
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 10-31-1994

Data broadcasting and reduction, prefix computation, and sorting Data broadcasting and reduction, prefix computation, and sorting

on reduced hypercube (RH) parallel computers on reduced hypercube (RH) parallel computers

Arup Mukherjee
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Mukherjee, Arup, "Data broadcasting and reduction, prefix computation, and sorting on reduced
hypercube (RH) parallel computers" (1994). Theses. 1649.
https://digitalcommons.njit.edu/theses/1649

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1649&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1649&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1649?utm_source=digitalcommons.njit.edu%2Ftheses%2F1649&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DATA BROADCASTING AND REDUCTION, PREFIX
COMPUTATION, AND SORTING

ON REDUCED HYPERCUBE (RH) PARALLEL COMPUTERS

by
Arup Mukherjee

The binary hypercube parallel computer has been very popular due to its

rich interconnection structure and small average internode distance which allow

the efficient embedding of frequently used topologies. Communication patterns of

many parallel algorithms also match the hypercube topology. The hypercube has

high VLSI complexity. however. due to the logarithmic increase in the number of

connections to each node with the increase in the number of dimensions of the

hypercube. The reduced hypercube (RH) interconnection network. which is obtained

by a uniform reduction in the number of links for each hypercube node. yields lower-

complexity interconnection networks when compared to hypercubes with the same

number of nodes. It has been shown elsewhere that the RH interconnection network

achieves performance comparable to that of the hypercube. at lower hardware cost.

The reduced VLSI complexity of the RH also permits the construction of larger

systems. thus. making the RH suitable for massively parallel processing. This thesis

proposes algorithms for data broadcasting and reduction. prefix computation, and

sorting on the RH parallel computer. All these operations are fundamental to

many parallel algorithms. A worst case analysis of each algorithm is given and

compared with equivalent- algorithms for the regular hypercube. It is shown that

the proposed algorithms for the RH yield performance comparable to that for the

regular hypercube.

DATA BROADCASTING AND REDUCTION, PREFIX
COMPUTATION, AND SORTING

ON REDUCED HYPERCUBE (RH) PARALLEL COMPUTERS

by
Arup Mukherjee

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

October 1994

APPROVAL PAGE

DATA BROADCASTING AND REDUCTION, PREFIX
COMPUTATION, AND SORTING

ON REDUCED HYPERCUBE (RH) PARALLEL COMPUTERS

Arup Mukherjee

Dr. Sotirios G. Ziavras Thesis Advisor 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. John D. Carpinelli. Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering. NJIT

Dr. Edwin Hou. Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering. NJIT

BIOGRAPHICAL SKETCH

Author: 	Arup Mukherjee

Degree: 	Master of Science in Electrical Engineering

Date: 	October 1994

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1994

® Bachelor of Science in Electrical Engineering,
University of Roorkee. Roorkee. India. 1991

Major: 	Electrical Engineering

iv

This thesis is dedicated to
my parents Ajoy and Dipti and my brother Arjun

ACKNOWLEDGMENT

I would like to thank Prof. Ziavras for his guidance, encouragement. and great

insight. during my work on this thesis.

Special thanks to Professors John D. Carpinelli and Edwin Hou for serving as

members of the committee and for their perusal of my thesis work.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 	Importance of Massively Parallel Processing Systems 	1

1.2 The Hypercube Topology 	1

1.2.1 Variations of the Hypercube Topology 	3

1.3 The Reduced Hypercube 	 4

1.3.1 Hypercube Emulation on the RH 	6

2 BROADCASTING ON THE REDUCED HYPERCUBE (RH) 	 11

2.1 Broadcasting on the Reduced Hypercube RH(n.n) 	 11

2.1.1 Phase I: Setting up the Binary Tree Configuration of BB's . 	 12

2.1.2 Phase II: Determining the Nodes-of-Entry and Nodes-of-Exit 	 17

2.1.3 Phase III: Broadcasting the Value to all Nodes 	 19

2.1.4 Analysis of the Algorithm 	 19

2.2 Broadcasting on the R.educed Hypercube RH(k.n). where k>n . . 	 20

2.2.1 Analysis of the Algorithm 	20

3 REDUCTION OPERATION ON THE REDUCED HYPERCUBE (RH) 	 22

3.1 Data Reduction Algorithm 	 22

3.2 Analysis of the Algorithm 	 24

4 PREFIX OPERATION ON THE REDUCED HYPERCUBE (RH) 	 25

4.1 Phase I: Prefix Operation within BB's 	 25

4.2 Phase II: Prefix Operation among BB's 	 25

4.3 	Analysis of the Algorithm 	 28

5 SORTING ON THE REDUCED HYPERCUBE (RH) 	 29

5.1 Sorting Algorithm 	 29

5.1.1 Phase I: Sorting of Data within BB's 	 29

vii

Chapter 	 Page

5.1.2 Phase II: Sorting between BB's 	 30

5.1.3 Phase III: Distribution of Sorted Values in BBs 	 30

5.2 Analysis of the Algorithm 	 31

6 CONCLUSIONS 	 32

REFERENCES 	 33

viii

LIST OF TABLES

Table 	 Page

2.1 Transformation FT3 	 13

2.2 Transformation BT3 	 13

ix

LIST OF FIGURES

Figure 	 Page

1.1 	The structure of the RH(3,1) 	

1.2 	The structure of the RH(k,2) 	8

2.1 Double-rooted binary tree with three levels 	 12

2.2 Binary tree merging in the hypercube 	 18

3.1 Many-to-one mapping of a. binary tree of depth 3 onto a hypercube of
dimension 3 	 23

4.1 Prefix operation between BB's for the RH(k.2) 	 97

CHAPTER 1

INTRODUCTION

1.1 Importance of Massively Parallel Processing Systems

Parallel processing in recent years has been making great strides in many areas of

computer application. Parallel processing has made it possible to address many appli-

cations that were until recently beyond the capability of conventional computing.

