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ABSTRACT 
Processor Allocation Strategies for Modified Hypercubes 

by 

Nagasimha G. Haravu 

Parallel processing has been widely accepted to be the future in high speed 

computing. Among the various parallel architectures proposed/implemented, the 

hypercube has shown a lot of promise because of its poweful properties, like regular 

topology, fault tolerance, low diameter, simple routing, and ability to efficiently 

emulate other architectures. The major drawback of the hypercube network is that 

it can not be expanded in practice because the number of communication ports 

for each processor grows as the logarithm of the total number of processors in the 

system. Therefore, once a hypercube supercomputer of a certain dimensionality has 

been built, any future expansions can be accomplished only by replacing the VLSI 

chips. This is an undesirable feature and a lot of work has been under progress to 

eliminate this stymie, thus providing a platform for easier expansion. 

Modified hypercubes (MHs) have been proposed as the building blocks of 

hypercube-based systems supporting incremental growth techniques without intro-

ducing extra resources for individual hypercubes. 

However, processor allocation on MHs proves to be a challenge due to a 

slight deviation in their topology from that of the standard hypercube network. 

This thesis addresses the issue of processor allocation on MHs and proposes various 

strategies which are based, partially or entirely, on table look-up approaches. A 

study of the various task allocation strategies for standard hypercubes is conducted 

and their suitability for MHs is evaluated. It is shown that the proposed strategies 

have a perfect subcube recognition ability and a superior performance. Existing 



processor allocation strategies for pure hypercube networks are demonstrated to be 

ineffective for MHs, in the light of their inability to recognize all available subcubes. 

A comparative analysis that involves the buddy strategy and the new strategies is 

carried out using simulation results. 
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CHAPTER 1 

INTRODUCTION 

1.1 Importance Of Parallel Processing Techniques 

Parallel computers have proven themselves very useful in solving many engineering 

and scientific problems. The main advantage of using a parallel computer over 

the sequential one is that different parts of the user program can be executed at 

the same time, allowing a reduction in the execution time of the program [14]. 

Although earlier supercomputers like the IBM 3081/3084, CRAY-2 and Burroughs 

D-825 achieved their high performance by increasing the raw speed of the electronic 

components and logic circuits, further increase in their speed is limited by the speed 

of light. Parallelism at the processor level has been shown to effectively overcome 

the above bottleneck [30]. As a result of evolutionary advancements in compu-

tation and communication technology, supercomputers consisting of thousands of 

processors are already available. In addition to providing enhanced availability, 

recongifurability and resource sharing, these massively parallel systems can theo-

retically multiply the computational power of a single processor by a large factor. 

The key advantage of such systems is that they allow concurrent execution of tasks 

which can be independent programs or partitioned modules of a single program. 

The extremely powerful parallel machine will still fail to perform at its full 

strength unless the communication overhead, which has been proving to be the 

1 



major pitfall, is largely reduced. Research in this area has produced breakthroughs 

in the form of optical fiber technology. High speed optically interconnected parallel 

machines may become commercially available in the near future. 

The areas in which parallel processing can be effectively used in scientific 

and engineering research is very vast. They include Aerodynamics, Astrophysics, 

Biology, Computer Science, Chemistry, Geophysics, High Energy Physics, Material 

Science, Meteorology, Nuclear Physics and Plasma Physics. Industrial applications 

of parallel computers include the oil, the automobile and the pharmaceutical in-

dustries [15]. 

1.2 Networks For Parallel Computing Systems 

One major way of classifying parallel computers is by their architecture or topology 

of the interconnection between the processing elements (PEs). Some of the possible 

choices are illustrated in Figure 1.1. An important class of parallel computers make 

use of shared memory. The simplest design of this class is shown in Figure 1.1(a) 

and uses a common bus, or communication channel, to allow the individual PEs 

to access the shared memory. This design is appropriate if N, the number of PEs, 

is small. However, since the effective bus communication time in this approach is 

proportional to N, the design becomes inadequate for large N. 

When the two open ends of the bus are joined together, the resulting topol-

ogy is called the ring topology. This shared memory network, illustrated in Figure 

1.1(b), has the advantages of better compatibility with fiber optics communication 

channels and better maintainability. 

A more sophisticated shared memory design is typified by Figure 1.1(c) and 

involves a dynamic switch connecting the processor units to the shared memory. 



Figure 1.1: Examples for parallel computing systems topology. (a) A linear array; 
(b) the ring topology; (c) a dynamic switch; (d) a 2-d mesh; (e) the binary tree; (f) 
the hypercube. 
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In Figures 1.1(d)-(f), we illustrate a different class of machines characterized 

by a distributed memory. 

In pure distributed memory machines, the basic PE includes local memory 

to the exclusion of shared or global memory. The two-dimensional mesh and the 

binary tree are a few examples wherein the number of channels needed per node 

is independent of N. The hypercube, on the other hand, requires that the number 

of channels per node grow logarithmically with N. The two-dimensional mesh is a 

popular architecture for image processing applications, whereas, the tree topology 

is most useful in managing huge data bases. The hypercube has proved to be the 

most popular among all the above architectures and will be discussed at greater 

depth at a later section. 

1.3 Motivations and Objectives 

A large number of papers have dealt with hypercubes and some commercial hypercube-

based systems have successfully been introduced. Such systems are the Intel iPSC, 

the nCUBE, the Connection Machine, etc. The most important reason for the 

undisputable success of the hypercube network has been its inherent capability of 

supporting the interconnection of large number of resources with small resultant 

diameters. The diameter of a network is defined as the maximum of the shortest 

distances between pairs of nodes. The low diameter of the hypercube network, 

which is equal to n for the n-dimensional hypercube, is the direct result of its high 

degree of interconnectivity and its highly regular structure [33]. 

These advantages of the hypercube network, along with its inherent fault-

tolerance capabilities (due to its highly-interconnected structure), make it very 

flexible for the emulation of other frequently used networks. In fact, dozens of 

algorithms have been proposed for embedding several important networks into the 
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hypercube. For example, the problem of embedding rectangular meshes has been 

addressed, among others, by Chan and Saad [7], and Johnsson [20]. Algorithms 

for embedding trees have been proposed, among others, by Wu [32], Deshpande 

and Jenevin [10], Ho and Johnsson[18], and Johnsson[20]. Finally, algorithms for 

embedding pyramids have been designed, among others, by Chan and Saad [7], and 

Lai and White [24]. 

Nevertheless, systems that contain a pure hypercube network have two ma-

jor drawbacks: (1) They always contain a number of processors which is a power 

of two. (2) The numbers of communication ports and links per processor increase 

as the logarithm of the total number of processors in the system. Although many 

hypercube variations (discussed in a later section) have been proposed in the liter-

ature, there does not currently exist any solution to the problem of interconnecting 

multiple hypercubes, of not necessarily the same number of dimensions, at the low-

est possible cost (i.e., without the introduction of any extra resources). In contrast, 

Ziavras [33] has proposed a methodology that slightly modifies hypercubes in order 

to support their incremental growth without introducing or wasting any resources 

for individual hypercubes. Systems comprising clusters of slightly modified hyper-

cubes (Allis) are called multicube systems. The proposed methodology allows the 

construction of systems that satisfy the following four vital goals. (1) The basic 

building blocks of multicube systems are slightly modified hypercubes. (2) The 

total number of processors in a multicube system is not necessarily a power of two. 

(3) The numbers of communication ports and links per processor do not grow log-

arithmically with the total number of processors in multicube systems. (4) Finally, 

all the available resources in multicube systems could be fully utilized. 

Processor allocation is a crucial factor in determining the performance of a 

parallel computer. Many problems in engineering and science can be formulated in 



terms of directed and undirected graphs. Various algorithms have been reported 

in the literature for mapping such graphs onto regular interconnection topologies 

such as rings, trees, meshes, pyramids, etc. Most of these topologies can easily be 

embedded into the hypercube [27]. Given a task graph, the processor allocation 

problem for the hypercube can be formulated as continuous requests for subcubes 

of arbitrary size and residence time. The objective then becomes the allocation of 

appropriate subcubes in the parallel machine so that certain performance measures 

are maximized or minimized. The problem of processor allocation is in contrast to 

the task scheduling problem wherein there is a continuous request of tasks to be 

scheduled on the hypercube and the scheduler decides on the number of processors 

to be allocated to the requesting tasks, depending on the parallelism in the prob-

lem; the scheduler may also migrate some of the tasks for efficient load balancing. 

