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ABSTRACT 

DATA BROADCASTING AND REDUCTION, PREFIX 
COMPUTATION, AND SORTING 

ON REDUCED HYPERCUBE (RH) PARALLEL COMPUTERS 

by 
Arup Mukherjee 

The binary hypercube parallel computer has been very popular due to its 

rich interconnection structure and small average internode distance which allow 

the efficient embedding of frequently used topologies. Communication patterns of 

many parallel algorithms also match the hypercube topology. The hypercube has 

high VLSI complexity. however. due to the logarithmic increase in the number of 

connections to each node with the increase in the number of dimensions of the 

hypercube. The reduced hypercube (RH) interconnection network. which is obtained 

by a uniform reduction in the number of links for each hypercube node. yields lower-

complexity interconnection networks when compared to hypercubes with the same 

number of nodes. It has been shown elsewhere that the RH interconnection network 

achieves performance comparable to that of the hypercube. at lower hardware cost. 

The reduced VLSI complexity of the RH also permits the construction of larger 

systems. thus. making the RH suitable for massively parallel processing. This thesis 

proposes algorithms for data broadcasting and reduction. prefix computation, and 

sorting on the RH parallel computer. All these operations are fundamental to 

many parallel algorithms. A worst case analysis of each algorithm is given and 

compared with equivalent- algorithms for the regular hypercube. It is shown that 

the proposed algorithms for the RH yield performance comparable to that for the 

regular hypercube. 
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CHAPTER 1 

INTRODUCTION 

1.1 Importance of Massively Parallel Processing Systems 

Parallel processing in recent years has been making great strides in many areas of 

computer application. Parallel processing has made it possible to address many appli-

cations that were until recently beyond the capability of conventional computing. 

Massively parallel processors (MPP) are thought to be the most. likely technology 

to achieve teraflops computational power. MPPs are large scale multiprocessors 

with thousands of nodes connected in a network. Each node has its own processor, 

local memory. and other peripheral devices. The way the nodes are connected varies 

widely. In a direct connected network architecture. each node has a direct connection 

to some other nodes. Direct. connected multicomputers have become a popular archi-

tecture due to their support of scalability. As the number of nodes in the system 

increases. so  does the processing capability. communication bandwidth. and memory 

bandwidth. The goal is to have teraflops performance by the end of this decade. 

Such tremendous computing power is needed in various fields. like aerodynamics. 

astrophysics. biology. and nuclear physics for detailed simulations. 

1.2 The Hypercube Topology 

The objective in building a. commercial MPP system is to have a general purpose 

architecture on which a number of different types of problems can be solved. One 

such general purpose topology is the hypercube which has been widely researched. It 

is also called the direct. binary n-cube. A n-dimensional hypercube has 2" nodes. If 

unique consecutive binary n-bit addresses are assigned to its nodes. then nodes whose 

addresses differ in only one bit have a direct link between them. A hypercube can he 

1 
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constructed recursively as follows: a (n + 1)-dimensional hypercube is constructed 

by connecting the corresponding processors of two n-dimensional hypercubes. The 

hypercube has been a successful architecture due to the following properties: 

1. Low diameter in large systems. The diameter of an interconnection network 

is defined as the maximum distance between all pairs of nodes. For a n-

dimensional hypercube, the diameter is n. 

2. It has a general purpose topology. The hypercube can emulate widely used 

structures very efficiently. There has been significant research in this area. 

Algorithms for mapping rectangular meshes have been proposed among others 

by Chan and Saad [14]. and Johnsson [16]. Binary tree mappings were proposed 

by Wu [15]. Deshpande and Jenevin [3]. Ho and Johnson [16]. and Leighton 

[5] among others. Algorithms for mapping pyramids have been proposed by 

Chan and Sa.ad [14]. Lai and White [11]. and Ziavras and Siddiqui [12]. among 

others. 

3. It has a fault tolerant robust. architecture due to its high degree of connectivity. 

Several commercial hypercube computers have been manufactured. The 

Thinking Machines CM-2. the NCI:BE. and the Intel iPSC are the most important. 

among them. The CM-2 has up to 65.536 PE's which are simple 1-bit processors. 

The other two machines have a smaller number (up to 1,024) of powerful processors. 

An Intel iPSC/1 node has an Intel 80286 processor, with 512 KB of memory. Each 

node can be expanded to add floating point accelerators. extra memory. or I/O 

devices. Ethernet chips are used to implement communication channels between 

nodes. Another channel from each node is used to implement connection back 

to a host. This host processor is called the Cube Manager. The Cube Manager is 

connected to the processors in the cube by a broadcast bus for global communication. 

I/O. and control. 
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Systems that have a pure hypercube network have two major drawbacks: (1) 

the size of the system has to be an integer power of two: and (2) the number of 

communication ports and channels per processor increase logarithmically with the 

increase in the total number of processors in the system which increases dramatically 

the total number of communication channels [1]. This VLSI constraint prevents 

building powerful. massively parallel hypercube systems. 