Massively parallel processors (MPP) are thought to be the most. likely technology

to achieve teraflops computational power. MPPs are large scale multiprocessors

with thousands of nodes connected in a network. Each node has its own processor,

local memory. and other peripheral devices. The way the nodes are connected varies

widely. In a direct connected network architecture. each node has a direct connection

to some other nodes. Direct. connected multicomputers have become a popular archi-

tecture due to their support of scalability. As the number of nodes in the system

increases. so does the processing capability. communication bandwidth. and memory

bandwidth. The goal is to have teraflops performance by the end of this decade.

Such tremendous computing power is needed in various fields. like aerodynamics.

astrophysics. biology. and nuclear physics for detailed simulations.

1.2 The Hypercube Topology

The objective in building a. commercial MPP system is to have a general purpose

architecture on which a number of different types of problems can be solved. One

such general purpose topology is the hypercube which has been widely researched. It

is also called the direct. binary n-cube. A n-dimensional hypercube has 2" nodes. If

unique consecutive binary n-bit addresses are assigned to its nodes. then nodes whose

addresses differ in only one bit have a direct link between them. A hypercube can he

1

2

constructed recursively as follows: a (n + 1)-dimensional hypercube is constructed

by connecting the corresponding processors of two n-dimensional hypercubes. The

hypercube has been a successful architecture due to the following properties:

1. Low diameter in large systems. The diameter of an interconnection network

is defined as the maximum distance between all pairs of nodes. For a n-

dimensional hypercube, the diameter is n.

2. It has a general purpose topology. The hypercube can emulate widely used

structures very efficiently. There has been significant research in this area.

Algorithms for mapping rectangular meshes have been proposed among others

by Chan and Saad [14]. and Johnsson [16]. Binary tree mappings were proposed

by Wu [15]. Deshpande and Jenevin [3]. Ho and Johnson [16]. and Leighton

[5] among others. Algorithms for mapping pyramids have been proposed by

Chan and Sa.ad [14]. Lai and White [11]. and Ziavras and Siddiqui [12]. among

others.

3. It has a fault tolerant robust. architecture due to its high degree of connectivity.

Several commercial hypercube computers have been manufactured. The

Thinking Machines CM-2. the NCI:BE. and the Intel iPSC are the most important.

among them. The CM-2 has up to 65.536 PE's which are simple 1-bit processors.

The other two machines have a smaller number (up to 1,024) of powerful processors.

An Intel iPSC/1 node has an Intel 80286 processor, with 512 KB of memory. Each

node can be expanded to add floating point accelerators. extra memory. or I/O

devices. Ethernet chips are used to implement communication channels between

nodes. Another channel from each node is used to implement connection back

to a host. This host processor is called the Cube Manager. The Cube Manager is

connected to the processors in the cube by a broadcast bus for global communication.

I/O. and control.

3

Systems that have a pure hypercube network have two major drawbacks: (1)

the size of the system has to be an integer power of two: and (2) the number of

communication ports and channels per processor increase logarithmically with the

increase in the total number of processors in the system which increases dramatically

the total number of communication channels [1]. This VLSI constraint prevents

building powerful. massively parallel hypercube systems.

1.2.1 Variations of the Hypercube Topology

The high VLSI complexity of the hypercube has led many researchers to look into

hypercubc-likc topologies with lower VLSI complexity. This section takes a look

at some existing hypercube variations. The reduced hypercube is another of these

variations and is described in the next. section. The cube connected cycles CCC(n) [7]

is obtained from the n-dimensional hypercube by substituting a ring with n nodes

for each node in the hypercube. Each node in a ring then implements a distinct

connection in one of the 7? dimensions. The advantage of the CCC(n) is that the

node connectivity is always 3. independently of the value of n.

The incomplete hypercube [18] is another important variation of the hypercube.

An incomplete hypercube is constructed by connecting together two complete

hypercubes of different sizes. The major disadvantage of the incomplete hypercube

is that a large number of communication ports may be wasted and as a conse-

quence a significant portion of the system's cost may be spent for unused resources.

For example, an incomplete hypercube with 1.280 processors can be constructed

from two complete hypercubes composed of 1.024 and 256 processors. respectively.

The interconnection of two complete hypercubes requires a number of communi-

cation ports per processor equal to 11 and 9. respectively for the two constituent.

hypercubes (this is in contrast to 10 and 8. respectively. for the corresponding

conventional hypercubes). The total number of unused communication ports in this

4

system is equal to 768 (i.e 1.024 - 256). assuming that all the nodes of the smaller

hypercube are used. The VLSI complexity of the incomplete hypercube is also not

drastically reduced for parts of the system, as was the goal. Another variation of the

hypercube is the hierarchial cubic network (RCN) [4] which also uses the hypercube

as the basic building block. A number of other variations of the hypercube have

been proposed in the literature. but they do not. reduce its VLSI complexity rather

they sometimes increase it. in order to achieve better topological properties.

1.3 The Reduced Hypercube

The reduced hypercube (RH) interconnection network has been proposed by Ziavras

[2) in order to reduce the large VLSI complexity of the regular hypercube and. thus.

facilitate the construction of larger systems. Although a RH can be viewed as a

hierarchical structure with several levels. only the properties of structures with two

levels were studied extensively. The algorithms developed in this thesis also assume

RH's with only two levels. A RH is formed by uniformly removing several edges from

the hypercube with the same number of nodes. The reduced hypercube RH(k.n)

contains a total of N nodes. where N = 2k+2n. with k ≥ n1 and n > 0. Each node of

the RH(k.n) is attached to k +1 bidirectional links. In a regular hypercube with the

same number of nodes. each node is attached to k+2" bidirectional links. Therefore,

each node in the N-node RH has k + 2" — (k + 1). or 2"-1 links less than each node

in the N-node regular hypercube.

The N-node RH(k,n) is constructed from the N-node regular hvpecube by

uniformly removing 2" — 1 links from each of its nodes. To accomplish this. the

(k 2")-bit addresses of hypercube nodes are first partitioned into two fields; the

0th and 1st fields. as follows. The Oil' field contains the k least significant bits of

the (k + 2")-bit node address. This field represents the address of the node within

a complete k-cube, which will be referred to as a building block (BB). The 1st field

5

contains the 2n most significant bits of the node address. It. represents the address

of the BB that contains the node. In addition. a subfield is identified in the 0th

field. the 0th subfield. It contains the n? most significant bits of the k-bit 0th field. It

represents the address of a (k — n)-dimensional subcube, which will be referred to

as a subblock (SB). within the k-cube BB that contains the node. For simplicity let

the term k + 2" be denoted by v from now on.