Further details on scheduling algorithms for hypercubes can be found in [2] and 

[7]. The various processor allocation strategies proposed for standard hypercubes 

fail when applied to MHs because of the slight difference between the topologies of 

standard hypercubes and MHs. 

1.3.1 Problem Statement 

The chief objective of this research is to propose processor allocation techniques for 

the family of MHs and to determine the performance of the techniques by simulation 

methods. 

1.3.2 Research Contributions 

A summary of all the contributions of this research follows: 

• Study of the existing allocation techniques on standard hypercubes and de-

termining their suitability for MHs. 
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• Identification of all possible subcubes of all possible dimensions in a given 

MH. 

• Proposing a, processor allocation strategy much suited for the MH; this strat-

egy is based on a "table look-up" approach. 

• Modifying the table look-up technique to incorporate some features of the 

"free list" strategy, an effective allocation strategy for standard hypercubes. 

• Proposing a parallel version of the table look-up technique in order to reduce 

the time complexity and achieve even higher resource utilization. 

• Finally, simulation of the table look-up technique and the buddy strategy, 

another strategy proposed for the standard hypercube, and compare their 

performances when implemented for MHs. 



CHAPTER 2 

HYPERCUBE-BASED 

NETWORKS 

2.1 Pure Hypercube Networks 

The hypercube or Boolean N-cube is a network configuration of 2N  processors such 

that each processor has exactly N neighbors. The positive integer N is the order 

of the cube, a three dimensional cube, for example, is a third order Boolean cube. 

Each node. representing a processing element, in the latter case has three adjacent 

nodes and three processors that are one node away. The twelve edges of the cube 

represent the direct communication links between pairs of nodes. Simultaneous 

communication between several pairs of nodes can occur. 

Higher order cubes are more difficult to visualize. Figure 2.1 shows a fourth-

order cube which can be described as a cube inside a larger cube with corresponding 

corner nodes connected. Messages sent between non-neighboring nodes are passed 

from node to node until they reach their destination. The routing path can be 

configured easily by successively inverting one bit of the source address until it 

exactly matches the destination address. For example, to route data from 0101 

node to 1010 node, it can be passed through nodes 0100, 0110, and 0010. For 

efficient routing, the Hamming distance between the routing nodes and the target 

node must always decrease by 1. 

9 



Figure 2.1: A four dimensional hypercube. 
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For an n-processor network, the farthest node is only log2  n away. For every 

pair of nodes there are (log2n)! possible routes; hence if a particular node is busy, 

the data can be rerouted using another path. Because of this, the system will never 

deadlock - a condition when all channels are blocked. The hypercube is also fault 

tolerant, i.e., if some channels or nodes are disabled, the cube can still operate in a 

degraded mode [30]. Other important properties of the hypercube network are (1) 

simple routing, (2) high degree of fault tolerance, and (3) ability to efficiently map 

other architectures onto the hypercube. 

2.2 Hypercube-Like Networks 

Several variations of the hypercube network have been proposed in the past. Al-

though they may improve one or more topological properties of the hypercube, they 

do not support ease of expansion for hypercube systems. A brief discussion of the 

most important hypercube variants follows. 

The twisted cube [1] needs the same amount of resources as the standard 

hypercube. It is constructed by repositioning some of the links in the hypercube 

so that they span two dimensions. The advantage of the twisted cube is that its 

diameter is only 1(n+ 1)/2] for a network with 2' nodes. The obtained asymmetric 

network affects the dynamic performance of the system, so that the improvement in 

performance over the hypercube is not nearly as much as the reduction in diameter. 

Another twisted cube variant repositions two links within a single 4-cycle [13]. For 

a network composed of 2' nodes, the diameter is n — 1. Also, enhanced incom-

plete hypercubes [21] can be constructed from incomplete hypercubes by directly 

connecting pairs of PEs with extra links attached to otherwise unused ports. The 

extra links decrease the diameter of the network and the average distance between 

pairs of nodes. A folded hypercube [4] is constructed from a standard hypercube by 
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establishing for each node direct connection with the unique node that is farthest 

from it. The folded hypercube may perform better than the corresponding hyper-

cube because of its smaller diameter, which is rn/21 for a network containing 2" 

nodes, better average distance, and less message traffic density. However, its major 

drawback, when compared to the hypercube, is the increased number of communi-

cation ports and links. More specifically, a folded hypercube with 2" nodes has 2" 

extra communication ports and 2n-1 extra links when compared to the correspond-

ing n-dimensional hypercube. Some other variations, for which it could safely be 

stated that they are farther away from the hypercube than the above variations, 

are: the cube-connected cycles [25], the cubical ring connected cycles [5], the block-

shuffled hypercube [19], hyper-rectangulars [22], the generalized folding cube [9], 

the spanning bus hypercube [31], the generalized supercube [28], etc. 

In another variant, the incomplete hypercube [21, 29], a large number of 

communication ports could be wasted and as a consequence a large portion of a 

system's cost should be spent for unused resources. For example, an incomplete hy-

percube with 1280 processors could be constructed from two complete hypercubes 

composed of 1024 and 256 processors respectively. However, in order to implement 

the interconnection between the two complete hypercubes, the number of commu-

nication ports per processor will be 11 and 9 respectively for the two constituent 

hypercubes (this is in contrast to 10 and 8 for the corresponding standard hyper-

cubes). The total number of unused communication ports in this system will be 

equal to 768 (i.e., 1024 — 256), assuming that all the extra links of the hypercube of 

size 2n0 + 2'13  are implemented as the interconnection of two complete hypercubes 

with no  and n1  dimensions respectively, then the lower limit on the total number 

of unused communication ports will be equal to 12" — 2"''. 

In a similar fashion, the basic building block of hierarchical cubic networks 
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(HCNs) [16] is the hypercube. However, HCNs use a smaller number of links per 

node and their diameter is smaller than that of corresponding hypercubes. An HCN 

that contains 2m+n nodes, where n > m, has a diameter which is smaller than or 

equal to m n; m n is the diameter of the hypercube with the same number 

of nodes. This HCN will employ n 1 links per node. Similarly to incomplete 

hypercubes, HCNs can not be viewed as interconnections of hypercubes because 

they assume the existence of extra hardware for individual processors (more specif-

ically, they need one extra communication port per processor when compared to 

the corresponding hypercubes). 

Since the present work is based on the modified hypercube network, a deeper 

insight into it is pertinent. 

2.3 Modified Hypercubes 

2.3.1 The Structure of Modified Hypercubes 

The constituent hypercubes of multicube systems should not generally be con-

nected to hosts and/or peripheral devices in a way similar to the one used for 

intra-hypercube communications. This is also true for commercial hypercubes. For 

example, each processor in the Intel iPSC/1 system contains I/O hardware and 

implements the Ethernet protocol [26]. Since the entire system has a single host 

that serves as the I/O handler, the I/O bandwidth of this system is relatively low. 

The I/O structure of the Intel iPSC/2 system is much more effective because it uses 

multiple disks and data declustering techniques. In the nCUBE system, subcubes 

of eight processors are assigned a single I/O processor and the I/O processors are 

interconnected partially. In the Connection Machine CM2 system with 64K pro-

cessors, as many as 2K processors can send or receive data at a time [17]. Transfers 

of data are performed by I/O controllers which interface through an I/O channel 
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to CM2 data lines. These I/O controllers operate under the control of up to four 

sequencers. Two controllers may be active simultaneously on each sequencer. 

In order to construct a multicube system that uses identical technologies and 

protocols for the implementation of all inter-processor communications, some of the 

intra-hypercube communication links of individual hypercubes should be cut and 

used for inter-hypercube communications [33]. Thus, the existing I/O structure of 

the constituent hypercubes will not be modified. In fact, we should expect that 

the already existing I/O structure of individual hypercubes will perform very well 

for the resultant multicube system, since it is designed to perform very well for 

the constituent hypercubes. The term I/O PEs (processing elements, which are 

composed of a processor and local memory) is used in [33] to denote PEs in the 

system which are used for inter-hypercube communications. 

