
ABSTRACT

Title of dissertation: DIAMOND-BASED MODELS
FOR SCIENTIFIC VISUALIZATION

Kenneth Weiss, Doctor of Philosophy, 2011

Dissertation directed by: Professor Leila De Floriani
Department of Computer Science

Hierarchical spatial decompositions are a basic modeling tool in a variety of applica-

tion domains including scientific visualization, finite element analysis and shape modeling

and analysis. A popular class of such approaches is based on the regular simplex bisection

operator, which bisects simplices (e.g. line segments, triangles, tetrahedra) along the mid-

point of a predetermined edge. Regular simplex bisection produces adaptive simplicial

meshes of high geometric quality, while simplifying the extraction of crack-free, or con-

forming, approximations to the original dataset. Efficient multiresolution representations

for such models have been achieved in 2D and 3D by clustering sets of simplices sharing

the same bisection edge into structures called diamonds.

In this thesis, we introduce several diamond-based approaches for scientific visual-

ization. We first formalize the notion of diamonds in arbitrary dimensions in terms of two

related simplicial decompositions of hypercubes. This enables us to enumerate the ver-

tices, simplices, parents and children of a diamond. In particular, we identify the number

of simplices involved in conforming updates to be factorial in the dimension and group

these into a linear number of subclusters of simplices that are generated simultaneously.

The latter form the basis for a compact pointerless representation for conforming meshes

generated by regular simplex bisection and for efficiently navigating the topological con-

nectivity of these meshes.

Secondly, we introduce the supercube as a high-level primitive on such nested

meshes based on the atomic units within the underlying triangulation grid. We propose

the use of supercubes to associate information with coherent subsets of the full hierarchy

and demonstrate the effectiveness of such a representation for modeling multiresolution

terrain and volumetric datasets.

Next, we introduce Isodiamond Hierarchies, a general framework for spatial access

structures on a hierarchy of diamonds that exploits the implicit hierarchical and geometric

relationships of the diamond model. We use an isodiamond hierarchy to encode irregular

updates to a multiresolution isosurface or interval volume in terms of regular updates to

diamonds.

Finally, we consider nested hypercubic meshes, such as quadtrees, octrees and their

higher dimensional analogues, through the lens of diamond hierarchies. This allows us

to determine the relationships involved in generating balanced hypercubic meshes and

to propose a compact pointerless representation of such meshes. We also provide a local

diamond-based triangulation algorithm to generate high-quality conforming simplicial

meshes.

DIAMOND-BASED MODELS FOR SCIENTIFIC VISUALIZATION

by

Kenneth Weiss

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:

Professor Leila De Floriani, Chair/Advisor
Professor Larry S. Davis
Professor Samuel N. Goward
Professor David Mount
Professor Hanan Samet
Professor Amitabh Varshney

c© Copyright by

Kenneth Weiss

2011

Acknowledgments

I owe my deepest gratitude to all the people who have made this dissertation possible.

First and foremost, I would like to thank my advisor, Professor Leila De Floriani, for

your advice, encouragement, direction and support over the past five years. It has been a

pleasure to work with you and to learn from you. I am especially grateful for the time and

freedom to develop the ideas in this thesis. Although the scope of the project has changed

considerably since our initial discussions, you were always happy to provide helpful

thoughts, key suggestion in framing the problems and essential critiques to strengthen the

results as this project has evolved.

I would also like to thank the the members of my thesis committee Professors

Amitabh Varshney, Hanan Samet, David Mount, Larry Davis and Samuel Goward, for

your time and insightful comments and suggestions. To Amitabh, thank you for your

guidance during my early graduate career. Your advice on aiming for excellence and on

the half-life of research ideas were invaluable in shaping my understanding of the research

environment and in finding my role in it. Your suggestion about relating diamonds to

quadtrees and octrees was the driving force behind Chapter 10. To Hanan, your framework

for spatial decompositions and encyclopedic knowledge of the field were instrumental in

my understanding and appreciation of hierarchical models. Thank you for all of your

extremely helpful advice on matters related (and unrelated) to research. To Dave, it was

a pleasure working with you as your teaching assistant for computer graphics. Your

dedication to your work and students is an inspiration.