In order to reduce the v-cube into the RH(k.n). out of the v (bidirectional)

links of each hypercube node the following two sets are kept, leaving k +1 links to

each node.

Set 1: The k links of the v-cube that traverse the k lowest dimensions (i.e..

dimensions 0 through k — 1) and connect the referenced node with k distinct. nodes

are kept. As a result. a complete k-dimensional building block (BB) that includes

the referenced node is kept.

Set 2: This set contains only one link which is also present in the original

v-cube. This link is the one which connects directly the referenced node with the

node whose address differs only in the mth bit of the 1' field. where m is the decimal

value in the 0th subfield and 0 < m < 2" — 1.

The resultant RH(k.n) contains 22" k-cube BB's. It can also he viewed as

a 2"-cube of k-cube BB's. A BB address forms the 2" most. significant bits (i.e. .

the 1st field) of the v-bit addresses for contained nodes. Each BB is divided into 2"

subblocks (SB's): each SB is a (k — n)-cube. Connections between pairs of SB's

in different BB's are as follows: A node in a particular SB of a particular BB is

connected to the node with the same 0th field address which belongs to the BB whose

2"-bit address differs only in the mth bit. where m is the value in the 0th subfield of

the former node. It was shown in [2], that the RH can emulate simultaneously. with

dilation equal to one. several cube-connected cycles networks.

6

Figure 1.1 shows the structure of the RH(3, 1). There are 2", that is 2'. SB's

in each BB. Each BB is a complete 3-cube, since k = 3. BB addresses appear above

each BB. BB addresses have two bits. SB addresses have one bit and appear inside

the BB box. Links between nodes in different. BB's are shown by dashed lines.

Figure 1.2 shows the structure of the RH(k.2) where the large squares represent

the k-cube building blocks. The numbers above the squares represent in decimal the

BB addresses and the numbers within the quadrants of large squares are the SB

addresses in decimal. To keep the figure simple. the nodes within the square are

not shown. Each line between BB's represents 2k-2 bidirectional communication

channels: this is also the number of nodes in each SB. It is implied that each node

in a SB is connected to the node with the same 0th field address in the SB where

the connection line leads.

1.3.1 Hypercube Emulation on the RH

The RH is equivalent to a hypercube with a smaller number of links per node.

Therefore. the performance of the topology may degrade for algorithms designed

explicitly for the hypercube. The algorithms given in this thesis are not pure

hypercube algorithms. They use the hypercube structure within the BB's and then

use the communication links between the BB's. The emulation of the hypercube by

the RH has been investigated in [2] and the most important results are presented

here.

The dilation of edges associated with the chosen hypercube mapping must

be found for evaluation of the performance. The dilation measures the increase in

communication steps to reach a neighboring node, as compared to the hypercube.

Let the regular v-dimensional hypercube and the target RI-1(k. n) contain the same

number of nodes; that is 2v, where v = k + 2". Assume that nodes from the regular

Figure 1.1 The structure of the R.11(3.1)

7

8

Figure 1.2 The structure of the RH(k.2)

hypercube are mapped to nodes of the RH with the same address. The following

theorem (2} presents the resultant dilation of edges.

Theorem: For the emulation of the v-dimensional hypercube on the reduced

hypercube RH(k.n) with the same number of nodes. the dilations of edges incident

to a single node of the hypercube are: 1 for k+1 of them and 2p+1 for (n of them,
P

(where p = 1. 2.....n. and 	
n1 	

represents the number of distinct p -combinations
P

of 71 items.

Example: The dilations of the edges incident to a single node of the RH(5. 2)

for the emulation of the 9-dimensional hypercube are 1, 3 and 5 for 6, 2 and 1 edge,

respectively. Similarly, the dilations of the edges incident to a single node for the

emulation of the 16-dimensional hypercube on the RH(8.3) are 1. 3, 5 and 7 for 9.

3. 3 and 1 edge. respectively.

9

The maximum and average dilations are two other important. metrics for

hypercube emulation on the RH. The following two corollaries provide the means

for their calculation [2].

Corollary 1: The maximum dilation of edges for hypercube emulation on the

RH(k.n) is equal to 2n + 1.

Corollary 2: The average dilation of edges for hypercube emulation on the

RH(k.n) is equal to

The average dilation of edges for the last two examples is 1.88 and 2.5. respec-

tively. The average dilation of edges has been shown in [2] to be relatively small in

practical cases. So. there is a small performance degradation for the implementation

of hypercube algorithms on RH's. The effect of dilation is reduced significantly from

left to right for the set of four well-known packet switching techniques: store-and-

forward. virtual cut-through. circuit. switching. and wormhole routing. The ring.

the torus. and the binary tree have been mapped efficiently on the RH [17]. These

topologies are very frequently used in parallel algorithms.

We assume a MIMD message passing multicomputer environment for all the

algorithms developed in this thesis. In this model each node has its own processor

and memory. Since they do not physically share memory. nodes communicate by

passing messages through the network. A message is often broken into packets. A

packet is the smallest unit of communication that contains routing and sequencing

information which is carried in the packet header. Neighboring nodes send packets to

one another directly but nodes which are not directly connected rely on intermediate

nodes in the network to relay packets from source to destination. Most systems now

have a dedicated router in each node to handle communication related tasks. to allow

overlapped computation, and communication within each node. The programmer of a

10

multiprocessor invokes various communication system calls to achieve interprocessor

communication.

CHAPTER 2

BROADCASTING ON THE REDUCED HYPERCUBE (RH)

Broadcasting is a very common operation in parallel algorithms. Initially one

processor has a data element that. needs to be broadcast. At the end of the broad-

casting procedure. there is a copy of the data element. in every processor in the

system. Broadcasting is used in several parallel algorithms including matrix-vector

multiplications. Gaussian elimination. shortest paths. and vector inner product. The

following section gives the broadcasting procedure for the RH(k. n) for the special

case where k = n. In the subsequent section the broadcasting procedure will be

generalized to include the RH(k. 7?) . for k > n1. The binary tree is the basic structure

which is used for the broadcasting procedure.