The larger the number of I/O PEs and the more uniform their distribution 

in the system, the higher the utilization of multicube PEs in general, because of 

the fast implementation of inter-hypercube communications. For example, if a 

hypercube has two I/O PEs, these PEs should be diametrically opposite (i.e., their 

binary addresses should complement one another). In a hypercube with four I/O 

PEs. two pairs of diametrically opposite PEs should be chosen for I/O. Figure 

2.2 shows the embedding of four I/O PEs in a 4-cube. PEs which are not used 

for I/O are adjacent to I/O PEs in this figure. Reddy and Banerjee [26] have 

used the term perfect I/O embedding for the case where every PE in the system 

is adjacent to exactly one I/O PE (however, they have instead studied pure I/O 

in standard hypercubes). They have shown that a perfect embedding exists in the 

n-dimensional hypercube if and only if n = 21  — 1, for some integer 1. 

For reasons of uniformity, the total number of I/O PEs in Mils is assumed 

to be a power of two. Hypercubes are slightly modified in order to embed an I/O 
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Figure 2.2: I/O PEs in a 4-cube [33]. 
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structure (for support of inter-hypercube communications), without the introduc-

tion of any type of extra resources. In addition, the resultant MHs are capable of 

fully utilizing all their resources. In the following discussion, H(n,nil) denotes a 

standard hypercube with n dimensions (nil stands for 0 I/O PEs), while H(n, A) 

denotes the modified form of H(n, nil) that contains 2A I/O PEs. The procedure to 

be followed for the choice of I/O PEs is as follows. IF a = 2a+1, where /3 = n — A, 

then the decimal addresses of the I/O PEs in the transformed system H(n, A) will 

be r., = rya and rc.4_, = (2n  — 1) — 1.'1, where 0 < -y < (2A-1  —1) and ( = 2A'. An 

important property of the MH is listed below. 

The I/O PEs in H(n, A) form 2A-1  pairs of diametrically opposite PEs in 

H(n,nil). Since the structure of individual PEs can not be modified during the 

construction of multicube systems, one link of each I/O PE is cut and used for 

inter-hypercube communications. From the n candidate links to be cut for each 

I/O PE, the link that corresponds to the lowest dimension is broken (i.e., direct 

connection will not exist any more with the PE having binary address that differs 

from the I/O PE's address only in the LSB). However, such a technique leaves 

one communication link unused for any non-I/O PE which is attached to a broken 

link. All the broken links are then interconnected in pairs, so that all the resources 

(including communication ports) become available for use in multicube systems. 

More specifically, pairs of broken links attached to diametrically opposite non-I/O 

PEs are directly connected. Such pairs can be found because of the following two 

reasons. First, the addresses of the non-I/O PEs which are attached to previously 

broken links are c(r,), for 0 < j < (2A  — 1), where c(r,) complements the LSB 

in the binary representation of F. Second, it can be shown that the I/O PEs 

are diametrically opposite in pairs [33]. Figure 2.3 shows the I/O PEs and the 

repositioning of previously broken links (which are shown by dashed lines) for MHs 
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H(4, A), with 1 < A < 4. Figure 2.3(d) contains a non-connected graph which is 

composed of two 3-cubes. A graph is connected if and only if there exists at least 

one path between any pair of nodes. 

The other major structural properties of MHs are: 

• A modified hypercube H(n, A) is not connected if and only if n = A. 

Therefore, the case of n = A is not studied any further. 

• The I/O PEs in H(n, A) form two disjoint (A —1)-dimensional hypercubes. 

• The non-I/O PEs which are attached to repositioned links in H(n, A) form 

a A-dimensional hypercube. 

The last two properties show that despite the modifications carried out on 

the original hypercube, the hypercube is the dominant topology in H(n, A). 

Various structures which are efficiently embedded into the hypercube can 

still efficiently be mapped onto the modified hypercube structure because the only 

difference between the original structure and its modified form is present in connec-

tions corresponding to the lowest dimension. Since the maximum distance between 

ant• pair of PEs whose addresses differ in the LSB is now equal to 3, an MH H(n, A) 

can very efficiently emulate the corresponding standard hypercube H(n, nil). 

2.3.2 Topological Properties of Modified Hypercubes 

A through investigation of the capabilities of MHs was included in [33]. This 

subsection summarizes those properties. The total node connectivity of H(n, A) is 

n. The intra-hypercube node connectivity for I/O nodes is n — 1, while it is n, for 

all other nodes. 

The diameter of a multicube system is a measure of its suitability to yield 

high performance. The smaller the value of the diameter, the faster the exchange of 

values between distant PEs in the multicube system. Of course, a parameter that 

heavily influences the diameter of a multicube system is the distance of non-I/O 



Figure 2.3: Modified Hypercubes H(4,A). (a) A = 1; (b) A = 2; (c) A = 3; (d) A = 4 
[33]. 
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PEs from I/O PEs which serve as the gateways for data transfers between MHs. 

More properties follow. 

• In a modified hypercube H(n, A), the maximum AI10  of the shortest dis- 

tances from I/O PEs is 

1 10/21 if # > 4 or # = 1 
Alio 

 = 3 
if 3 < /3 < 4 

2 if # = 2 

The average shortest distance from I/O PEs is defined here to be the ratio of 

the sum of the shortest distances of all PEs from I/O PEs over the total number of 

PEs (including the I/O PEs which may also carry out computation tasks). A small 

value for this measure could aid the task of uniformly distributing the workload of 

inter-dependent tasks among the constituent MHs of a multicube system, with the 

result being high utilization of PEs and high performance. 

• The average shortest distance from I/O PEs in H(n, A) is equal to 

C3/ 21 ( 

c 

  ) 0-(0/21-1 
{ 2 if [3 > 3 

2-'3  E f + E (( +1) ( 1: ) + uo  , where us = 
1 if 0 = 2 

E=1 f.-0 

For /3 = 1, the value of this measure is equal to 0.5. 13 is the number of distinct ( 
E 

(-combinations of /3 items. 

Table 2.1 shows the average shortest distance from I/O PEs in H(10, A), 

where 1 < A < 9. To avoid the creation of communication bottlenecks, uniform 

utilization of the I/O PEs may be required. Therefore, sometimes PEs may com-

municate with PEs resident in other MHs of multicube systems via I/O PEs which 

are not at the shortest distance. Thus, it is also important to know the distance 

from all I/O PEs in MHs. 

• For a PE with binary address sn_1s,i_2  ... so, which is not attached to any 

repositioned link in a modified hypercube H(n, A), the distances from the 2' I/O 
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Table 2.1: The average shortest distance from I/O PEs in H(10,A), where 1 < A < 9 
[331. 

A No. of I/O PEs % of I/O PEs # Ave. Shortest Dist. from I/O PEs 

1 2 0.195 9 3.773 

2 4 0.391 8 3.227 

3 8 0.781 7 2.922 

4 16 1.536 6 2.438 

5 32 3.125 5 2.125 
6 64 6.250 4 1.688 

7 128 12.500 3 1.500 

8 256 25.000 2 1.000 

9 512 50.000 1 0.500 

PEs are: e ji  for ( A — 1 I of them, where c is the total number of bits si, for 
ji ) 

0 < / < 3, which are equal to the binary complement sio  of so, and 0 < jl  < (A —1) 

(  
; finally. 0 — e + j2  + 1 for A — 1 of them, where 0 < j2  < (A — 1). For a PE 

:72 ) 

which is attached to a repositioned link, the value of 2 is added to the distances 

corresponding to I/O PEs with a value of so for the LSB of the binary address. 

Table 2.2 contains the distances fromIth

m

eiI

nTAI/

PE

0  +

sin H(4,2). 

[n/21, n} if 0 > 1 
• The diameter O of H(n, A) is D = 

n 1 if # = 1 

The average distance of a regular network is defined as the ratio of the sum 

of distances of all its nodes from a given node (for the sake of simplicity, this may 

also include a zero distance for the PE that serves as the reference point) over the 

total number of nodes. The value of this measure for the n-dimensional hypercube 

E,n., 3 ( 7 73: 

is equal to  2n 
= 

Since MHs do not comprise perfectly regular topologies, the average distance 

of NIHs is defined here as the sum of distances involving all possible pairs of nodes, 

divided by the total number of pairs. Table 2.3 shows the average distance of 
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Table 2.2: The distances from the I/O PEs in H(4,2) [33]. 
PE address I/O PE address 

0 7 8 15 
0 0 3 1 4 
1 3 2 3 3 
2 1 2 2 3 
3 2 1 3 2 
4 1 2 2 3 
5 2 1 3 2 
6 2 3 3 3 
7 3 0 4 1 
8 1 4 0 3 
9 3 3 3 2 

10 2 3 1 2 
11 3 2 2 1 
12 2 3 1 2 
13 3 2 2 1 
14 3 3 2 3 
15 4 1 3 0 

some networks. If 3 > 1, then the average distance of H(n, A) is smaller that the 

average distance of H (n, nil). This is true because of the existence not only of 

the repositioned links but also of paths composed of original hypercube links and 

repositioned links. If 0 = 1, then the average distance of H(n, A) is larger than 

the average distance of H(n, nil) because the original hypercube is divided into 

two disjoint hypercubes interconnected with repositioned links, so some original 

hypercube paths are not present any more. 