1.2.1 Variations of the Hypercube Topology 

The high VLSI complexity of the hypercube has led many researchers to look into 

hypercubc-likc topologies with lower VLSI complexity. This section takes a look 

at some existing hypercube variations. The reduced hypercube is another of these 

variations and is described in the next. section. The cube connected cycles CCC(n) [7] 

is obtained from the n-dimensional hypercube by substituting a ring with n nodes 

for each node in the hypercube. Each node in a ring then implements a distinct 

connection in one of the 7? dimensions. The advantage of the CCC(n) is that the 

node connectivity is always 3. independently of the value of n. 

The incomplete hypercube [18] is another important variation of the hypercube. 

An incomplete hypercube is constructed by connecting together two complete 

hypercubes of different sizes. The major disadvantage of the incomplete hypercube 

is that a large number of communication ports may be wasted and as a conse-

quence a significant portion of the system's cost may be spent for unused resources. 

For example, an incomplete hypercube with 1.280 processors can be constructed 

from two complete hypercubes composed of 1.024 and 256 processors. respectively. 

The interconnection of two complete hypercubes requires a number of communi-

cation ports per processor equal to 11 and 9. respectively for the two constituent. 

hypercubes (this is in contrast to 10 and 8. respectively. for the corresponding 

conventional hypercubes). The total number of unused communication ports in this 
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system is equal to 768 (i.e 1.024 - 256). assuming that all the nodes of the smaller 

hypercube are used. The VLSI complexity of the incomplete hypercube is also not 

drastically reduced for parts of the system, as was the goal. Another variation of the 

hypercube is the hierarchial cubic network (RCN) [4] which also uses the hypercube 

as the basic building block. A number of other variations of the hypercube have 

been proposed in the literature. but they do not. reduce its VLSI complexity rather 

they sometimes increase it. in order to achieve better topological properties. 

1.3 The Reduced Hypercube 

The reduced hypercube (RH) interconnection network has been proposed by Ziavras 

[2) in order to reduce the large VLSI complexity of the regular hypercube and. thus. 

facilitate the construction of larger systems. Although a RH can be viewed as a 

hierarchical structure with several levels. only the properties of structures with two 

levels were studied extensively. The algorithms developed in this thesis also assume 

RH's with only two levels. A RH is formed by uniformly removing several edges from 

the hypercube with the same number of nodes. The reduced hypercube RH(k.n) 

contains a total of N nodes. where N = 2k+2n. with k ≥ n1 and n > 0. Each node of 

the RH(k.n) is attached to k +1 bidirectional links. In a regular hypercube with the 

same number of nodes. each node is attached to k+2" bidirectional links. Therefore, 

each node in the N-node RH has k + 2" — (k + 1). or 2"-1 links less than each node 

in the N-node regular hypercube. 

The N-node RH(k,n) is constructed from the N-node regular hvpecube by 

uniformly removing 2" — 1 links from each of its nodes. To accomplish this. the 

(k 2")-bit addresses of hypercube nodes are first partitioned into two fields; the 

0th and 1st  fields. as follows. The Oil' field contains the k least significant bits of 

the (k + 2")-bit node address. This field represents the address of the node within 

a complete k-cube, which will be referred to as a building block (BB). The 1st field 
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contains the 2n most significant bits of the node address. It. represents the address 

of the BB that contains the node. In addition. a subfield is identified in the 0th 

field. the 0th subfield. It contains the n? most significant bits of the k-bit 0th field. It 

represents the address of a (k — n )-dimensional subcube, which will be referred to 

as a subblock (SB). within the k-cube BB that contains the node. For simplicity let 

the term k + 2" be denoted by v from now on. 

In order to reduce the v-cube into the RH(k.n). out of the v (bidirectional) 

links of each hypercube node the following two sets are kept, leaving k +1 links to 

each node. 

Set 1: The k links of the v-cube that traverse the k lowest dimensions (i.e.. 

dimensions 0 through k — 1) and connect the referenced node with k distinct. nodes 

are kept. As a result. a complete k-dimensional building block (BB) that includes 

the referenced node is kept. 

Set 2: This set contains only one link which is also present in the original 

v-cube. This link is the one which connects directly the referenced node with the 

node whose address differs only in the mth  bit of the 1' field. where m is the decimal 

value in the 0th  subfield and 0 < m  < 2" — 1. 

The resultant RH(k.n) contains 22" k-cube BB's. It can also he viewed as 

a 2"-cube of k-cube BB's. A BB address forms the 2" most. significant bits (i.e. . 

the 1st field) of the v-bit addresses for contained nodes. Each BB is divided into 2" 

subblocks (SB's): each SB is a (k — n)-cube. Connections between pairs of SB's 

in different BB's are as follows: A node in a particular SB of a particular BB is 

connected to the node with the same 0th field address which belongs to the BB whose 

2"-bit address differs only in the mth  bit. where m is the value in the 0th subfield of 

the former node. It was shown in [2], that the RH can emulate simultaneously. with 

dilation equal to one. several cube-connected cycles networks. 
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Figure 1.1 shows the structure of the RH(3, 1). There are 2", that is 2'. SB's 

in each BB. Each BB is a complete 3-cube, since k = 3. BB addresses appear above 

each BB. BB addresses have two bits. SB addresses have one bit and appear inside 

the BB box. Links between nodes in different. BB's are shown by dashed lines. 