I would also like to thank my teachers and classmates in the University of Maryland

and in Binghamton University. In particular, thank you Professor Lijun Yin for involving

me in your research as an undergraduate and for instilling in me a passion for research in

computer graphics and visualization. Your training and guidance helped me get through

my first few years of graduate school.

I owe my deepest thanks to my family for their love and support, for encouraging

ii

me to pursue my academic interests and for placing such a high value on my education.

To my father, Peter, for explaining the difference between bits and bytes on those long

drives many years ago and for teaching me to always think strategically in chess and in

life. To my mother, Bella, for always asking about the details of my work, even when the

topics are abstract and the hour is late. To Linda, for always encouraging me to pursue my

artistic interests. To Jamie and Ari, for always being there when I need you. To Lillian,

David and Ariella, for understanding what it is like to be in graduate school.

Finally, to my wife Aliza, thank you for your endless love and encouragement. I

could not have made it through this program without you and I dedicate this thesis to you.

iii

Table of Contents

List of Tables viii

List of Figures ix

List of Algorithms xii

1 Introduction 1
1.1 Contribution . 4
1.2 Thesis organization . 10

2 Background notions 12
2.1 Cellular meshes . 12

2.1.1 Hypercubic meshes . 13
2.1.2 Simplicial meshes . 15

2.2 Nested mesh refinement . 15
2.2.1 Regular refinement . 16
2.2.2 Bisection refinement . 17

2.3 Modeling scalar fields . 18
2.3.1 Isosurfaces and interval volumes 19

2.4 Multiresolution models . 21
2.4.1 Selective refinement . 22

3 State of the art 24
3.1 Domain decompositions . 25

3.1.1 Uniform grid . 25
3.1.2 Quadtrees, octrees and 2d-trees 26

3.1.2.1 Balanced 2d-trees . 27
3.1.2.2 MX-2d-trees . 29
3.1.2.3 PR-2d-trees . 30
3.1.2.4 Pyramids . 30

3.1.3 K-d trees . 30
3.1.4 Nested simplicial meshes . 31

3.1.4.1 Regular refinement 31
3.1.4.2 Simplex bisection . 32

3.2 Marching cells . 36
3.2.1 Isosurfaces . 36
3.2.2 Interval volumes . 38

3.3 Hierarchical data structures for scientific visualization 39

iv

3.3.1 Hierarchy as spatial access structure 39
3.3.2 Multiresolution field representations 41

3.3.2.1 Two dimensional domains 41
3.3.2.2 Three dimensional domains 48
3.3.2.3 Higher dimensional domains 51

3.3.3 Adaptive representations for extracted meshes 52
3.3.4 Multiresolution representations for extracted meshes 55

3.4 Discussion . 56

4 Diamond hierarchies of arbitrary dimension 60
4.1 Cross simplex and cross complex . 61
4.2 Simplicial decomposition of hypercubes 61

4.2.1 Kuhn subdivisions . 63
4.2.2 Maubach’s typographical bisection scheme 65
4.2.3 Fully subdivided hypercubes . 67

4.3 A hierarchy of RSB simplices . 72
4.4 A hierarchy of diamonds . 74

4.4.1 Diamond subdivision . 74
4.4.2 Diamond dependency relation 75
4.4.3 Parent-child duets . 77

4.5 Properties of a hierarchy of diamonds 77
4.6 Querying an RSB hierarchy . 86
4.7 Discussion . 89

5 Supercubes: A high-level primitive for RSB hierarchies 93
5.1 Tiling space with Kuhn cubes . 94
5.2 Supercubes . 96
5.3 Discussion . 104

6 Encoding diamond hierarchies 108
6.1 Encoding diamonds . 109

6.1.1 Diamond scale . 109
6.1.2 Diamond type . 110
6.1.3 Supercube origin . 111
6.1.4 Diamond components . 112

6.1.4.1 Kuhn-subdivided component 113
6.1.4.2 Fully-subdivided component 113

6.1.5 Example . 114
6.1.6 Domain corners . 115

6.2 Encoding supercubes . 116
6.2.1 Encoding collections of supercubes 117

6.3 Encoding RSB meshes . 118
6.3.1 Simplex-based representation 118
6.3.2 Diamond-based representation 119
6.3.3 Supercube-based representation 121

v

7 Diamond-based multiresolution scalar fields 123
7.1 DMSF Model . 123

7.1.1 Generating a DMSF . 124
7.2 Full DMSF . 125
7.3 Partial DMSF . 125
7.4 Theoretical evaluation . 128
7.5 Applications . 131