The reader is referred to [33] for more information on MHs and specifically 

on routing in MHs, and for several multicube examples. 



Table 2.3: The average distance of some networks 1331. 
Network Average Distance 
H(4,nil) 2.000 
H(4,1) 1.938 
H(4,2) 1.938 
11(4,3) 2.250 
H(5,nil) 2.500 
H(5,1) 2.453 
H(5,2) 2.437 
H(5,3) 2.748 
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CHAPTER 3 

PROCESSOR ALLOCATION 

TECHNIQUES 

3.1 Definitions And Notations 

Let E be a ternary symbol set 10,1, x}, where x represents the "don't care" digit. 

Since an n-cube uses n address bits, every subcube of an n-cube can be uniquely 

represented by a sequence of ternary symbols in E, which is called the address of the 

corresponding subcube. The Hamming distance between two subcube addresses is 

defined as follows [23]. 

Definition 1 (Hamming distance): The Hamming distance, H : Ek  x Ek  —4 

1+, between two address strings A = an.-1 aiao and B = bn _i bibo in En  for 

some integer n is defined as H (A, B) = h(a„ b,), where h(a„ b,) = 1 if [ a, = 

0 and b, = 1] or [ a, = 1 and b, = 0], and h(a„ b,) = 0 otherwise. 

Similarly, the exact distance E : Ek  x Ek  —4 I+, between A and B is defined 

as E(A, B) e(a„ b1 ) where e(a, b) = 0 if [a = b], and e(a, b) = 1 otherwise. 

0. 

The definition can be extended to multiple address strings. In the extended 

definition, h(a„ b„ c„. .) = 1, if none of the ith bit is x and at least two ith bits 

differ in the bit value. Otherwise, h(a„ b„ .) = 0. Similarly, e(a„ b„ ...) = 0 

if all the ith bits have the same value, otherwise e(a„ b„ e‘,...) = 1. For example, 

23 
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let us take A = 00/x and B = x001. Then H(A, B) = 1 and E(A, B) = 3. Now if 

C = 101; then H(A, B, C) = 1 and E(A, B, C) = 3. 

Definition 2 (Gray Code generation): Let Gy, be the GC (Gray Code) with 

parameters gi, 1 < i < n, where a sequence la g2,....,i, • • • ,gn) is a permutation of 

Z„ = {1,2, ... , n}. Then, G„ is defined recursively as follows. 

Go  = {}, 

Gk  = {(Gk_i  )0\rk  , (Gk_i )1Ark }
, 1 < k < n 

where rk  is the partial ranking of gk. O. 

Let (gi .g2....,g,,) be a sequence of distinct integers. The partial ranking 

r, of g, for 1 < 2 < n is defined as the rank of g, in the partial set {g1,g2,...,gn } 

when the set is arranged in ascending order. Let G be a sequence of binary strings 

of length k denoted by Gb\rk , b E {0,1}, that can be obtained by either inserting a 

bit b into the position immediately right of the rkth bit from the right side of every 

string in G if 1 < rk  < k, or by prefixing a bit b to every string in G if rk  = k. Also, 

let G` denote a sequence of binary strings obtained from G by reversing the order 

of strings in G. The GC can be generated combining (Gk-i )°\ rk  and (G7,_1)1\rk. 

As an example, let us consider the generation of 3-bit GC code with parameters 

(3,2.1). The parameters have the partial ranking, (1,1,2). Then G1  = {0,1}, 

G2  = {00,10,11,01}, and G3  = {000,100,101,001,011,111,110,010}. 

Definition .9 (Adjacent and Complementary Cubes): Two cubes A and B 

are adjacent if H(A, B) = 1. A complement of cube A, is defined as A' = 

a1, 0 2 , ... , a,-1,b3,a34-1, • • • , an. with bit j having any position between 1 and n, 

a,,b,, E {OM, and a., b j. A complement cube is a special case of adjacent cube 

where the two cubes differ exactly in one bit position. 0. 
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For example, a cube {0x1x} can have a complement cube {lxlx} or {0x0s}. 

3.2 Processor Allocation Techniques For Stan- 

dard Hypercubes 

In this section, we describe briefly the buddy, GC, modified buddy and the free list 

strategies before introducing the table look-up strategy. This is because the table 

look-up strategy has also some similar features of those of the previous strategies. 

3.2.1 The Buddy Strategy 

The buddy strategy is one of the earliest strategies proposed for processor allocation 

on standard hypercube multiprocessors. We present this strategy here and the 

simulation results of the buddy strategy applied to MHs are presented in Chapter 

4. 

Since there exist 2n nodes in an n-cube, 2' allocation bits are used by this 

strategy in order to keep track of the availability of nodes. A 0(1) value in the 

allocation bit indicates the availability(unavailability) of the corresponding node 

[23]. 

Allocation: 

Step 1: Set k equal to the dimension of a subcube required to accomodate 

the current request. 

Step 2: Determine the least integer m such that all the allocation bits from 

m2k to (m + 1)2k — 1 are 0's. Set all these allocation bits to l's. 

Step 3: Allocate the nodes found in Step 2 to the current request. 

Deallocation: 
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Step 1: For all values of p, where p is the address of a released node from the 

set of nodes included in the deallocated subcube, reset the pth allocation 

bit to 0. 

3.2.2 The Gray Code Strategy 

Similar to the buddy strategy, 2" allocation bits are used to keep track of the 

availability of all nodes. But, the sequence of allocation bits follows the gray code 

pattern. 

Allocation: 

Step 1: Same as in Buddy. 

Step 2: Determine the least integer rn such that all the (i mod 2n)th bits are 

0's where i E #[m2k- 1, (in + 2)2k-1  — 1], and set all these 2' allocation 

bits to l's. 

Step 3: Allocate nodes to the current request. 

DEallocation: 

Step 1: Same as in Buddy. 

3.2.3 The Modified Buddy Strategy 

Similar to the buddy strategy, 2" allocation bits are used to keep track of the 

availability of all nodes. An integer A represented by in bits is regarded as free if 

(Am)°\I and (Am )1  \1  are free. For example, an integer three in 2 bits, i.e., 11, is free 

if integers six and seven in 3 bits are free. This notation implies the free subcubes 

of smaller dimension. Detailed description of the modified buddy strategy can be 

found in [3]. 
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Allocation: 

Step 1: Same as in Buddy. 

Step 2: Determine the least integer A, 0 < A < 2n-k+1  —1, such that An-k+1  

is free, and it has a pth partner, 1 < p < (n — k + 1), Ar k:" which is 

also free. Take p as small as possible. 

Step 3: Allocate nodes to the current request and set their allocation bits to 

1. 

Deallocation: 

Step 1: Same as in Buddy. 

3.2.4 The Free List Strategy 

In the free list strategy, n + 1 independent lists are maintained so that for every 

request of dimension k, where 0 < k < n, there exists a respective list of available 

subcubes. Each element in the list is represented by a unique address, a sequence of 

n ternary symbols. An n-cube is represented as a sequence of n Xs initially. When 

there is a request for a k-cube, where k < n, the algorithm looks for a k-cube in the 

free list. If there is not any k-cube in the free list, one of the available nearest higher 

dimension subcubes is decomposed from the most significant bit side in order to 

identify a k-cube. The resulting k-cube is then assigned to the request. 

Allocation: 

Step 1: Same as in the buddy strategy. 

Step 2: If there is an available subcube for the request size in the k-cube 

list, then allocate it and terminate the algorithm. 
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Step 3: Otherwise, find the nearest higher dimension cube that is available. 

If there is no higher dimension cube in the list, then keep the request in 

the waiting queue. 

Step 4: Choose one of the nearest higher dimension cubes and decompose 

it into two subcubes. Repeat this step until the requested cube size is 

reached. Allocate the resulting k-cube. 

Deallocation: 

Step 1: Include the released k-cube in the corresponding k-cube list. 

Step 2: Compare the released k-cube to all free cubes and form new cubes 

of higher dimension, if possible. 