Figure 1.2 shows the structure of the RH(k.2) where the large squares represent 

the k-cube building blocks. The numbers above the squares represent in decimal the 

BB addresses and the numbers within the quadrants of large squares are the SB 

addresses in decimal. To keep the figure simple. the nodes within the square are 

not shown. Each line between BB's represents 2k-2  bidirectional communication 

channels: this is also the number of nodes in each SB. It is implied that each node 

in a SB is connected to the node with the same 0th  field address in the SB where 

the connection line leads. 

1.3.1 Hypercube Emulation on the RH 

The RH is equivalent to a hypercube with a smaller number of links per node. 

Therefore. the performance of the topology may degrade for algorithms designed 

explicitly for the hypercube. The algorithms given in this thesis are not pure 

hypercube algorithms. They use the hypercube structure within the BB's and then 

use the communication links between the BB's. The emulation of the hypercube by 

the RH has been investigated in [2] and the most important results are presented 

here. 

The dilation of edges associated with the chosen hypercube mapping must 

be found for evaluation of the performance. The dilation measures the increase in 

communication steps to reach a neighboring node, as compared to the hypercube. 

Let the regular v-dimensional hypercube and the target RI-1(k. n) contain the same 

number of nodes; that is 2v, where v = k + 2". Assume that nodes from the regular 



Figure 1.1 The structure of the R.11(3.1) 
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Figure 1.2 The structure of the RH(k.2) 

hypercube are mapped to nodes of the RH with the same address. The following 

theorem (2} presents the resultant dilation of edges. 

Theorem: For the emulation of the v-dimensional hypercube on the reduced 

hypercube RH(k.n) with the same number of nodes. the dilations of edges incident 

to a single node of the hypercube are: 1 for k+1 of them and 2p+1 for ( n  of them, 
P 

( where p = 1. 2.....n. and 	
n1 	

represents the number of distinct p -combinations 
P 

of 71 items. 

Example: The dilations of the edges incident to a single node of the RH(5. 2) 

for the emulation of the 9-dimensional hypercube are 1, 3 and 5 for 6, 2 and 1 edge, 

respectively. Similarly, the dilations of the edges incident to a single node for the 

emulation of the 16-dimensional hypercube on the RH(8.3) are 1. 3, 5 and 7 for 9. 

3. 3 and 1 edge. respectively. 
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The maximum and average dilations are two other important. metrics for 

hypercube emulation on the RH. The following two corollaries provide the means 

for their calculation [2]. 

Corollary 1: The maximum dilation of edges for hypercube emulation on the 

RH(k.n) is equal to 2n + 1. 

Corollary 2: The average dilation of edges for hypercube emulation on the 

RH(k.n) is equal to 

The average dilation of edges for the last two examples is 1.88 and 2.5. respec-

tively. The average dilation of edges has been shown in [2] to be relatively small in 

practical cases. So. there is a small performance degradation for the implementation 

of hypercube algorithms on RH's. The effect of dilation is reduced significantly from 

left to right for the set of four well-known packet switching techniques: store-and-

forward. virtual cut-through. circuit. switching. and wormhole routing. The ring. 

the torus. and the binary tree have been mapped efficiently on the RH [17]. These 

topologies are very frequently used in parallel algorithms. 

We assume a MIMD message passing multicomputer environment for all the 

algorithms developed in this thesis. In this model each node has its own processor 

and memory. Since they do not physically share memory. nodes communicate by 

passing messages through the network. A message is often broken into packets. A 

packet is the smallest unit of communication that contains routing and sequencing 

information which is carried in the packet header. Neighboring nodes send packets to 

one another directly but nodes which are not directly connected rely on intermediate 

nodes in the network to relay packets from source to destination. Most systems now 

have a dedicated router in each node to handle communication related tasks. to allow 

overlapped computation, and communication within each node. The programmer of a 
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multiprocessor invokes various communication system calls to achieve interprocessor 

communication. 



CHAPTER 2 

BROADCASTING ON THE REDUCED HYPERCUBE (RH) 

Broadcasting is a very common operation in parallel algorithms. Initially one 

processor has a data element that. needs to be broadcast. At the end of the broad-

casting procedure. there is a copy of the data element. in every processor in the 

system. Broadcasting is used in several parallel algorithms including matrix-vector 

multiplications. Gaussian elimination. shortest paths. and vector inner product. The 

following section gives the broadcasting procedure for the RH(k. n) for the special 

case where k = n. In the subsequent section the broadcasting procedure will be 

generalized to include the RH(k. 7? ) . for k > n1. The binary tree is the basic structure 

which is used for the broadcasting procedure. 

2.1 Broadcasting on the Reduced Hypercube RH(n,n) 

In the first phase of the algorithm the 2" most. significant. bits of each node's address 

are used to map a (complete) binary tree with 2n levels onto the 2"-dimensional 

hypercube of BB's. The binary tree is double-rooted (using a spacer node) to utilize 

all the BB's in one-to-one mapping [3]. For example. Figure 2.1 shows the double-

rooted binary tree of depth 2 that utilizes all the nodes in the 3-cube. Assume that. 

the index of the LSB in the node address is 0, so that MSB (most-significant bit) 

refers to the bit. with offset. 2n 	k —1. Only the 2n most significant bits of node 

addresses are considered in the first phase. Each virtual node in the mapping is 

actually an n-dimensional hvpercube BB. therefore one of each BB's internal nodes 

will receive the broadcast value from its parent (except for the root.) and up to two 

other internal nodes will have to transmit the received value to their children located 

in two other BB's. 