7.5.1 Error-based generation . 131
7.5.1.1 Terrain modeling . 132
7.5.1.2 Modeling volume data 133

7.5.2 Range-based generation . 135
7.5.3 Region Of Interest-based generation 136
7.5.4 Merging corresponding partial DMSFs 138

7.6 Runtime performance . 141
7.7 Discussion . 146

8 Topological navigation on diamond meshes 148
8.1 Topological relations . 150
8.2 Properties of diamond meshes . 151
8.3 Retrieving topological relations on diamond meshes 153
8.4 Retrieving topological relations on 2D diamond meshes 155

8.4.1 Boundary relations involving 2D diamonds 155
8.4.2 Adjacency relations involving 2D diamonds 156
8.4.3 Co-boundary relations involving 2D diamonds 159
8.4.4 Deriving the remaining topological relations 161

8.5 Retrieving topological relations on 3D diamond meshes 161
8.5.1 Boundary relations involving 3D diamonds 162
8.5.2 Adjacency relations involving 3D diamonds 164
8.5.3 Co-boundary relations involving 3D diamonds 166

8.6 Results . 167
8.7 Discussion . 172

9 Isodiamond hierarchies 174
9.1 Isodiamonds . 175
9.2 Encoding isodiamonds . 179
9.3 Relevant isodiamonds . 180

9.3.1 Definition . 181
9.3.2 Data structure . 181
9.3.3 Generating an RI hierarchy . 183
9.3.4 Querying an RI hierarchy . 183

9.4 Minimal isodiamonds . 185
9.4.1 Definition . 185
9.4.2 Properties . 186
9.4.3 Data structure . 188
9.4.4 Generating an MI hierarchy . 189

vi

9.4.5 Querying an MI hierarchy . 189
9.5 Results . 193

9.5.1 Front-size and extraction times 195
9.6 Discussion . 198

10 Hierarchies of balanced hypercubes 202
10.1 Hypercube hierarchies . 204

10.1.1 Balanced refinement . 204
10.1.2 Balanced hypercube hierarchies 205

10.2 Encoding hypercube hierarchies and their extracted meshes 208
10.2.1 Encoding hypercubes . 208
10.2.2 Encoding dependency relations 210
10.2.3 Encoding k-balanced hypercubic meshes 212

10.3 Triangulating nested hypercubic meshes 215
10.3.1 Mesh balancing . 215
10.3.2 Vertex caching . 217
10.3.3 Hypercube triangulation . 218
10.3.4 Results . 221

11 Conclusions 225
11.1 Three families of nested RSB meshes 228
11.2 Future work . 230

A Double factorial 232

B Common terms involving binomials, exponents and factorials 234

C Binomial theorem 235
C.1 Simplified binomial theorem . 235
C.2 Related proof . 237

Bibliography 239

vii

List of Tables

3.1 Taxonomy of simplex-based approaches 58
3.2 Taxonomy of diamond-based approaches 59

4.1 Number of simplices in an i-diamond 83
4.2 Number of vertices in an i-diamond . 85
4.3 Number of children of an i-diamond . 85
4.4 Number of parents of an i-diamond . 85
4.5 Number of top simplices in a parent-child duet 86

5.1 Number of i-diamonds in a d-dimensional supercube 103

7.1 Storage requirements and overhead for DMSF representations 129
7.2 Density and concentration for DMSF models in 2D 130
7.3 Results for error-based partial DMSFs extracted from terrain datasets . . . 132
7.4 Results for error-based partial DMSFs in 3D 134
7.5 Results for isovalue-based partial DMSFs in 3D 137
7.6 Selective refinement performance for DMSF representations in 3D 144

8.1 Storage costs for 2D and 3D topological data structures 170
8.2 Extracted RSB meshes at different resolutions in 3D 171
8.3 Cardinality of co-boundary relations within RSB meshes in 3D 172