Step 3: Do the following for all dimensions, starting from the lowest dimen-

sion in the list: 

a. Generate the new (overlapping) i-dimensional cubes, if possible, by 

combining the cubes of the same dimension i. 

b. Generate the new (overlapping) i- or (i + 1)-dimensional cubes, if 

possible, by combining the cubes of dimension i and the cubes of 

the nearest nonempty higher dimension(s). 

c. Combine two complement subcubes of dimension i, if they exist, and 

form an (i + 1)-dimensional cube. 

Step 4: Make the cubes generated after Step 3 mutually disjoint to each 

other as follows. 

a. Select a cube from the highest dimension list and decompose all other 

same or lower dimensional cubes that have a common node with the 

selected cube. 
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b. The cubes with a common node(s) with the selected cube are deleted 

from the list. 

c. Repeat steps a and b for all the free cubes except the ones already 

selected. 

3.2.5 Analysis of the Previous Strategies 

Static allocation is concerned with the accommodation of the incoming requests 

without considering processor relinquishment. An allocation strategy is said to be 

statically optimal if an n-cube can accommodate any input request sequence {/,}7_1  

iff E;"_1  21 ',  I < 2', where ILI is the dimension of a subcube required to accommodate 

request I,. It has been proved that all the previous strategies are statically optimal 

[8. 3, 23]. 

In a dynamic environment, when processor relinquishment is taken into con-

sideration, the buddy strategy is shown to be poor because it generates more ex-

ternal fragmentation. It also cannot detect all available subcubes in an n-cube. 

If the request is for a subcube of size k, the buddy strategy looks for only those 

cubes with Xs in the k least significant bits of their hypercube address. That is, 

it can recognize only 1/ ( nk ) percent of all possible subcubes. On a 6-cube this 

percentage for a 3-cube request becomes 5%. Nevertheless, the time complexity of 

the buddy strategy is 0(2'). For example, let us examine the following sequence 

of requests and relinquishment in a 4-cube system. 

Example-I: Sequencer 

1) A request for a 2-cube (h), 

2) A request for a 2-cube (.12), 

3) A request for a 2-cube (h), 

4) A 2-cube relinquishment, 
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5) A request for a 3-cube. 

The allocation for the buddy strategy is shown as a K-map in Figure 3.1(a). 

The last request for the 3-cube allocation can be accommodated immediately if the 

relinquished 2-cube is exactly the third 2-cube (13). Even though there is a 3-cube 

available when the second allocation (12) is relinquished, it cannot be detected using 

the buddy scheme. This is because the buddy strategy tries to allocate a 3-cube as 

shown in Figure 3.1(b). Allocation of 2-cubes using the GC strategy is shown in 

Figure 3.1(c). The request for a 3-cube (sequence 5) can be accommodated using 

the GC scheme if the relinquished 2-cube is either the first or the third one. Since 

the GC strategy has more subcube recognition ability, as shown in Figure 3.1(d), 

it can detect a 3-cube when the first 2-cube (II ) is also relinquished. Allocation of 

2-cubes with the modified buddy strategy is the same as in Figure 3.1(a), and the 

allocation strategy for the 3-cube request is the same as in Figure 3.1(d). It can 

detect a 3-cube when the second request (/2 ) or the third request (13) is relinquished. 

The external fragmentation caused by the GC strategy is even less than that 

of the buddy strategy, since there is a tendency that the nodes allocated first are 

also released first for uniformly distributed service time. For example, there is an 

external fragmentation if the first 2-cube (12) is relinquished in the buddy and the 

modified buddy strategies. Release of the second 2-cube (/2) results in external 

fragmentation in the GC scheme. Since it is likely that /1  is released earlier than 

12, the buddy strategy is more susceptible to external fragmentation. 

The free list strategy gives a better system utilization and less delay com-

pared to the other bit-map schemes. The multiple GC strategy is the only other 

scheme that gives close results to that of the free list strategy. However, both the 

serial and parallel versions of the multiple GC strategy are more complex than the 

corresponding free list versions. A slightly modified version of the free list strategy 



Figure 3.1: (a) An allocated 2-cube under Buddy scheme. (b) Buddy strategy 
location rule for 3-cube. (c) An allocated 2-cube under GC scheme. (d) GC strategy 
allocation rule for 3-cube. 
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gives the same performance at reduced complexity. Another advantage of the free 

list scheme is its fast allocation ability. It takes 0(n) time to allocate a k-cube. 

The allocation time complexity of all other schemes is 0(2'). Hence, if a subcube is 

already available, the free list can allocate it very fast. But, the free list strategy has 

a deallocation time complexity of 0(n3). It can easily be parallelized by running 

the algorithm on a parallel machine with n + 1 processors, where the processors 

operate on mutually disjoint lists of available subcubes. 

Dutt and Hayes have also used the free list concept for hypercube allocation 

[10]. The difference between the two strategies in the allocation lies in the com-

plexity and optimality. If there is a free cube in the list for the requested dimension 

k, both strategies assign the k-cube immediately. The two strategies differ when 

there is no free cube of exact dimension k, but there are free cube in the higher 

dimension list. The free list strategy selects the first free cube from the nearest 

higher dimension list for decomposition. In the other strategy, each free cube in 

the nearest higher dimension list is combined with free cubes of all lower dimen-

sions to generate all possible k-cubes. Among the free cubes in the nearest higher 

dimension list, the one that generates the maximum number of k-dimension free 

cubes is selected for decomposition. Whereas the former technique is simple and 

quick the latter one is optimal and time consuming. 

3.3 Processor Allocation Strategies For MHS 

This section addresses the processor allocation problem for MHs. Since the prob-

lem of identifying subcubes of certain dimensions in MHs is more difficult than the 

corresponding problem in standard hypercubes, Subsection 3.3.1 addresses the for-

mer problem. Subsection 3.3.2 proposes a "table look-up" allocation/deallocation 

strategy which is based on the free list strategy for standard hypercubes. Subsec- 
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tion 3.3.3 presents a slightly modified version of this strategy which is more space 

efficient. Subsection 3.3.4 proposes a space efficient strategy which is based on 

the strategy of Subsection 3.3.2 and the buddy strategy. Finally, subsection 3.3.5 

discusses a parallel version of the first strategy. 

3.3.1 Identification of subcubes in MHs 

In order to find the total number of /k-cubes in an n-dimensional standard hy-

percube, 

 

k ( n percube, one has to simply evaluate 2"k. Further, the addresses of these 

subcubes can easily be obtained by generating all possible sequences of n-ternary 

symbols containing k X bits. 

The ease with which the above procedure can be accomplished is severely 

affected when one or more of the hypercube links are removed, and more so when 

some links are repositioned as in MHs. As seen earlier, the I/O and repositioned 

links in MHs were used to implement interconnections in the lowest dimension of the 

original standard hypercubes. Therefore, removing these links affects the number 

of 1-cubes whose addresses have an X in the least significant bit. Moreover, the 

number of 1-cubes is increased due to the repositioning of links. To conclude, 

a number of subcubes of various dimensions which were present in the original 

hypercube cease to exist in the MH due to the removed links, and a number of new 

subcubes are added to the original hypercube due to the repositioning of half of 

the removed links. 

We may distinguish between two categories of subcubes in MHs. All the 

subcubes that are also part of the original hypercube fall into the first category, 

whereas subcubes that were not present in the original hypercube belong to the 

second category. The following lemmas and theorems are pertinent. 

Lemma 1: In any n-cube, with n > 0, there are only two nodes which do not have 
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at least a zero(0) and a one(1) in their binary addresses. 

Proof: Since there can be only one node whose binary address consists of all zeroes 

and, similarly, only one node with binary address consisting of all ones, the 

number of nodes in an n-cube with their respective addresses consisting of at 

least a zero and a one is 2' - 2. 0 

n 
Lemma 2: The number of subcubes of dimension k in an n-cube is ( 

k 
 2n-k. 

Proof: The number of distinct ways in which k bits can be selected among n bits 

is ( nk . For each of these combinations, the set of the remaining n - k bits 

can take 2' distinct values. Hence, the result. 0 

Theorem 1: In an n-cube the number (1)(n, k, A) of subcubes of dimension k that 

do not contain any of the 2'1  nodes whose binary addresses have in their 

lower n - A bits either all zeroes or all ones is 
ryl
t 
 t

o
n{A,n—k-2} ( A.  ) 2, (2n_ k _ t  _ 2) 

k -
n(--

A _
A i) 

z 
if k > A and k < (rz - 2) 

(1)(77,/,-, A) = 

7-.mtn{k,n—A-2} A 2A-(k-t) 2n-A-: - 2) 
I 

n -. k 
z......,=o k - i 

( 
)  

if k < A and k < (n - 2) 

Proof: Case (a): k > A and k < (n - 2). 