11 



12 

In the second phase each node within a BB determines whether it is the Node-

of-Entry (NOE) or a Node-of-Exit. (NOX) for the implementation of connections to 

parent and child BB's. An algorithm for broadcasting a value from the NOE to all 

other nodes in a BB must be also introduced. In the third and final phase, without 

loss of generality. the value is broadcast starting from the node with address 0 in 

the root BB in the tree of BB's. The aforementioned phases of the algorithm are 

described in detail in the remaining subsections. 

Figure 2.1 Double-rooted binary tree with three levels 

2.1.1 Phase I: Setting up the Binary Tree Configuration of BB's 

The 2n-level binary tree of BB's is obtained by applying an algorithm that 

implements one-to-one mapping of a binary tree with 22n -1 nodes onto the 2n-

dimensional hypercube [3] of BB's. This phase of the algorithm starts by setting up 

initially 22n-3  three-level double-rooted binary trees having a predetermined config-

uration. That is. every BB becomes a member of a three-level tree; its position in 

the tree is determined by the values of its bits 0.1 and 2 in its 2n-bit address. The 

algorithm given below is run by all 22n+n  nodes in the RH(n.n.) using the 2" most 

significant bits of their addresses. Two transformations of the 2"-hit BB addresses 

are used in the algorithm [3]. Tables 2.1 and 2.2 give the transformations. The 

transformations satisfy the following two properties: 

1. Nodes with distinct addresses map to distinct target nodes. 



13 2.

•  If two nodes are neighbors and thus have addresses differing in only one bit 

position. their new addresses after the transformations also differ in only one hit 

position. Thus. neighborhood between the two nodes is preserved for optimal 

mapping of the three-level tree. 

Table 2.1 Transformation FT3 

xixjxk yiyjyk 

000 100 
001 000 
010 101 
011 001 
100 110 
101 	010 
110 111 
111 I 	011 

Table 2.2 Transformation BT3 

xixjxk  yiyjyk 

000 	001 
001 101 
010 000 
011 100 
100 011 
101 111 
110 010 
111 110 

At each successive iteration of the algorithm, trees are merged to form larger 

trees until eventually a binary tree is formed that. contains a11 BB's. The merging 

of two equal-sized trees requires a spacer node. By the introduction of a single two-

degree node as the child of its root, and thereby stretching (or equivalently double 

rooting) it. the tree can be made to utilize a hypercube completely. The extra. node so 

introduced is used only for communication between the root and one of its children. 

and is called the spacer node. At. the end of this phase of the algorithm each node 

in each BB knows which BB (if any) is its parent. and which BB's (if any) are 
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its children and also their virtual and physical addresses. The tree setup algorithm 

adapted from [3] follows. 

The algorithm is run by all PE's. with each PE assuming that it is the only 

one in the corresponding BB; these PE's will also be called virtual nodes. Each uses 

the following variables: 

• current-port: Every virtual node in the hypercube formed by the BB's has 

2n ports. each one corresponding to a bit position in its 2"-bit address. This 

variable keeps a running pointer to the bit position currently being considered. 

• physical-id: Original BB address of the virtual node. 

• current-id: The virtual node BB address during the current iteration. 

• port-re lot ion (1..2n ): An array of values specifying the current active connections 

of the virtual node. All are initialized to "null"(inactive). 

All possible values a.ssigned to the port-relation(i) variable a.re: 

null: No active connection. 

p: Connection t.o parent virtual node. 

c: Connection to child virtual node. 

The following is the tree setup algorithm of the B B.  s: 

for-all virtual nodes do 

begin 

current-id = physical-id; 

/*set up 2̂ {2̂ n-3}, 3-level trees*/ 

case current-id(bits: 2..0) of 

0: port-relation(0) = port-relation(2) = c; 

1: port-relation(0) = p; 

port-relation(1) = port-relation(2) = c; 



2: port-relation(2) = p; 

3: port-relation(1) = p; 

4: port-relation(1) = c; 

port-relation(2) = p; 

5: port-relation(2) = p; 

6: port-relation(0) = port-relation(2) = c; 

port-relation(1) = p; 

7: port-relation(0) = p; 

end-case 

for current-port = 3 to 2-n-1 do 

begin 

/*Form larger trees iteratively*/ 

if (current-id(current-port)=1) then 

begin 

Apply FT3 to current-id's bits 2,1 and 0; 

/* This transformation is given in Table 1 */ 

end 

if (Bits 3 through current-port-1 are 0) then 

begin 

case current-id(bits: current-port,2,1,0) of 

0: port-relation(2)= p; 

port-relation(current-port)=c; 

4: port-relation(2)= c; 

port-relation(current-port)= c; 

port-relation(1)= null; 

6: port-relation(1)= null; 

port-relation(current-port)= p; 

15 



16 

8: port-relation(2)= null; 

port-relation(current-port)= p; 

12: port-relation(2)= null; 

port-relation(current-port)= p; 

14: port-relation(current-port)= c; 

end-case 

end 

Apply BT3 to bits current-port, 2 and 0 of current-id; 

/* This transformation is given in Table 2 */ 

end 

end 

Figure 2.2 shows the case of merging two k-level binary trees with spacer nodes 

in two k-cubes to form a (k+1)-level binary tree in a (k+1)-cube [3]. The steps are 

as follows: 

1. Apply the FT3 transformation to the nodes of the duplicate mapping using bit-2 

as x bit-1 as xj  and bit-0 as x k  to obtain the mapping given in Figure 2.2(b). 

