that are generated simultaneously. The latter form the basis for a compact pointerless representation for conforming meshes generated by regular simplex bisection and for efficiently navigating the topological connectivity of these meshes. Secondly, we introduce the supercube as a high-level primitive on such nested meshes based on the atomic units within the underlying triangulation grid. We propose the use of supercubes to associate information with coherent subsets of the full hierarchy and demonstrate the effectiveness of such a representation for modeling multiresolution terrain and volumetric datasets. Next, we introduce Isodiamond Hierarchies, a general framework for spatial access structures on a hierarchy of diamonds that exploits the implicit hierarchical and geometric relationships of the diamond model. We use an isodiamond hierarchy to encode irregular updates to a multiresolution isosurface or interval volume in terms of regular updates to diamonds. Finally, we consider nested hypercubic meshes, such as quadtrees, octrees and their higher dimensional analogues, through the lens of diamond hierarchies. This allows us to determine the relationships involved in generating balanced hypercubic meshes and to propose a compact pointerless representation of such meshes. We also provide a local diamond-based triangulation algorithm to generate high-quality conforming simplicial meshes
    corecore