The objective here is to find all possible subcubes of dimension k so that 

the lower n - A bits of the subcube addresses contain at least a zero and 

a one. With the usual notation for the subcubes, let the upper A bits of 

the address contain all Xs. Then, the remaining k- A Xs can be selected 

n - A 
among the available n - A lower address bits in distinct ways. 

( k - 
) 

 A ) 

For each of these combinations, the remaining n - k bits can occupy 

any combination such that there is at least a zero and a one in these 

bits. From Lemma 1, this equals 2"-k  - 2. Now, let the upper A bits 
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contain A — 1 Xs. From Lemma 2, this can be selected in ( A A1 ) 2'  

distinct ways. The remaining k — (A — 1) Xs can be accommodated in 

the lower n — A bits in 
( k 

distinct ways. Again, for every 
— n(A 

A  
— 1)  ) 

combination the remaining bits can be selected in 2n-(k+1) _2 distinct 

ways, from Lemma I. The above procedure continues until there are no 

Xs in the upper A bits or until there are no more than n — A — 2 Xs in 

the lower n — A bits. 4)(n, k, A), the number of subcubes of dimension k, 

is equal to the sum of all the above combinations and is given by 
n — A mtn{A,n-k-2) A , n-k-t 4)(n, k, A) = Es,.0 

i 
) 2 (2 — 2) ( k _ (A _ i) ( 

if k > A and k < (n — 2) 

Case (b): k < A and k < (n — 2). 

Let all the Xs be in the upper A bits of the address. From Lemma 2, this 

can be selected in ( Ak ) 2' distinct ways and the remaining n — A bits 

can be selected in 2n-A — 2 distinct ways. All other valid combinations 

for the existence of the subcube can be obtained by transferring the Xs 

from the upper A bits to the lower n — A bits, one-by-one, until there are 

no more Xs in the upper A bits or until there are at least two bits in the 

lower n — A bit field which are not Xs. Then, (1)(n, k, A) is given by 

mtn{k,n-A-2} ( A ) 2A_(k_i)(2n _A...t  _ 2) n— k 
(1)(n, k, A) = E,,.0  

k — i i 

if k < A and k < (n — 2).0 

Theorem 2: The number N (n , k, A) of subcubes of dimension k in an MH H(n, A) 

is equal to 

2 ( 71 —k 1 ) 
2n-1-k + 4)(n — 1, k — 1, A) + 2' [() — 

A ; 1 )1 
where 4)(n', k', A') is given by Theorem 1. 

Proof: From the definition of modified hypercubes, H(n, A) has 2A  I/O nodes 
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which implies that 2A  of the links in the original hypercube H(n, nil) have 

been removed. The removed links have "addresses" similar to those of the 

I/O PEs except that their LSBs are don't cares (i.e., Xs). The I/O PEs have 

addresses such that, for every possible combination in the upper A — 1 bits 

there are two such nodes with one of them containing all zeroes in the lower 

n — A + 1 bits and the other one containing all ones in the lower n — A + 1 

bits. 

The problem of determining the number of subcubes of dimension k in H(n, A) 

can be broken down into two cases: 

(a) determining the number of subcubes in H(n, nil) with A links removed 

as mentioned above, and 

(b) determining the number of subcubes in the hypercube of dimension A 

formed by the non-I/O PEs which are attached to repositioned links. 

Case (a): This can be further divided into two subcases: 

Subcase (i): The subcube address is selected in such a way that there 

is no X in the least significant bit of the hypercube address. Since 

k Xs can be selected among n —1 bits in ( n  —
k

1 2n-k-1 distinct 

ways (Lemma 2) and the least significant bit can be either a '0' or 

— 
a '1', the number of subcubes is equal to 2 ( n 

k 
 1 ) 2n-k-1. 

Subcase (ii): The subcube address is selected in such away that there 

is an X in the least significant bit of the hypercube address. This is 

a special case in Theorem 1, with n' = n — 1, A' = A and k' = k —1. 

Hence, the number of subcubes is given by 4(n — 1, k —1, A). 

Case (b): One of the properties of MHs is that the non-I/O PEs which 

are attached to repositioned links form a hypercube of dimension A. 
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Now this hypercube is formed by two hypercubes of dimension A — 1 

which belong to the original hypercube. All the links that connect these 

two hypercubes to form the hypercube of dimension A are due to the 

repositioned links. The number of subcubes of dimension k due to the 

original hypercubes of dimension A — 1 is 2 ( A 
k 

1 
— ) 2A-1-k  (Lemma 

2), and the number of subcubes of dimension k due to the new hy-

percube of dimension A is (Ak 2A-k. Since we are interested in only 

those subcubes of dimension k that include the repositioned links (to 

make the subcubes selected in this fashion to be mutually exclusive 

from the earlier selected subcubes), we subtract the former number from 

the latter to get ( ) 2'— ( A 
k 
1) 2 2A-k-I  which is the same as 

2A-k RAk) — A ;1 )1 .0 

3.3.2 The Table Look-Up Strategy 

Since MHs are obtained by slightly modifying standard hypercubes, direct applica-

tion of the earlier mentioned processor allocation strategies of Section 3.2 to MHs 

would lead to inefficient results. In this section, a processor allocation strategy, 

which is based on a table look-up approach, is proposed for MHs. Our strategy 

can recognize all possible subcubes in H(n, A) by maintaining n — 1 independent 

lists, one list per possible subcube dimension i, where 1 < i < (n — 1). The ad-

dresses of all possible subcubes in the MH are determined and stored in the form 

of linked lists, with each list representing subcubes of the same dimension. In fact, 

the structure of elements in the linked lists consists of the following fields. 

1. A unique address consisting of n ternary symbols. 

2. A bit to indicate the availability of the subcube. 
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3. A bit to indicate whether the subcube contains any repositioned links. 

4. An integer to represent the number of busy processors in the subcube. 

Initially, the n •-1 independent lists are formed so that the ith list consists of 

N(n, i, A) entries. The address of the subcube in each entry is intially determined 

and stored in the address field of the entry whereas the subcube allocation bit and 

the variable representing the number of busy processors are set to zero. 

Whereas the subcubes due to the original hypercube can be represented in 

the usual manner with n ternary symbols, the addresses of the subcubes due to 

the repositioned links are not obtained in a straightforward manner. The following 

procedure is undertaken to represent these subcube addresses. 

The A-cube formed by non-I/O PEs attached to repositioned links is mapped 

onto a regular hypercube j of dimension A; i.e., the lower A bits in the subcube 

address field (which is n bits long) in the lists due to the A-cube contain the ad-

dresses of the corresponding subcubes in the regular hypercube j and the bit which 

signifies that the subcube is due to repositioned links is set to one. Note that the 

A-cube is made of two (A — 1)-cubes which belong to the original hypercube. Also, 

one of the (A — 1)-cubes has Xs in the A — 1 most significant bits of its address, 

followed by all zeroes in the lower field, except the LSB which is a one. Similarly, 

the other (A — 1)-cube has Xs in the A — 1 most significant bits of its address, 

followed by all ones in the lower field, except the LSB which is a zero. The reposi-

tioned links connect these two (A — 1)-cubes in such a way that any two end nodes' 

addresses complement one another. Figure 3.2(a) shows a 5-cube with A = 3 (i.e., 

an H(5, 3)). Figure 3.2(b) shows the A-cube with the repositioned links connecting 

the two (A — 1)-cubes and the mapping of this A-cube onto a regular A-cube; the 

addresses of nodes between the parentheses are the addressees in the regular A-cube. 
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Figure 3.2: Subcubes due to repositioned links. (a) An MH H(5, A); (b) the A-cube 
with repositioned links mapped onto a regular A-cube. 
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To obtain the actual address of any node in the A-cube, the corresponding 

address as  in the regular hypercube j is first determined. If the MSB of az  is 

zero, then the actual node address is the value obtained when as  is shifted left 

n — A — 1 times with a one added to its LSB. If the MSB of as  is one, then ax  is 

again shifted left n — A — 1 times and all the bits except the LSB of the new value 

are complemented to obtain the actual node address. 