2. Form a (k 1)-cube by connecting the nodes with like addresses in the two k-

cubes. Append a 0 to the left of addresses in the original k-cube and a I to the left 

of addresses in the duplicate k-cube. 

3. Remove links 0S100-0S110 and 1S100-1S000. and attach links 0S000-1S000, 0S110-

1S110 and 0S100-1S100 as shown in Figure 2.2(c) to obtain Figure 2.2(d). 

4. Apply the BT3 transformation to the nodes of the (k 	1)-cube to obtain a 

(k + 1)-level double-rooted binary tree rooted at 0S000 (it. is OS100 before the trans-

formation). In applying the BT3. use the most significant bit as x i . the third least 

significant bit as xj. and the least significant bit as xk. Replace OS by S' to obtain 

a structure similar to the base structure we started with. The resultant mapping is 

shown in Figure 2.2(e). 



Because of the binary tree mapping. each BB corresponds to one of the 

following cases: 

1. It has two children and no parent. This is the root. BB. 

2. It has a parent and a single child. This is the second root or spacer BB. 

3. It has a parent and two children. These are all intermediate BB's, excluding the 

spacer BB. 

4. It has a parent and no children. These are the leaf BB's. 

All nodes within a BB produce the same parent and/or children BB addresses in 

Phase I. 

2.1.2 Phase II: Determining the Nodes-of-Entry and Nodes-of-Exit 

Each node then determines whether it is directly connected to a parent or a child 

BB. It does this by comparing its BB address with the address of parent (if any) 

and child (if any) BB's computed in Phase I. If such a comparison shows a difference 

in a single bit with offset equal to the value stored in the 0th subfield of the nodes 

address. the node knows it is directly connected to the corresponding parent or child 

BB. Each node which is directly connected to a parent BB marks itself as Node-of-

Entry (NOE). Each node which is directly connected to a child BB marks itself as 

Node-of-Exit (NOX). We must. remind here that each SB in the R.H(n,n) contains 

a single node. so  there is no ambiguity with regards to the chosen node. Each BB will 

have up to one NOE node and up to two NOX nodes according to the classification 

presented in subsection 2.1.1. Each BB then internally maps a binary tree with 

the NOE node as the root using the algorithm [3] presented for the first. phase and 

assuming an n-cube as the target system. 
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Figure 2.2 Binary tree merging in the hvpercube 
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2.1.3 Phase III: Broadcasting the Value to all Nodes 

Assume. without loss of generality. that the value to be broadcast is stored in the 

node with address 0 in the root BB with address 0. The value is then broadcast to 

the BB's using the binary tree of BB's. In each BB the NOE node receives the 

value first and passes on the value to its children following a binary tree mapping for 

the n-cube BB. If a node that receives the value is a NOX, it passes on the value to 

the neighbor in the next level of the binary tree of BB's. and also passes on the value 

within the same BB using the internal binary tree mapping. If an intermediate node 

is not a NOX. it just passes on the value to its two children in the same BB using 

the internal binary tree mapping. To broadcast a value from a node other than 0 in 

BB 0. simple transformation of addresses is needed because of the symmetry in the 

n-cube BB's and in the 2n-cube of BB's. 

2.1.4 Analysis of the Algorithm 

Phase I: 

According to [3] the tree setup algorithm requires time O(2") for the 2"-cube of 

BB's. 

Phase II: 

It takes time 0(2") for each node to determine whether it is NOE. a NOX. or 

neither. because 2" bits must be checked. The mapping of a binary tree onto the 

n-cube BB consumes time 0(n). So this phase takes time 0(2" ). 

Phase III: 

Broadcasting on the 2"-cube of BB's requires time 0(2") because of the binary tree 

mapping. Broadcasting within a single n-cube BB requires time 0(n) because of 

the binary tree mapping. Therefore, this phase takes time O(n2n). 

Therefore, the overall time complexity of the algorithm is 0(n2"). In contrast. 

broadcasting on the (2" n)-dimensional hypercube with the same number of nodes 



requires time 0(2" + n?) or 0(2"). However. in practical cases the value of n is 

small. that is 1. 2. 3. or 4 [2]. therefore. broadcasting on the two systems requires 

comparable amounts of time. 