2.1 Broadcasting on the Reduced Hypercube RH(n,n)

In the first phase of the algorithm the 2" most. significant. bits of each node's address

are used to map a (complete) binary tree with 2n levels onto the 2"-dimensional

hypercube of BB's. The binary tree is double-rooted (using a spacer node) to utilize

all the BB's in one-to-one mapping [3]. For example. Figure 2.1 shows the double-

rooted binary tree of depth 2 that utilizes all the nodes in the 3-cube. Assume that.

the index of the LSB in the node address is 0, so that MSB (most-significant bit)

refers to the bit. with offset. 2n 	k —1. Only the 2n most significant bits of node

addresses are considered in the first phase. Each virtual node in the mapping is

actually an n-dimensional hvpercube BB. therefore one of each BB's internal nodes

will receive the broadcast value from its parent (except for the root.) and up to two

other internal nodes will have to transmit the received value to their children located

in two other BB's.

11

12

In the second phase each node within a BB determines whether it is the Node-

of-Entry (NOE) or a Node-of-Exit. (NOX) for the implementation of connections to

parent and child BB's. An algorithm for broadcasting a value from the NOE to all

other nodes in a BB must be also introduced. In the third and final phase, without

loss of generality. the value is broadcast starting from the node with address 0 in

the root BB in the tree of BB's. The aforementioned phases of the algorithm are

described in detail in the remaining subsections.

Figure 2.1 Double-rooted binary tree with three levels

2.1.1 Phase I: Setting up the Binary Tree Configuration of BB's

The 2n-level binary tree of BB's is obtained by applying an algorithm that

implements one-to-one mapping of a binary tree with 22n -1 nodes onto the 2n-

dimensional hypercube [3] of BB's. This phase of the algorithm starts by setting up

initially 22n-3 three-level double-rooted binary trees having a predetermined config-

uration. That is. every BB becomes a member of a three-level tree; its position in

the tree is determined by the values of its bits 0.1 and 2 in its 2n-bit address. The

algorithm given below is run by all 22n+n nodes in the RH(n.n.) using the 2" most

significant bits of their addresses. Two transformations of the 2"-hit BB addresses

are used in the algorithm [3]. Tables 2.1 and 2.2 give the transformations. The

transformations satisfy the following two properties:

1. Nodes with distinct addresses map to distinct target nodes.

13 2.

• If two nodes are neighbors and thus have addresses differing in only one bit

position. their new addresses after the transformations also differ in only one hit

position. Thus. neighborhood between the two nodes is preserved for optimal

mapping of the three-level tree.

Table 2.1 Transformation FT3

xixjxk yiyjyk

000 100
001 000
010 101
011 001
100 110
101 	010
110 111
111 I 	011

Table 2.2 Transformation BT3

xixjxk yiyjyk

000 	001
001 101
010 000
011 100
100 011
101 111
110 010
111 110

At each successive iteration of the algorithm, trees are merged to form larger

trees until eventually a binary tree is formed that. contains a11 BB's. The merging

of two equal-sized trees requires a spacer node. By the introduction of a single two-

degree node as the child of its root, and thereby stretching (or equivalently double

rooting) it. the tree can be made to utilize a hypercube completely. The extra. node so

introduced is used only for communication between the root and one of its children.

and is called the spacer node. At. the end of this phase of the algorithm each node

in each BB knows which BB (if any) is its parent. and which BB's (if any) are

14

its children and also their virtual and physical addresses. The tree setup algorithm

adapted from [3] follows.

The algorithm is run by all PE's. with each PE assuming that it is the only

one in the corresponding BB; these PE's will also be called virtual nodes. Each uses

the following variables:

• current-port: Every virtual node in the hypercube formed by the BB's has

2n ports. each one corresponding to a bit position in its 2"-bit address. This

variable keeps a running pointer to the bit position currently being considered.

• physical-id: Original BB address of the virtual node.

• current-id: The virtual node BB address during the current iteration.

• port-re lot ion (1..2n): An array of values specifying the current active connections

of the virtual node. All are initialized to "null"(inactive).

All possible values a.ssigned to the port-relation(i) variable a.re:

null: No active connection.

p: Connection t.o parent virtual node.

c: Connection to child virtual node.

The following is the tree setup algorithm of the B B. s:

for-all virtual nodes do

begin

current-id = physical-id;

/*set up 2̂ {2̂ n-3}, 3-level trees*/

case current-id(bits: 2..0) of

0: port-relation(0) = port-relation(2) = c;

1: port-relation(0) = p;

port-relation(1) = port-relation(2) = c;

2: port-relation(2) = p;

3: port-relation(1) = p;

4: port-relation(1) = c;

port-relation(2) = p;

5: port-relation(2) = p;

6: port-relation(0) = port-relation(2) = c;

port-relation(1) = p;

7: port-relation(0) = p;

end-case

for current-port = 3 to 2-n-1 do

begin

/*Form larger trees iteratively*/

if (current-id(current-port)=1) then

begin

Apply FT3 to current-id's bits 2,1 and 0;

/* This transformation is given in Table 1 */

end

if (Bits 3 through current-port-1 are 0) then

begin

case current-id(bits: current-port,2,1,0) of

0: port-relation(2)= p;

port-relation(current-port)=c;

4: port-relation(2)= c;

port-relation(current-port)= c;

port-relation(1)= null;

6: port-relation(1)= null;

port-relation(current-port)= p;

15

16

8: port-relation(2)= null;

port-relation(current-port)= p;

12: port-relation(2)= null;

port-relation(current-port)= p;

14: port-relation(current-port)= c;

end-case

end

Apply BT3 to bits current-port, 2 and 0 of current-id;

/* This transformation is given in Table 2 */

end

end

Figure 2.2 shows the case of merging two k-level binary trees with spacer nodes

in two k-cubes to form a (k+1)-level binary tree in a (k+1)-cube [3]. The steps are

as follows:

1. Apply the FT3 transformation to the nodes of the duplicate mapping using bit-2

as x bit-1 as xj and bit-0 as x k to obtain the mapping given in Figure 2.2(b).