When the subcube lists are made, approximately the first 2n-k  addresses in 

the kth list are selected in such a way that the same addresses would have been 

selected if the buddy strategy were to be implemented. 

Allocation: 

Step 1: Set k equal to the dimension of a subcube required to accommodate 

the current request. 

Step 2: If there is an available subcube for the request size in the k-cube 

list (i.e., there exists an available k-cube with busy-processor count equal 

to zero), allocate it. For each of the nodes in the allocated subcube, 

determine the other subcubes among all the lists that contain the node 

under consideration, reset their available bit, and increment their busy-

processor count. 

Step 3: If a subcube of the requested size is not found, then keep the re-

quest in the waiting queue (until a subcube of the required size becomes 

available). 

Deallocation: 

Step 1: After a task is completed, the corresponding subcube is deallocated 

by setting its available bit. 
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Step 2: For each of the nodes in the subcube, determine other subcubes 

among all the lists that contain this node and decrement their busy-

processor count. 

Step 3: Set the deallocated subcube's busy-processor count to zero. 

This processor allocation strategy can also be used for standard hypercubes. 

Of course, there will not exist any subcubes containing repositioned links. The 

following theorem is pertinent. 

Theorem 3: The table look-up strategy is statically optimal for allocation on stan-

dard hypercubes. 

Proof: For standard hypercubes, the look-up table is made up of n + 1 lists, one 

for every possible subcube dimension k, where 0 < k < n. These lists are 

arranged in such a way that the first 2"-k elements have the same subcube 

addresses with the ones the buddy strategy would look for, if the buddy 

strategy were to be implemented. Only if these subcubes are unavailable, will 

the table look-up strategy look for other possible combinations by searching 

the rest of the list. It has been proven in [7] that the buddy strategy is 

statically optimal. Hence, it can be concluded that the table look-up strategy 

is also statically optimal for allocation on standard hypercubes. 0 

The table look-up strategy has a high degree of fault tolerance. If any of 

the PEs are faulty, then the available bit of all the subcube entries in the lists that 

contain faulty PEs will be "permanently" reset. 

3.3.3 The Modified Table Look-Up Strategy 

This strategy also can recognize all available subcubes in an MH. Similarly to the 

earlier strategy. n — 1 independent lists are maintained, one list for each possible 
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subcube dimension k, where 1 < k < (n — 1). This strategy does not keep track of 

the number of busy processors in each of the subcubes. Hence, the elements of the 

n — 1 lists contain of the following fields: 

1. An address consisting of n ternary symbols. 

2. A bit to indicate the availability of the subcube. 

3. A bit to indicate whether the subcube contains any repositioned links. 

In addition, a global bit is associated with every PE address indicating the 

availability of the respective PE. Given a subcube address, the addresses of the 

PEs forming the subcube are determined in the same manner as explained in the 

previous subsection. 

Allocation: 

Step 1: Same as in the table look-up strategy. 

Step 2: Find the first subcube in the k-cube list which is available, for which 

all individual contained PEs are also available. Allocate the subcube to 

the request and reset the available bit of the respective PEs. Reset the 

available bit of this subcube. 

Step 3: Same as in the table look-up strategy. 

Deallocation: 

Step 1: Set the available bit of the released subcube as well as those of the 

individual PEs contained in this subcube. 

Assuming that the addresses of subcubes stored in the lists by the modified 

table look-up strategy are arranged in the same fashion as for the table look-up 
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strategy, then the performance measures of these two strategies will be identical. 

For this reason, only the table look-up strategy was simulated to evaluate their 

performance. The difference between the two strategies lies in their execution 

times and memory requirements. More specifically, the modified strategy requires 

much less memory space due to the fact that it uses a global bit per PE instead of 

a counter per possible subcube. However, checking the availability bit of each PE 

in a subcube is a more time consuming process than checking the value of a single 

counter. 

3.3.4 An Improved Processor Allocation Strategy for MHs 

Although all of the proposed strategies are characterized by a perfect subcube 

recognition ability, their space complexity is relatively high due to the tables created 

at static time. This section presents a strategy which is based on the free list 

strategy but incorporates parts of the buddy and table look-up strategies in order 

to reduce the space complexity while at the same time retaining the perfect subcube 

recognition ability. 

Similarly to the buddy strategy, 2" bits are maintained to keep track of the 

availability of the 2" nodes in the modified n-cube. A list of the "addresses" of the 

removed links is also formed. Also, n — 1 free lists are maintained as in the free 

list strategy. Finally, lists similar to the ones used in the table look-up strategy 

are created, except that in the present case the lists contain only the addresses of 

subcubes containing repositioned links. 

Allocation: 

Step 1: Determine the first available subcube from the free lists in such a 

way that none of the subcube's link "addresses" is found in the list of 

"addresses" for removed links. Allocate this subcube according to the 
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free list strategy and reset the available bits of all the PEs that form the 

subcube. Terminate the algorithm. 

Step 2: If a subcube was not found in the free lists, then find the first sub-

cube from the list of subcubes that contain repositioned links so that all 

the PEs in the subcube are available. Allocate this subcube in accor-

dance to the table look-up strategy and reset the allocation bits of all 

the PEs forming the subcube. 

Step 3: If no subcube of the requested dimension is available, then keep the 

request in the waiting queue. 

Deallocation: 

Step 1: If the subcube to be relinquished contains repositioned links, then 

apply the deallocation procedure of the table look-up strategy, else follow 

the deallocation steps of the free list strategy. 

Step 2: Set the individual available bits of all the PEs contained in the 

deallocated subcube. 

3.3.5 A Parallel Table Look-Up Strategy 

The inherent parallelism in the table look-up strategy can be exploited by a parallel 

system employing n — 1 PEs in order to dramatically reduce the allocation time. 

More specifically. the n — 1 different lists will be kept in n — 1 different PEs. 

Parallel Allocation: 

Step 1: Same as in the table look-up strategy. 

Step 2: Forward the k-cube request to the PE containing the k-cube list. 

If there is an available subcube for the request size in the k-cube list, 
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allocate it. Broadcast the address of the allocated subcube to all of 

the n — 1 PEs. For every PE represented by the broadcasted address, 

check all of the n — 1 lists in parallel to see if any subcube addresses 

represent this PE. If yes, increment the corresponding busy-processor 

counts. Reset the available bit of the allocated subcube. 

Step 3: If a subcube of the requested size is not found, then keep the request 

in the waiting queue. 

Parallel Deallocation: 

Step 1: Broadcast the released subcube address to all of the n — 1 PEs 

that contain subcube allocation lists. For every PE represented by the 

broadcasted address, check all of the n — 1 lists in parallel to see if any 

subcube addresses represent this PE. If yes, decrement the corresponding 

busy processor counts. 

Step 2: Set the available bit of the released subcube and reset its busy-

processor count to zero. 



CHAPTER 4 

SIMULATION RESULTS 

The simulation procedure is similar to that used in [8] and [23]. The results ob-

tained for the table look-up strategy are compared against those obtained for the 

buddy strategy. The following assumptions were made for the simulation. Incoming 

requests arrive in every time unit, while this process continues for a total of T time 

units. The residence times of the subcube requests are assumed to be uniformly 

distributed. Since the direct application of the buddy strategy on MHs would result 

in subcubes of higher dimensions not being recognized, depending on the values of 

A and n, the requested subcubes are restricted to relatively low dimensions. The 

dimensions of the subcubes required by the incoming requests are assumed to have 

either uniform or biased normal distribution. A queue is maintained for every sub-

cube dimension. Every time a new job arrives, it is pushed to the bottom of the 

respective queue. At every instant of time, if jobs are completed, the corresponding 

subcubes are released. Further, all of the queues are checked for any waiting re-

quests and if the corresponding subcubes are available, they are allocated. Servicing 

the subcube requests can be done either from the highest dimension queue down to 

the smallest dimension queue, in which case the priority is highest dimension first, 

or in the reverse order according to the smallest dimension first priority. In either 

case, the priority within a given queue is FCFS (First-Come, First-Served). 

46 
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The following data were collected by averaging the results over 100 indepen-

dent runs of the simulation program. 

C: Number of requests that were assigned in time T. 

D: Total delay involving all requests until time T. 

U: Total utilization of the MH in time T. U = EC ,210., where Vil is the ith 

request size and t, is the residence time until T of the request I,. 