2.2 Broadcasting on the Reduced Hypercube RH(k,n), where k>n 

This subsection generalizes the broadcasting procedure given in the previous 

subsection for the RH(n.n) to make it applicable to the RH(k.n). where k > n. It 

has been mentioned in [2] that for k > n the RH(k.n) is viewed as 2k-n RH(n.n)'s 

where all nodes with the same address in the 2k-n  distinct RH(n. n)'s are connected 

to form a (k — n)-dimensional hypercube. The nodes' addresses in the latter 

hypercube become the least significant k — n bits of the nodes' addresses in the 

RH(k.n). This property will be used in this section in order to follow basically the 

algorithm of section 3.1. 

Without loss of generality. assume broadcasting from the processor with address 

0. All nodes with zeros in the 2n + 11 most significant bits of their address participate 

in the first phase of the algorithm. In this phase a (k — n )-level binary tree with a 

spacer node is mapped to a (k — n )-cube in BB 0. This hypercube contains all nodes 

that have all zeros in the 2n + n  most significant. bits of their address. Broadcasting 

is then carried out in this binary tree within BB 0. starting from the node with 

address 0. Ignoring the k — n least significant bits of node addresses. broadcasting is 

then implemented independently within the distinct 2k-n  RH( n.n)'s. Broadcasting 

begins with that node of each RH(?... n) whose all 	+ n most significant bits in the 

address are zeros; this broadcasting follows the procedure given in section 2.1. 

 

2.2.1 Analysis of the Algorithm 

The broadcast of the value within the (k — n)-cube of BB 0 requires time 0(k — n). 

The parallel broadcast. of the value within the distinct RH(n.n)'s requires time 
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0(n2n). as given in section 2.1.4. Therefore, the overall time complexity of the 

broadcast. algorithm for the RH(k.n) is O((k — n)+n2n ) or 0(k +nr). In contrast, 

broadcasting on the (2n+ k)-dimensional hypercube with the same number of nodes 

requires time 0(2n+ k). However. in practical cases the value of n is small, that is 1, 

2. 3 or 4. therefore, broadcasting on these two systems requires comparable amounts 

of time. 



CHAPTER 3 

REDUCTION OPERATION ON THE REDUCED HYPERCUBE (RH) 

Data reduction is an operation where an associative operator must be applied to 

values stored one per processor. in order to produce a single result. The common 

associative operators are logical OR. logical AND. maximum. minimum. and add. 

For example. consider the operation in which one processor in the reduced hypercube 

wants to know the sum of the values stored in all the processors including itself. 

Reduction often facilitates barrier synchronization on message-passing parallel 

computers. The concept of barrier synchronization is that a set of processes in 

execution cross a "barrier"  as an atomic action: it. means that after a11 processes 

have reached the barrier. all traverse it. at once [20]. Barrier synchronization is useful 

for separating different phases of a concurrent algorithm. 

3.1 Data Reduction Algorithm 

Many-to-one mapping of a binary tree is very suitable for the implementation of 

the reduction operation on a hypercube. A binary tree of height. d can be optimally 

mapped in a. many-to-one manner onto a hypercube with 2d  nodes as follows [8]: 

1. The root of the tree is mapped onto any hypercube node. 

2. For each node i at depth j (the root is at depth 0). the left child of i is mapped 

to the hypercube node i, and the right child of i is mapped to the hypercube node 

whose address is obtained by inverting bit p - j + 1 of node i 's address, where p is 

the offset of the most significant. bit. Nodes from and• single level of the binary tree 

are mapped to distinct hypercube nodes. 

Figure 3.1 shows the mapping of a tree of height 3 onto a hypercube of dimension 

3, assuming that the root. has address 0. Since we determine the right child of a 
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node by complementing one bit. of its address, there is an edge in the hypercube 

that directly connects these two nodes. We also see that the leaves are consecutively 

numbered. 

Figure 3.1 Many-to-one mapping of a binary tree of depth 3 onto a hypercube of 
dimension 3 

The data reduction algorithm for the RH proceeds as follows. A binary tree 

is first mapped onto each k-c.ube BB. according to this many-to-one manner. Each 

node at depth k-1 does a reduction operation with its right child which is a leaf. Then 

each node at depth k-2 does a reduction operation with its right child, and so on till 

we reach the root. which is chosen to be the node 0 in the BB. Each BB now has a. 

node with the result of the reduction operation for the BB. The 2n most significant. 

bits of node addresses are then used to map in a many-to-one manner a. (2n+1)-level 

binary tree onto the 2n-cube of BB's, using the algorithm given above. At. most n 

hops are required within a BB to go from the node which has the reduction operation 

value for that BB to the node (whose 	n least significant bits are zeroes) which 
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implements a connection to its parent. BB in the binary tree of BB's. and then at 

most another n hops to go from the latter node to the node which has the reduction 

operation value for the parent BB. This node then performs the reduction operation. 

If it is the right child of its parent. it passes on the value to the parent, BB as indicated 

above. So. there is a dilation of at. most 2n + 1. At. the end of this stage, the node 

with address 0 in the RH(k.n) will have the final reduction operation value. 

3.2 Analysis of the Algorithm 

It takes d steps for a reduction operation to be done on a tree of height d. The binary 

tree of BB's has height 2n for the hypercube. The reduction operation within BB's 

requires time 0(k). The reduction operation between pairs of BB's requires time 

0(n). Since the reduction operation among BB's requires time O(n2n) ), the total 

time required is 0(k + n2n). The reduction algorithm for the hypercube with the 

same number of nodes has a time complexity of O(2n + k) because a (2n  + k+1)-level 

binary tree will be mapped in a many-to-one manner. Since the value of n is small 

in practical cases. it. takes comparable amounts of time for the implementation of 

the reduction operation on the two systems. 