9.1 Status of arcs in dependency graph of minimal isodiamond hierarchy . . . 188
9.2 Results for isodiamond hierarchies in 3D 194

10.1 Positions of bits in hypercube encoding 211
10.2 k-balanced hypercubic meshes . 214
10.3 Results for triangulations of edge-balanced hypercubic meshes 222

B.1 Common terms involving exponents, factorials and binomials. 234

viii

List of Figures

1.1 Variable resolution meshes . 3
1.2 Associating values with cells or vertices of a mesh 4

2.1 Conforming and non-conforming meshes 13
2.2 Hypercubes: recursive definition. 14
2.3 Diagonal of a hypercube . 14
2.4 Regular refinement of a d-cube in 2D and 3D 17
2.5 Regular refinement of a simplex in 2D and 3D 17
2.6 Simplex bisection in 2D and 3D . 18
2.7 Isosurface and interval volume extracted from a nested triangle mesh . . . 19

3.1 Bisection-based and Delaunay-based triangulations of a hypercube 28
3.2 Splitting and merging of a diamond . 42
3.3 Batched triangulations at three levels of resolution 43
3.4 Octagonal descendant domain of a two-dimensional diamond 45

4.1 Cross simplex and cross complex . 62
4.2 Kuhn subdivided hypercubes in 1D, 2D and 3D 62
4.3 Decomposition of a d-cube into d! simplices in 3D 64
4.4 d simplex classes in RSB scheme in 2D and 3D 67
4.5 Three consecutive Maubach complexesMi(h) in 2D 68
4.6 Four consecutive Maubach complexesMi(h) in 3D 68
4.7 Fully subdivided i-cube boundary BF in 1D, 2D and 3D 71
4.8 A hierarchy of RSB triangles . 73
4.9 The d classes of diamonds in 2D and 3D 75
4.10 Diamond subdivision in 2D and 3D . 75
4.11 Modifications in diamond hierarchy . 77
4.12 A hierarchy of diamonds in 2D . 78
4.13 Parent-child duets in 2D and 3D . 79
4.14 Dual grid for diamond decomposition 81
4.15 Decomposition of 1-diamond in 3D . 81
4.16 Decomposition of an i-diamond in dimension d as a cross complex 84
4.17 Selective refinement and active front on diamond hierarchy 89
4.18 Nested refinement domains of three-dimensional diamonds 92

5.1 Tiling the plane with Kuhn squares . 94
5.2 J1 tiling at three levels of resolution in 3D 94
5.3 Relationship between regular refinement of hypercubes, the Freudenthal

triangulation K1 and the Tucker-Whitney triangulation J1 97

ix

5.4 Supercubes at three levels of resolution in 2D 98
5.5 Faces and edges of a half-open cube in 2D and 3D 99
5.6 Edges of a supercube in 3D . 99
5.7 Simplices in a supercube . 101
5.8 Diamonds in a 2D supercube . 103
5.9 Diamonds in a 3D supercube . 104

6.1 Diamond type as supercube offset . 112
6.2 Diamond encoding example . 115
6.3 Supercube-based active front encoding in 2D 121

7.1 Tile from GTOPO 30 dataset as full DMSF and as partial DMSF 127
7.2 Comparison between density D, concentration C and storage costs for

partial DMSF representations . 131
7.3 Results for partial DMSF encoding in 2D 133
7.4 Results for error-based partial DMSF encoding in 3D 135
7.5 Results for isovalue-based partial DMSF encoding in 3D 137
7.6 Circular region of interest (ROI) from Puget Sound 1k dataset 138
7.7 Merged DMSF models . 142
7.8 Isosurfaces extracted from DMSF models, colored by supercube 145

8.1 Vertices and diamonds in a diamond mesh 151
8.2 Diamonds in 2D and 3D . 151
8.3 Lifespan of an edge in a diamond mesh 153
8.4 Extraction of Vertex-Edge relation in a diamond mesh 155
8.5 Diamond-Diamond relation in 2D . 158
8.6 Possibilities for Edge-Diamond relation in 2D 160
8.7 Vertex-Diamond relation in a diamond mesh 161
8.8 Elements of a three-dimensional duet . 162
8.9 Diamond-Diamond relation in 3D . 164