The three performance measures that were obtained from the above data 

are the average waiting delay per request, the number of jobs completed in time T, 

and the efficiency of the strategy. The average waiting delay is given by D/T; the 

efficiency is given by U/(T2n) and the job completion is directly given by C. 

The simulation was performed for n = 6 and A = 3. The requesting subcubes 

were assumed to be of size ranging from 1-3. Table 4.1 shows the simulation re-

sults when the arriving requests are assumed to have a biased normal distribution. 

More specifically, the arriving requests have the following probabilities for subcube 

dimension: pi  = 0.5762, p2  = 0.3142 and p3  = 0.1096, where pk  is the probability 

that the request is for a subcube of dimension k. The priority for subcube alloca-

tion is smallest dimension first. In the next set of runs, this priority is changed to 

largestdimension first and the results are shown in Table 4.2. Tables 4.3 and 4.4 

show similar results when the arriving requests follow a uniform distribution (i.e, 

pi  = p2  = p3  = 1/3). Tables 4.1 through 4.4 present results for T equal to 100. 

It can easily be seen that the table look-up strategy outperforms the buddy 

strategy. Plots of efficiency and job completion against the average residence time 

are shown in Fig. 4.1. The table look-up strategy proves to have a good performance 

especially when the residence time is small. Note that the buddy strategy has a 

better task completion count when the arriving tasks follow the biased normal 



Table 4.1: Biased Normal Distribution - Smallest Dimension First 
Res. 

Time 
T Avg. Wait. Delay Job Completion Efficiency 

Table Buddy Table Buddy Table Buddy 
100 0.00 ' 5.16 94.90 84.83 24.65 18.21 

5 200 0.00 10.59 195.00 174.04 25.11 18.55 
300 0.00 16.03 294.98 263.10 25.33 18.67 
100 0.00 5.17 90.02 80.42 48.05 35.51 

10 200 0.00 10.60 190.04 169.56 49.63 36.62 
300 0.00 16.03 290.00 258.65 50.12 36.98 ., 
100 0.25 5.50 84.73 75.69 69.53 51.43 

15 200 0.29 11.06 184.27 164.12 73.20 53.86 
300 0.30 16.58 284.71 253.39 74.45 54.74 
100 2.25 7.57 76.32 67.53 80.48 61.58 

20 200 4.86 16.19 171.12 149.99 84.99 64.01 
300 7.47 25.06 265.57 231.66 86.48 64.79 
100 4.89 11.08 67.05 57.24 85.35 64.64 

25 200 10.34 23.90 156.70 131.68 90.00 67.27 
300 15.80 37.06 245.52 204.83 91.61 67.87 

distribution, whereas the table look-up strategy has a very similar performance for 

both distributions. Thus, the buddy strategy has a poor performance when the 

requests are for subcubes of relatively high dimensions. 

From the simulation results in [23j, it can be observed that for standard 

hypercubes the performance of other processor allocation strategies, like the Gray 

code, the modified buddy, and the free list strategies varies 5-10% from that of the 

buddy strategy. Therefore, based on our simulation results, we may conclude that 

none of the other existing processor allocation strategies for standard hypercubes 

could outperform the proposed strategy for MHs. It should be noted that the 

strategies proposed in this thesis can also be applied to standard hypercubes with 

small modifications. 
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Table 4.2: Biased Normal Distribution - Largest Dimension First 
Res. T Avg. Wait. Delay Job Completion Efficiency 

Time Table Buddy ' Table Buddy Table Buddy 
100 0.00 ' 5.16  94.901  84.83 24.65  18.21 

5 200 0.00 10.59 195.00 174.04 25.11 18.55 
300 0.00 16.03 294.98 263.10 25.33 18.67 
100 0.00 5.17 90.02 80.42 48.05 35.31 

10 200 0.00 10.60 190.04 169.57 49.63 36.62 

_ 300 0.00 16.03 290.00 258.65 50.21 36.98 
100 0.18 5.38 84.80-  75.85 69.79 51.58 

15 200 0.20 10.89 184.40 164.45 73.29 54.00 
300 0.20 16.36 284.78 253.78 74.54 54.85 
100 2.16 7.16 76.25 68.09 84.37-  63.69 

20 200 4.65 14.24 171.89 154.59 90.79 68.07 
300 6.75 21.08 267.89 241.10 93.27 69.73 
100 6.72 12.18 63.36 54.91 88.40 66.64 

25 200 15.88 26.53 144.48 126.20 94.02 70.74 
300 25.97 41.14 222.72 196.87 95.98 72.15 

Table 4.3: Uniform Distribution - Smallest Dimension First 
Res. T Avg. Wait. Delay Job Completion Efficiency 

Time Table Buddy Table Buddy Table Buddy 
100 0.00 16.67 94.90 63.01 35.95 15.03 

5 200 0.00 33.56 195.00 129.08 36.58 15.27 
300 0.00 50.55 294.98 194.78 36.90 15.28 
100 0.30 16.68 89.58 59.77 69.10 29.33 

10 200 0.45 33.56 189.36 125.78 71.55 30.13 
300 0.53 50.55 289.28 191.52 72.65 30.32 
100 5.39 16.84 75.37 56.39 81.27 42.72 

15 200 11.51 33.78 162.83 122.00 84.17 44.51 
300 17.63 50.76 250.77 188.00 85.22 45.04 
100 9.95 17.97 63.31 51.07 84.03 54.61 

20 200 21.43 36.01 140.01 115.02 86.04 56.06 
300 33.09 53.85 216.45 179.76 86.89 57.43 
100 13.05 19.79 53.78 44.45 86.60 58.09 

25 200 27.55 40.79 125.48 102.46 88.76 61.16 
300 42.30 61.93 195.61 160.01 89.26 62.09 
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Table 4.4: Uniform Distribution - Largest Dimension First 
Res. T Avg. Wait. Delay Job Completion Efficiency 

Time Table Buddy Table Buddy Table Buddy 
100 0.00 16.67 94.90  63.01 - 35.95 15.03 

5 200 0.00 33.56 195.00 129.08 36.58 15.27 
300 0.00 50.55 294.98 194.78 36.90 15.28 
100 0.21 - 16.68 89.69 59.77 69.51 29.33 

10 200 0.23 33.56 189.76 125.78 72.05 30.13 
300 0.25 50.55 289.70 191.52 73.01 30.32 
100 5.06 16.82 76.15 56.43 88.45 42.77 

15 200 11.03 33.73 163.31 122.05 93.63 44.52 
300 17.61 50.72 249.09 188.03 95.55 45.05 
100 12.06 ' 17.71 58.19 51.47 91.06 53.41 

20 200 27.23 35.08 127.88 117.18 95.38 57.45 
300 43.36 52.27 193.46 183.01 96.89 58.81 
100 17.67 19.32 45.32 45.26 91.72 60.64 

25 200 39.06 38.75 102.23 106.92 95.77 66.01 
300 61.37 57.80 156.44 169.38 97.18 68.21 
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Figure 4.1: Performance of the table look-up strategy. (a) Efficiency curves - Small-
est Dimension First Priority; (b) Efficiency curves - Largest Dimension First Pri-
ority; (c) Task Completion curves - Smallest Dimension First Priority; (d) Task 
Completion curves - Largest Dimension First Priority. 
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CHAPTER 5 

CONCLUSIONS 

Although the hypercube network is characterized by a set of very powerful fea-

tures, its major drawback is that it can not be expanded in practice. In contrast, 

modified hypercubes (MHs) have proven to be promising alternative hypercube-like 

networks prone to incremental growth techniques. Processor allocation strategies 

reported in the literature for standard hypercube networks work poorly on MHs. 

This has been shown in this thesis by simulating the buddy strategy on MHs. A 

processor allocation strategy for MHs which is based on a "table look-up-approach 

was introduced. In fact, several serial versions, as well as a parallel version, of this 

strategy were proposed. The proposed strategies have a perfect subcube recogni-

tion ability and simulation results have shown that they are very efficient. Apart 

from the simulation results obtained, the following conclusions can be drawn from 

the study. 

Although the MH is a slightly irregular structure, it provides a powerful 

building block for large multicube systems. Some interesting multicube architec-

tures like the hypertorus have already been proposed [33]. The scope for intro-

ducing more such architectures is enormous. An important problem that needs to 

be addressed in the future is that of introducing subcube allocation techniques for 

multicube systems. Other related problems that need attention are those of embed- 
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ding frequently used topologies into multicubes and the development of techniques 

for mapping application algorithms onto multicubes. 
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