2. Form a (k 1)-cube by connecting the nodes with like addresses in the two k-

cubes. Append a 0 to the left of addresses in the original k-cube and a I to the left

of addresses in the duplicate k-cube.

3. Remove links 0S100-0S110 and 1S100-1S000. and attach links 0S000-1S000, 0S110-

1S110 and 0S100-1S100 as shown in Figure 2.2(c) to obtain Figure 2.2(d).

4. Apply the BT3 transformation to the nodes of the (k 	1)-cube to obtain a

(k + 1)-level double-rooted binary tree rooted at 0S000 (it. is OS100 before the trans-

formation). In applying the BT3. use the most significant bit as x i . the third least

significant bit as xj. and the least significant bit as xk. Replace OS by S' to obtain

a structure similar to the base structure we started with. The resultant mapping is

shown in Figure 2.2(e).

Because of the binary tree mapping. each BB corresponds to one of the

following cases:

1. It has two children and no parent. This is the root. BB.

2. It has a parent and a single child. This is the second root or spacer BB.

3. It has a parent and two children. These are all intermediate BB's, excluding the

spacer BB.

4. It has a parent and no children. These are the leaf BB's.

All nodes within a BB produce the same parent and/or children BB addresses in

Phase I.

2.1.2 Phase II: Determining the Nodes-of-Entry and Nodes-of-Exit

Each node then determines whether it is directly connected to a parent or a child

BB. It does this by comparing its BB address with the address of parent (if any)

and child (if any) BB's computed in Phase I. If such a comparison shows a difference

in a single bit with offset equal to the value stored in the 0th subfield of the nodes

address. the node knows it is directly connected to the corresponding parent or child

BB. Each node which is directly connected to a parent BB marks itself as Node-of-

Entry (NOE). Each node which is directly connected to a child BB marks itself as

Node-of-Exit (NOX). We must. remind here that each SB in the R.H(n,n) contains

a single node. so there is no ambiguity with regards to the chosen node. Each BB will

have up to one NOE node and up to two NOX nodes according to the classification

presented in subsection 2.1.1. Each BB then internally maps a binary tree with

the NOE node as the root using the algorithm [3] presented for the first. phase and

assuming an n-cube as the target system.

18

Figure 2.2 Binary tree merging in the hvpercube

19

2.1.3 Phase III: Broadcasting the Value to all Nodes

Assume. without loss of generality. that the value to be broadcast is stored in the

node with address 0 in the root BB with address 0. The value is then broadcast to

the BB's using the binary tree of BB's. In each BB the NOE node receives the

value first and passes on the value to its children following a binary tree mapping for

the n-cube BB. If a node that receives the value is a NOX, it passes on the value to

the neighbor in the next level of the binary tree of BB's. and also passes on the value

within the same BB using the internal binary tree mapping. If an intermediate node

is not a NOX. it just passes on the value to its two children in the same BB using

the internal binary tree mapping. To broadcast a value from a node other than 0 in

BB 0. simple transformation of addresses is needed because of the symmetry in the

n-cube BB's and in the 2n-cube of BB's.

2.1.4 Analysis of the Algorithm

Phase I:

According to [3] the tree setup algorithm requires time O(2") for the 2"-cube of

BB's.

Phase II:

It takes time 0(2") for each node to determine whether it is NOE. a NOX. or

neither. because 2" bits must be checked. The mapping of a binary tree onto the

n-cube BB consumes time 0(n). So this phase takes time 0(2").

Phase III:

Broadcasting on the 2"-cube of BB's requires time 0(2") because of the binary tree

mapping. Broadcasting within a single n-cube BB requires time 0(n) because of

the binary tree mapping. Therefore, this phase takes time O(n2n).

Therefore, the overall time complexity of the algorithm is 0(n2"). In contrast.

broadcasting on the (2" n)-dimensional hypercube with the same number of nodes

requires time 0(2" + n?) or 0(2"). However. in practical cases the value of n is

small. that is 1. 2. 3. or 4 [2]. therefore. broadcasting on the two systems requires

comparable amounts of time.

2.2 Broadcasting on the Reduced Hypercube RH(k,n), where k>n

This subsection generalizes the broadcasting procedure given in the previous

subsection for the RH(n.n) to make it applicable to the RH(k.n). where k > n. It

has been mentioned in [2] that for k > n the RH(k.n) is viewed as 2k-n RH(n.n)'s

where all nodes with the same address in the 2k-n distinct RH(n. n)'s are connected

to form a (k — n)-dimensional hypercube. The nodes' addresses in the latter

hypercube become the least significant k — n bits of the nodes' addresses in the

RH(k.n). This property will be used in this section in order to follow basically the

algorithm of section 3.1.

Without loss of generality. assume broadcasting from the processor with address

0. All nodes with zeros in the 2n + 11 most significant bits of their address participate

in the first phase of the algorithm. In this phase a (k — n)-level binary tree with a

spacer node is mapped to a (k — n)-cube in BB 0. This hypercube contains all nodes

that have all zeros in the 2n + n most significant. bits of their address. Broadcasting

is then carried out in this binary tree within BB 0. starting from the node with

address 0. Ignoring the k — n least significant bits of node addresses. broadcasting is

then implemented independently within the distinct 2k-n RH(n.n)'s. Broadcasting

begins with that node of each RH(?... n) whose all 	+ n most significant bits in the

address are zeros; this broadcasting follows the procedure given in section 2.1.

2.2.1 Analysis of the Algorithm

The broadcast of the value within the (k — n)-cube of BB 0 requires time 0(k — n).

The parallel broadcast. of the value within the distinct RH(n.n)'s requires time

21

0(n2n). as given in section 2.1.4. Therefore, the overall time complexity of the

broadcast. algorithm for the RH(k.n) is O((k — n)+n2n) or 0(k +nr). In contrast,

broadcasting on the (2n+ k)-dimensional hypercube with the same number of nodes

requires time 0(2n+ k). However. in practical cases the value of n is small, that is 1,

2. 3 or 4. therefore, broadcasting on these two systems requires comparable amounts

of time.