9.1 Isodiamond hierarchies . 177
9.2 Isodiamond modifications . 177
9.3 Creation isodiamonds . 178
9.4 Isodiamond field for 2D bonsai tree dataset at isovalue κ = 58 178
9.5 Parents and children of a creation isodiamond 187
9.6 Diamond meshes extracted from MI and RI hierarchies of 2D bonsai tree

dataset at isovalue κ = 58 . 190
9.7 Potential problems with creation isodiamonds in MI hierarchy 191
9.8 Extraction times and active front sizes for meshes extracted from diamond

and isodiamond hierarchies . 196
9.9 Isosurfaces and interval volume meshes extracted from isodiamond hier-

archies . 199

10.1 Edge-balanced and facet balanced cubic meshes 204
10.2 Immediate predecessors of a hypercube for k-balanced refinement 206

x

10.3 Result of k-balanced refinement of a hypercube in 2D 206
10.4 Supercube encoding of hypercubes . 209
10.5 Overview of hypercube triangulation algorithm 216
10.6 Diamond-based triangulations of a cube in 3D 216
10.7 Hypercubic and diamond-based decompositions of Bunny dataset sur-

rounding isovalue κ = 0 . 224

11.1 Minimal triangulations for the three families of RSB meshes: S,D andH 230

xi

List of Algorithms

4.1 AdaptiveRefine(σ) . 88
4.2 SelectiveRefine(δ,ForceRefine) . 88
8.1 Diamond-DiamondRelation(δ) . 157
10.1 CacheVertices(C) . 217
10.2 TriangulateHypercubicMesh(C) . 218
10.3 LocalRefineDiamond(δ,Σh, h) . 218

xii

Chapter 1

Introduction

One of the fundamental problems in computer graphics, scientific visualization, geo-

graphic data processing, and shape analysis and understanding is how to deal with the

huge amount of data that describe the objects of interest. A diverse class of approaches uti-

lizes a hierarchical organization of the field domain to describe subsections of these objects.

Examples include the analysis and visualization of two-, three- and higher-dimensional

scalar fields, where the domain of the field is adaptively decomposed into nested cells of

a simple geometric shape.

The availability of very large meshes describing free-form shapes, terrains, and

volume data sets has led to the investigation of mesh-based multiresolution methods to

control and adjust the level of detail (LOD) in the representation of a given data set.

Multiresolution models provide a great deal of flexibility since they compactly encode a

large number of different mesh-based representations of a shape, or of a field, and enable

the efficient extraction of a variety of different representations at uniform or variable

resolutions.

Although an irregular sampling of the domain provides a great deal of flexibility

in the sampling locations, and can thus represent the features of a problem domain using

fewer elements than a regularly sampled domain, this representation has a geometric

overhead, due to the explicit storage of the coordinates, and a topological overhead, due

to the explicit representation of the connectivity among the vertices. Conversely, regularly

sampled domains have no geometric or topological overhead since the coordinates can

be directly inferred from the position of the data points in a grid. However, they suffer

from a high sampling overhead, that is, the overhead related to the number of samples

1

required to represent the features within the dataset, due to the rigid structure of such

grids. When a multiresolution representation of the dataset is considered, the hierarchical

overhead, related to how finer representations are obtained from coarser ones, must also

be considered.

Decompositions based on nested hypercubes, such as quadtrees and octrees, are

a typical compromise between the two representations since their vertices lie along a

regular grid while aggregating the less relevant regions into larger blocks. A drawback

of these techniques is that they introduce an exponential number of vertices and cells

(of the order d of the dimension of the domain) during each subdivision. Furthermore,

both quadtrees and octrees (as well as their d-dimensional generalizations, that we call

2d-trees) are less suitable for generating crack-free, or conforming, decompositions since

the bilinear or trilinear interpolant over each square or cubic cell generates discontinuities

on the boundary of adjacent cells that have different sizes. Thus, additional rules must be

applied to ensure compatibility between neighboring cells.