CHAPTER 4 

PREFIX OPERATION ON THE REDUCED HYPERCUBE (RH) 

Prefix computation is commonly used in various parallel algorithms. including the 

evaluation of polynomials. ranking and packing problems. solution of linear recur-

rences. carry look-ahead addition. finding convex hulls of images, and scheduling 

problems. Given p numbers no. 	n p_,. the prefix computation problem is to 

compute 5k  =n0 	 nk. for all k between 0 and p —1. where (-IL denotes an 

associative operator. Initially nk  resides in the processor with address k. and at the 

end of the procedure the same processor holds sk. 

4.1 Phase I: Prefix Operation within BB's 

Each processor in the BB maintains two parameters. namely rslt and msg  [8]. These 

parameters are initialized with the value ni  that the processor contains. k steps 

follow. In step z. each processor sends its msg  parameter to its neighbor in dimension 

i. for i = 	 — 1. Its new msg value is obtained by applying E1,-) to the old 

msg value and the one received. If the incoming value comes from a lower-addressed 

neighbor. then assign to rslt the value obtained by applying 	to the old rslt value 

and the one received. 

4.2 Phase II: Prefix Operation among BB's 

In this phase the connections between the subblocks of different BB's are utilized 

for the prefix computation. The algorithm goes through several steps. In each step 

some BB's receive a prefix value from other BB's and pass on the value to the node 

with address 2k  - 1 in the BB. This node applies the associative operator to the 

values it receives in order to combine the result at the end with the value it contained 
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in the end of the first. phase and send it to other BB's. It also keeps a. copy of the 

result for the rest of the nodes in its BB. When it. has received the prefix values from 

all preceding BB's. it broadcasts the result to a11 nodes in the BB which update 

their prefix values. The receiving BB's in all steps also follow this rule: if they 

receive the value from a BB which is labeled 2m higher or lower than themselves. 

they pass on the value to the BB's which are labeled 2°. 2'. 22 . 	and 2m-1 lower 

than themselves. 

In the first step each BB which has a one in hit position zero of its address 

receives the prefix value from the BB whose address differs (from its own address) 

only in that bit. The receiving BB's follow the rule outlined earlier. In the second 

step each .BB which has ones in bit positions 1 and 0 receives the prefix value from 

the BB whose address differs only in bit position 1. So. in each step the prefix 

operation is carried out in one of the dimensions of the hypercube formed by the 

BB's. These steps can be generalized by the following loop: 

for i=0 to 2n — 1 do 

begin 

Each BB which has ones in bit. positions 0. 	i of its address receives the prefix 

value from the BB whose address differs only in bit position i. The receiving BB's 

follow the rule outlined earlier. 

end 

Each of the steps above has substeps where the receiving BB's distribute the prefix 

value calculated up to that stage. as discussed earlier. Figure 4.1 shows the commu-

nication steps between BB's for the prefix operation in the RH(k. 2) (see Figure 1.2). 

Each node in the figure represents a BB with four subblocks. 



Figure 4.1 Prefix operation between BB's for the 

2
7
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4.3 Analysis of the Algorithm 

The first phase of the algorithm takes time 0(k). Each step in the second phase of 

the algorithm has substeps as shown in Figure 4.1. The total number of substeps is 

1+2+3+...+2n which adds up to 92n-1 + 
2n-1

 or 0(9') substeps. Each substep takes 

time 0(n). The value at the end is broadcast to all nodes in each BB in 0(k) steps. 

Therefore. the time complexity for the second phase of the algorithm is 0(n4n k). 

Therefore. the overall time complexity of the algorithm is O(n4n + k). A hypercube 

with the same number of nodes would take time 0(2" + k). In practical cases. the 

overhead due to missing- links in RH's may not be significant.. 



CHAPTER 5 

SORTING ON THE REDUCED HYPERCUBE (RH) 

Sorting is one of the most common operations done on a computer. Many algorithms 

require sorted data as they are easier to manipulate than randomly ordered data. 

This section looks at an implementation of the sorting operation which can be 

done on the reduced hypercube parallel computer. Sorting is defined as the task 

of arranging an unordered collection of elements into monotonically increasing (or 

decreasing) order: without loss of generality. the increasing order is assumed. Specif- 

ically. let S 	a 2..... al, > be a sequence of p elements in arbitrary order: sorting 

transforms S into a monotonically increasing sequence 5' =< 	 >. such 

that u, ≤  a')  for all 1 ≤ i < j ≤  p. and 8' is a permutation of S. 

The global order assumed by the algorithm is as follows: BB's are assumed 

ordered according to their 2n-bit sequential addresses. The nodes inside a BB are 

assumed ordered according to their k-bit sequential addresses. 

5.1 Sorting Algorithm 

Let N=22n+k  be the number of nodes in the RH(k.n). with k > n. Let p be the 

number of data elements, where p > N. Initially each processor is assigned a block 

of p/N elements. The algorithm consists of three phases. In the first phase data 

elements in a BB are sorted. In the second phase data are sorted among BB's. In 

the third phase the sorted data are distributed within each BB. 