CHAPTER 3

REDUCTION OPERATION ON THE REDUCED HYPERCUBE (RH)

Data reduction is an operation where an associative operator must be applied to

values stored one per processor. in order to produce a single result. The common

associative operators are logical OR. logical AND. maximum. minimum. and add.

For example. consider the operation in which one processor in the reduced hypercube

wants to know the sum of the values stored in all the processors including itself.

Reduction often facilitates barrier synchronization on message-passing parallel

computers. The concept of barrier synchronization is that a set of processes in

execution cross a "barrier" as an atomic action: it. means that after a11 processes

have reached the barrier. all traverse it. at once [20]. Barrier synchronization is useful

for separating different phases of a concurrent algorithm.

3.1 Data Reduction Algorithm

Many-to-one mapping of a binary tree is very suitable for the implementation of

the reduction operation on a hypercube. A binary tree of height. d can be optimally

mapped in a. many-to-one manner onto a hypercube with 2d nodes as follows [8]:

1. The root of the tree is mapped onto any hypercube node.

2. For each node i at depth j (the root is at depth 0). the left child of i is mapped

to the hypercube node i, and the right child of i is mapped to the hypercube node

whose address is obtained by inverting bit p - j + 1 of node i 's address, where p is

the offset of the most significant. bit. Nodes from and• single level of the binary tree

are mapped to distinct hypercube nodes.

Figure 3.1 shows the mapping of a tree of height 3 onto a hypercube of dimension

3, assuming that the root. has address 0. Since we determine the right child of a

22

23

node by complementing one bit. of its address, there is an edge in the hypercube

that directly connects these two nodes. We also see that the leaves are consecutively

numbered.

Figure 3.1 Many-to-one mapping of a binary tree of depth 3 onto a hypercube of
dimension 3

The data reduction algorithm for the RH proceeds as follows. A binary tree

is first mapped onto each k-c.ube BB. according to this many-to-one manner. Each

node at depth k-1 does a reduction operation with its right child which is a leaf. Then

each node at depth k-2 does a reduction operation with its right child, and so on till

we reach the root. which is chosen to be the node 0 in the BB. Each BB now has a.

node with the result of the reduction operation for the BB. The 2n most significant.

bits of node addresses are then used to map in a many-to-one manner a. (2n+1)-level

binary tree onto the 2n-cube of BB's, using the algorithm given above. At. most n

hops are required within a BB to go from the node which has the reduction operation

value for that BB to the node (whose 	n least significant bits are zeroes) which

24

implements a connection to its parent. BB in the binary tree of BB's. and then at

most another n hops to go from the latter node to the node which has the reduction

operation value for the parent BB. This node then performs the reduction operation.

If it is the right child of its parent. it passes on the value to the parent, BB as indicated

above. So. there is a dilation of at. most 2n + 1. At. the end of this stage, the node

with address 0 in the RH(k.n) will have the final reduction operation value.

3.2 Analysis of the Algorithm

It takes d steps for a reduction operation to be done on a tree of height d. The binary

tree of BB's has height 2n for the hypercube. The reduction operation within BB's

requires time 0(k). The reduction operation between pairs of BB's requires time

0(n). Since the reduction operation among BB's requires time O(n2n)), the total

time required is 0(k + n2n). The reduction algorithm for the hypercube with the

same number of nodes has a time complexity of O(2n + k) because a (2n + k+1)-level

binary tree will be mapped in a many-to-one manner. Since the value of n is small

in practical cases. it. takes comparable amounts of time for the implementation of

the reduction operation on the two systems.

CHAPTER 4

PREFIX OPERATION ON THE REDUCED HYPERCUBE (RH)

Prefix computation is commonly used in various parallel algorithms. including the

evaluation of polynomials. ranking and packing problems. solution of linear recur-

rences. carry look-ahead addition. finding convex hulls of images, and scheduling

problems. Given p numbers no. 	n p_,. the prefix computation problem is to

compute 5k =n0 	 nk. for all k between 0 and p —1. where (-IL denotes an

associative operator. Initially nk resides in the processor with address k. and at the

end of the procedure the same processor holds sk.

4.1 Phase I: Prefix Operation within BB's

Each processor in the BB maintains two parameters. namely rslt and msg [8]. These

parameters are initialized with the value ni that the processor contains. k steps

follow. In step z. each processor sends its msg parameter to its neighbor in dimension

i. for i = 	 — 1. Its new msg value is obtained by applying E1,-) to the old

msg value and the one received. If the incoming value comes from a lower-addressed

neighbor. then assign to rslt the value obtained by applying 	to the old rslt value

and the one received.

4.2 Phase II: Prefix Operation among BB's

In this phase the connections between the subblocks of different BB's are utilized

for the prefix computation. The algorithm goes through several steps. In each step

some BB's receive a prefix value from other BB's and pass on the value to the node

with address 2k - 1 in the BB. This node applies the associative operator to the

values it receives in order to combine the result at the end with the value it contained

25

26

in the end of the first. phase and send it to other BB's. It also keeps a. copy of the

result for the rest of the nodes in its BB. When it. has received the prefix values from

all preceding BB's. it broadcasts the result to a11 nodes in the BB which update

their prefix values. The receiving BB's in all steps also follow this rule: if they

receive the value from a BB which is labeled 2m higher or lower than themselves.

they pass on the value to the BB's which are labeled 2°. 2'. 22 . 	and 2m-1 lower

than themselves.

In the first step each BB which has a one in hit position zero of its address

receives the prefix value from the BB whose address differs (from its own address)

only in that bit. The receiving BB's follow the rule outlined earlier. In the second

step each .BB which has ones in bit positions 1 and 0 receives the prefix value from

the BB whose address differs only in bit position 1. So. in each step the prefix

operation is carried out in one of the dimensions of the hypercube formed by the

BB's. These steps can be generalized by the following loop:

for i=0 to 2n — 1 do

begin

Each BB which has ones in bit. positions 0. 	i of its address receives the prefix

value from the BB whose address differs only in bit position i. The receiving BB's

follow the rule outlined earlier.

end

Each of the steps above has substeps where the receiving BB's distribute the prefix

value calculated up to that stage. as discussed earlier. Figure 4.1 shows the commu-

nication steps between BB's for the prefix operation in the RH(k. 2) (see Figure 1.2).