In contrast, models based on Maubach’s simplicial bisection scheme [123], which

we refer to as the Regular Simplex Bisection (RSB) scheme, enable the generation of more

adaptive meshes over the same domain by breaking up each 2d-tree subdivision into d

steps [146] while enforcing conforming modifications to the model. Nested RSB meshes

in fact have a higher degree of adaptability to the features of a domain than 2d-trees, since

RSB subdivisions only add a single vertex (rather than an exponential number of vertices),

and double the number of cells involved in each subdivision. Furthermore, they have a

higher representational power than 2d-trees, i.e., the set of triangulations derivable from

RSB subdivisions is a superset of those derivable from triangulated balanced quadtrees

and octrees. On the other hand, compared with multiresolution models based on irregular

sampling, such as the MultiTessellation (MT) [43], nested RSB meshes can be encoded

implicitly and thus have smaller storage costs [41].

Efficient representations have been proposed for multi-resolution models of scalar

2

(a) Irregular (b) Quadtree (c) RSB Mesh

Figure 1.1: (a) Irregular mesh (b) Triangulated balanced quadtree (c) Regular Simplex Bisection
(RSB) mesh.

fields in 2D and 3D based on clustering maximal simplices (triangles or tetrahedra, in

these cases) sharing their bisection edge into a new geometric primitive called a diamond.

Diamond-based representations exploit the regularity of the vertex distribution, and of the

subdivision rule which produces diamonds of certain fixed shapes, to yield an implicit en-

coding of the hierarchical and geometric relationships among the triangles and tetrahedra,

respectively.

These subdivisions have many applications in the analysis and visualization of scien-

tific and medical data. They have been applied to interactive terrain rendering [45,54,113]

and multiresolution isosurface extraction [69, 76, 214], as well as volume segmenta-

tion [97], surface reconstruction [125] and finite element analysis [123, 159]. Four-

dimensional applications include multiresolution representations for time-varying vol-

umetric datasets [103, 115], acceleration structures for ray tracing [6] and the analysis

of bivariate complex functions [191]. Higher dimensional applications include five-

dimensional weather data [88], fixed point computations [123] and the solution spaces of

parametrized equations.

3

(a) Values associated with cells (b) Values associated with vertices

Figure 1.2: (a) Associating scalar values with the cells of a mesh can lead to cracks. (b) A mesh
is free of cracks when values are associated with the vertices of a conforming mesh.

1.1 Contribution

In this thesis, we argue that diamonds are the natural representation for generating, mod-

eling and encoding conforming meshes extracted through the Regular Simplex Bisection

scheme and introduce several diamond-based approaches for scientific visualization.

Diamond hierarchies of arbitrary dimension. Our first contribution is a formalization

of the notion of diamonds in arbitrary dimensions and their relationship to the simplices

generated by the Regular Simplex Bisection (RSB) scheme. We frame our discussion

of diamonds in terms of two related simplicial decompositions of hypercubes. Through

a careful analysis of the properties of these structures, we prove that diamonds can be

decomposed as a cross complex (a simplicial cross product) of these two structures and

we derive the first closed-form equations for the number of vertices, simplices, parents

and children of a diamond.

Specifically, we prove that the number of d-simplices in a d-dimensional diamond

which must be bisected simultaneously for conforming refinements is factorial in the di-

mension d of the domain. However, due to the regularity of the diamond subdivision oper-

ation, these simplices can be grouped into a linear number of clusters, which we refer to as

4

parent-child duets, that are generated simultaneously. Consequently, while simplex-based

representations require O(d!) time to update and space to encode an extracted simplicial

complex, diamond-based representations can encode the O(d!) simplices of a diamond

using only O(d) space, and can subdivide diamonds in O(d) time. Our combinatorial

decomposition leads to an implicit pointerless representation for d-dimensional diamonds,

enabling efficient representations for hierarchies of diamonds and their extracted meshes.

Supercubes: A high-level primitive for RSB hierarchies. Next, we propose a high-

level primitive for hierarchies generated by RSB, which we call supercubes. A supercube

is a structured set of edges within an RSB hierarchy that captures the intrinsic symmetry

within the model. Whereas simplex-based and diamond-based representations contain

several similarity classes of primitives, each with different geometric alignments, super-

cubes are all identical (up to translation and scale). Diamonds and supercubes are related

by a one-to-one correspondence from the bisection edge of a diamond to an edge of a

supercube. Thus, each edge of a supercube corresponds to a distinct type of diamond

within the hierarchy.