 

5.1.1 Phase I: Sorting of Data within BB's 

All the nodes sort the p/N elements internally using merge sort. All the k-cube 

BB's then sort their data using the bitonic sort. algorithm [6]. To prepare for the 
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second phase. each node in any particular BB sends its p/N sorted data elements 

to that node in the same BB whose address differs from its own address only in 

the subblock address bits, which are all zeros. This can he done in time O(np/N) 

using the hypercube connections and the E-cube routing algorithm: it. can take less 

time with wormhole routing. All nodes in the SB with all SB address bits zeros 

concatenate the incoming data. elements to their own data. elements in the increasing 

order of source SB addresses. 

5.1.2 Phase II: Sorting between BB's 

The algorithm takes advantage of the fact that. a RH can be viewed as a hypercube of 

hypercubes (BB's). therefore bitonic sort [6] can be applied to the former hypercube. 

The algorithm does compare-exchange in dimension 0 first (this is the reason all 

data in a BB were moved to SB 0), then dimensions 1 and 0. in this order. then 

dimensions 2. 1 and 0. in this order. and so on. In each step the data elements are 

passed to the SB implementing connections in that respective dimension in all the 

BB's. Each physical processor involved in this phase can be viewed as 2n virtual 

processors. Each time the (k -n+ 1)-cube formed by the two SB's applies again 

the bitonic sort algorithm assuming a virtual (n +1)-cube. At the end of the last 

step. the sorted elements in each BB are in the SB with address zero. 

5.1.3 Phase III: Distribution of Sorted Values in BBs 

The SB with address 0 in each BB will have the sorted sequence for the BB at 

the end of phase II. The sequence of p/22n  elements in each such SB is divided into 

2" subsequences of consecutive elements for distribution to the other 2n-1 SB's in 

the BB. so that. global order is achieved. E-cube routing is used to distribute the 

subsequences. 
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5.2 Analysis of the Algorithm 

Each node internally sorts its p/N data elements in time O(p/N(log(p/N))) using 

merge sort. It takes time O(p/N(log22k)) or O(p/N(k2)) for the values to be sorted 

in each BB using the bitonic sort algorithm. It takes O(np/N) time for these 

sorted values to accumulate in the lowest- addressed SB in each BB, because up 

to 1? dimensions may be traversed for each datum. In the second phase it. takes 

O((p/N)2n) communication cycles to transfer sequences between neighboring SB's 

because (p/N)2n is the number of elements in each active processor. Bitonic sort 

in the (k — n + 1)-cubes formed by neighboring SB's in neighboring BB's takes 

time O((p/N)log22n+1) or O((p/N )n 2 ) time. Lets denote the term (p/N)2n  by the 

symbol 3. and the term (p/N)n2  by the symbol a. 3 denotes the time spent in 

communicating data elements between neighboring SB's. and a denotes the time 

spent in sorting data between SB's in neighboring BB's. The total asymptotic time 

complexity of the second phase of the algorithm is on the order of 

where step i starts with the ith dimension of the 2n-cube of BB's. 

This can be expressed by the following summation 

which simplifies to O(4" (a +3)) or O((p/N )8n ). where N = 22n+k. Thus it takes time 

O(p/2k-n). The third phase takes time O(np/N), assuming that, higher priority is 

given for data transfers to SB's at larger distances. Thus, the total time complexity 

is O(p/N(log(p/N))+(p/N)k2  +n(p/N)+p/2k-n ). For small values of n (that. is only 

k increases). this time is O((p/2k  )k2 ). In contrast. bitonic sort. on the hypercube with 

the same number of nodes consumes time O((p/N)log2(22n+k ), or O(p/N(2n+k)2 ). 

or O(p/N(4n+ 	k2  + k2n)). For small values of n, this time is O((p/2k )k2 ). thus 

achieving almost. similar performance on both systems. 



CHAPTER 6 

CONCLUSIONS 

The main focus of this thesis was to develop algorithms on the RH for operations 

which are very frequently used in many parallel algorithms. The algorithms which 

were developed are for data broadcasting and reduction, prefix operation. and sorting. 

A one-to-one mapped binary tree was the basic structure used in broadcasting. 

The broadcasting operation was shown to be comparable to a similar operation on 

the hypercube. A many-to-one mapped binary tree was the basic structure used in 

the reduction operation. The reduction operation too was seen to be comparable 

to a similar operation on the hypercube. So these two operations should perform 

comparably well on the RH. The prefix computation and sorting algorithms also 

achieve comparable performance with the hypercube for systems with small number 

of missing links. 

A RH has significantly lower VLSI complexity and comparable diameter and 

average internode distance compared to a regular hypercube with the same number 

of nodes [2]. The mapping on to RH's of frequently used topologies. like the ring. 

the torus. and the binary tree have been shown to be efficient. [17]. Algorithms for 

some frequently used operations in parallel algorithms were presented in this thesis. 

The results show that RH's achieve good performance. Thus, it can be said that 

RH's are a viable topology for building massively parallel hypercube-like systems. 
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