Each node in the figure represents a BB with four subblocks.

Figure 4.1 Prefix operation between BB's for the

2
7

28

4.3 Analysis of the Algorithm

The first phase of the algorithm takes time 0(k). Each step in the second phase of

the algorithm has substeps as shown in Figure 4.1. The total number of substeps is

1+2+3+...+2n which adds up to 92n-1 +
2n-1

 or 0(9') substeps. Each substep takes

time 0(n). The value at the end is broadcast to all nodes in each BB in 0(k) steps.

Therefore. the time complexity for the second phase of the algorithm is 0(n4n k).

Therefore. the overall time complexity of the algorithm is O(n4n + k). A hypercube

with the same number of nodes would take time 0(2" + k). In practical cases. the

overhead due to missing- links in RH's may not be significant..

CHAPTER 5

SORTING ON THE REDUCED HYPERCUBE (RH)

Sorting is one of the most common operations done on a computer. Many algorithms

require sorted data as they are easier to manipulate than randomly ordered data.

This section looks at an implementation of the sorting operation which can be

done on the reduced hypercube parallel computer. Sorting is defined as the task

of arranging an unordered collection of elements into monotonically increasing (or

decreasing) order: without loss of generality. the increasing order is assumed. Specif-

ically. let S 	a 2..... al, > be a sequence of p elements in arbitrary order: sorting

transforms S into a monotonically increasing sequence 5' =< 	 >. such

that u, ≤ a') for all 1 ≤ i < j ≤ p. and 8' is a permutation of S.

The global order assumed by the algorithm is as follows: BB's are assumed

ordered according to their 2n-bit sequential addresses. The nodes inside a BB are

assumed ordered according to their k-bit sequential addresses.

5.1 Sorting Algorithm

Let N=22n+k be the number of nodes in the RH(k.n). with k > n. Let p be the

number of data elements, where p > N. Initially each processor is assigned a block

of p/N elements. The algorithm consists of three phases. In the first phase data

elements in a BB are sorted. In the second phase data are sorted among BB's. In

the third phase the sorted data are distributed within each BB.

5.1.1 Phase I: Sorting of Data within BB's

All the nodes sort the p/N elements internally using merge sort. All the k-cube

BB's then sort their data using the bitonic sort. algorithm [6]. To prepare for the

29

30

second phase. each node in any particular BB sends its p/N sorted data elements

to that node in the same BB whose address differs from its own address only in

the subblock address bits, which are all zeros. This can he done in time O(np/N)

using the hypercube connections and the E-cube routing algorithm: it. can take less

time with wormhole routing. All nodes in the SB with all SB address bits zeros

concatenate the incoming data. elements to their own data. elements in the increasing

order of source SB addresses.

5.1.2 Phase II: Sorting between BB's

The algorithm takes advantage of the fact that. a RH can be viewed as a hypercube of

hypercubes (BB's). therefore bitonic sort [6] can be applied to the former hypercube.

The algorithm does compare-exchange in dimension 0 first (this is the reason all

data in a BB were moved to SB 0), then dimensions 1 and 0. in this order. then

dimensions 2. 1 and 0. in this order. and so on. In each step the data elements are

passed to the SB implementing connections in that respective dimension in all the

BB's. Each physical processor involved in this phase can be viewed as 2n virtual

processors. Each time the (k -n+ 1)-cube formed by the two SB's applies again

the bitonic sort algorithm assuming a virtual (n +1)-cube. At the end of the last

step. the sorted elements in each BB are in the SB with address zero.

5.1.3 Phase III: Distribution of Sorted Values in BBs

The SB with address 0 in each BB will have the sorted sequence for the BB at

the end of phase II. The sequence of p/22n elements in each such SB is divided into

2" subsequences of consecutive elements for distribution to the other 2n-1 SB's in

the BB. so that. global order is achieved. E-cube routing is used to distribute the

subsequences.

31

5.2 Analysis of the Algorithm

Each node internally sorts its p/N data elements in time O(p/N(log(p/N))) using

merge sort. It takes time O(p/N(log22k)) or O(p/N(k2)) for the values to be sorted

in each BB using the bitonic sort algorithm. It takes O(np/N) time for these

sorted values to accumulate in the lowest- addressed SB in each BB, because up

to 1? dimensions may be traversed for each datum. In the second phase it. takes

O((p/N)2n) communication cycles to transfer sequences between neighboring SB's

because (p/N)2n is the number of elements in each active processor. Bitonic sort

in the (k — n + 1)-cubes formed by neighboring SB's in neighboring BB's takes

time O((p/N)log22n+1) or O((p/N)n 2) time. Lets denote the term (p/N)2n by the

symbol 3. and the term (p/N)n2 by the symbol a. 3 denotes the time spent in

communicating data elements between neighboring SB's. and a denotes the time

spent in sorting data between SB's in neighboring BB's. The total asymptotic time

complexity of the second phase of the algorithm is on the order of

where step i starts with the ith dimension of the 2n-cube of BB's.

This can be expressed by the following summation

which simplifies to O(4" (a +3)) or O((p/N)8n). where N = 22n+k. Thus it takes time

O(p/2k-n). The third phase takes time O(np/N), assuming that, higher priority is

given for data transfers to SB's at larger distances. Thus, the total time complexity

is O(p/N(log(p/N))+(p/N)k2 +n(p/N)+p/2k-n). For small values of n (that. is only

k increases). this time is O((p/2k)k2). In contrast. bitonic sort. on the hypercube with

the same number of nodes consumes time O((p/N)log2(22n+k), or O(p/N(2n+k)2).

or O(p/N(4n+ 	k2 + k2n)). For small values of n, this time is O((p/2k)k2). thus

achieving almost. similar performance on both systems.

CHAPTER 6

CONCLUSIONS

The main focus of this thesis was to develop algorithms on the RH for operations

which are very frequently used in many parallel algorithms. The algorithms which

were developed are for data broadcasting and reduction, prefix operation. and sorting.

A one-to-one mapped binary tree was the basic structure used in broadcasting.

The broadcasting operation was shown to be comparable to a similar operation on

the hypercube. A many-to-one mapped binary tree was the basic structure used in

the reduction operation. The reduction operation too was seen to be comparable

to a similar operation on the hypercube. So these two operations should perform

comparably well on the RH. The prefix computation and sorting algorithms also

achieve comparable performance with the hypercube for systems with small number

of missing links.

A RH has significantly lower VLSI complexity and comparable diameter and

average internode distance compared to a regular hypercube with the same number

of nodes [2]. The mapping on to RH's of frequently used topologies. like the ring.

the torus. and the binary tree have been shown to be efficient. [17]. Algorithms for

some frequently used operations in parallel algorithms were presented in this thesis.

The results show that RH's achieve good performance. Thus, it can be said that

RH's are a viable topology for building massively parallel hypercube-like systems.

32

REFERENCES

1. S.G. Ziavras. "On the Problem of Expanding Hypercube-Based Systems."
J. Parallel Dist rib. Computing. Sept. 1992. pp. 41-53

2. S.G. Ziayras. "RH: A Versatile Family of Reduced Hypercube Interconnection
Networks." To appear in IEEE Trans. Parallel Distrib. Systems.

3. S.R. Deshpande and R.M. Jenevin. "Scalability of a Binary Tree on a.
Hypercube." Proc Int Conf Parallel Proc, IEEE Computer Society, Silver
Spring, MD. Aug. 1986. pp. 661-668.

4. K. Ghose and K.R. Desai. "The HCN: A Versatile Interconnection Network
based on Cubes." Proc. Supercomputing R9. IEEE Computer Society and
ACM SIGARCH. Nov. 1989. pp. 426-435.

5. F.T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan
Kaufmann Publ.. San Mateo. CA. 1992. pp. 407-410.

6. G.C. Fox. M. Johnson. G. Lyzenga. S.W. Otto. J. Salmon. and D. Walker.
Solving Problems on Concurrent Processors: Vol 1. Prentice Hall.
Englewood Cliffs. NJ. 1988. pp. 327-343.

7. F.P. Preparata and J. Vuillemin. "The Cube-Connected Cycles: A Versatile
Network for Parallel Computation." Comm. ACM24. May 1981. pp. 300-
309.

8. V. Kumar. A. Grama. A. Gupta. and G. Karypis. Introduction to Parallel
Computing. Benjamin/Cummings Publ. Co.. CA. 1994.

9. W.C'. Athas and C.L. Seitz. "Multicomputers: Message-passing Concurrent.
Computers... Computer. 21(8). August 1988. pp. 9-24.

10. W.J. Dally and C.L. Seitz. "Deadlock-free Message Routing in Multiprocessor
Interconnection Networks." IEEE Trans. Computers, May 1987, pp. 547-
553.

11. T.H. Lai and W. White. W. "Mapping Pyramid Algorithms into Hypercubes.”
J. Parallel Distrib. Comput. 9(1990) pp. 42-54.

12. S.G. Ziavras and M.A. Siddiqui. "Pyramid Mappings onto Hypercubes
for Computer Vision: Connection Machine Comparative
Study."Concurrency: Practice Experience. Vol. 5. No. 6. Sept. 1993. pp. 471-

489.

13. C.T. Ho and S.L. Johnson, "Spanning Balanced Trees in Boolean Cubes." SIAM
J. Sci. Stat. Comput. July 1989. pp. 607-630.

33

34

14. T.F. Chan and Y. Sa.ad. "Multigrid Algorithms on the Hypercube Multipro-
cessor." IEEE Trans. Computers C-35. Aug 1988, pp. 969-977.

15. A.Y. Wu. "Embedding of Tree Networks into Hypercubes." J. Parallel Distrib.
Comput.,Aug 1985, pp. 238-249.

16. S.L. Johnsson. "Communication Efficient Basic Linear Algebra. Computation
on Hypercube Architectures," J. Parallel Distrib. Comput., Apr 1987,
pp. 133-172.

17. S.G. Ziavras and M.A. Sideras, "Facilitating High-Performance Image Analysis
on Reduced Hypercube (RH) Parallel Computers," Proc. 3rd International
Workshop Parallel Image Analysis: Theory Applications, College Park,
MD. June 7-9, 1994. pp. 263-291.

18. H.P. Katseff. "Incomplete Hypercubes." IEEE Trans. Computers, May 1988.
pp. 604-608.

19. S.C. Akl.. The Design and Analysis of Parallel Algorithms. Prentice Hall,
Englewood Cliffs. NJ. 1989.

20. R. Sauya and G. Birtwistle. editors. VLSI and Parallel Computation, Morgan
Kaufman. San Mateo. CA, 1990.

21. K. Hwang. .4 dvanced Computer Architecture: 	Parallelism. Scalability.
Programmability. McGraw Hill. New York, NY, 1993.

22. C.P. Kruskal. L. Rudolph. M. Snir. "The Power of Parallel Prefix." IEEE Trans.
Computers. Oct 1985. pp. 965-968.

2:3. D. Nassimi and S. Sahni, "Bitonic Sort on a Mesh Connected Parallel
Computer." IEEE Trans. Computers, February 1979.

24. G.M. Baudet. D. Stevenson. "Optimal Sorting Algorithms for Parallel
Computers." IEEE Trans. Computers, Jan 1978, pp. 84-87.

25. C.P. Kruskal, "Searching. Merging and Sorting in Parallel Computations," IEEE
Trans. Computers. Oct 1983, pp. 942-946.

	Data broadcasting and reduction, prefix computation, and sorting on reduced hypercube (RH) parallel computers
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Broadcasting on the Reduced Hypercube (RH)
	Chapter 3: Reduction Operation on the Reduced Hypercube (RH)
	Chapter 4: Prefix Operation on the Reduced Hypercube (RH)
	Chapter 5: Sorting on the Reduced Hypercube (RH)
	Chapter 6: Conclusions
	References

	List of Tables
	List of Figures