Many operations on RSB hierarchies apply to only a sparse subset of the elements

within the hierarchy. For example, due to the uniformity of the regular sampling, large

regions of a scalar field’s domain are often oversampled. Additionally, in isosurfacing

applications, we are only interested in the subsets of the domain that intersect a given iso-

surface. However, implementations of these hierarchies have mostly focused on efficient

representations for the entire hierarchy, where all simplices or diamonds are implicitly

indexed. We propose the use of supercubes as containers for data associated with coherent

subsets of the elements of an RSB hierarchy. Since partial representations incur overhead

related to the explicit storage of spatial indexes, we consider the dataset’s density, the

number of encoded samples with respect to an encoding of the full hierarchy, as well as its

concentration, the average number of elements associated with each supercube, to evaluate

5

the effectiveness of a supercube-based representation for a given dataset. We demonstrate

that the geometric overhead incurred by a multiresolution model of a complete or partial

scalar field is largely reduced through the use of supercubes.

A particularly important application of supercube-based models is in the field of

Geographic Information Systems (GIS), where regular grids are the most common for-

mat for terrain datasets. Supercubes provide a solution for a long-standing problem of

representing subsets of a regular grid. For example, elevation data for rough terrain and

coastlines are required to be sampled at a high resolution, while flatter regions, especially

those covering large bodies of water, do not require such high sampling resolution. This

is especially relevant for global datasets since approximately 70% of the earth’s surface is

covered by water.

Similarly, for volumetric datasets, the objects of interest are often embedded within

a regularly sampled cubic domain. We demonstrate that typical volumetric datasets (from

the Volume Visualization repository [189]) are oversampled by a factor or three or more,

with respect to a lossless supercube-based encoding of the multiresolution scalar field.

Topological navigation on diamond meshes. In shape modeling and analysis applica-

tions, we are often interested in computing local properties about elements within a mesh.

Such queries are typically posed in terms of local neighborhoods surrounding a region

of the mesh and require efficient support for navigating its topological connectivity. Ex-

amples include visibility queries on terrain datasets, compression and repair of simplicial

meshes, curvature estimation and ray casting algorithms.

However, due to the increasing sizes of datasets, it is important to reduce the storage

requirements associated with the mesh’s topological connectivity. Not only does this

require additional storage space, but it must also be maintained when modifying the mesh,

for example, during mesh simplification or refinement.

Diamond meshes are a compact representation for conforming RSB meshes which

6

do not explicitly encode any information related to topological connectivity of its elements.

After analyzing the structure of these meshes based on the manner in which they are gener-

ated, we introduce algorithms to perform topological navigation directly on these meshes

without requiring any additional information. We demonstrate that in 3D, our represen-

tation requires an order of magnitude less space than the state of the art representation

for tetrahedral meshes [144], and that the benefits of this representation increase with the

resolution of the extracted mesh.

Isodiamond hierarchies. Another contribution of the current work is in the visualiza-

tion of volumetric datasets, which are often analyzed through their surfaces of constant

field value, known as isosurfaces, or through the subvolumes enclosed by two isosurfaces,

known as interval volumes. These structures are based on a limited range of the field

values and typically occupy a sparse, but spatially widespread, subset of the dataset. Mul-

tiresolution representations are useful to analyze and visualize isosurfaces and interval

volumes, since at full resolution both can contain from millions to billions of elements.

Furthermore, in scientific and medical applications, details at the highest available resolu-

tion are required on demand and, thus, simplified approximations of these datasets are not

sufficient.

Once a relevant isosurface or interval volume is found, it can be useful to represent

it in a more convenient format, e.g. for transmission and offline viewing of the mesh.

Indexed tetrahedral meshes are a popular output format for such meshes, where only the

vertices and tetrahedra are explicitly stored. However, while this is a useful format for

rendering applications, it is not particularly useful for more involved mesh processing tasks

that require a notion of spatial proximity between elements. Also, these indexed meshes

can also exceed a machine’s processing capabilities and often require simplification to be

suitable for downstream tasks.

To this aim, we introduce the Isodiamond Hierarchy framework for encoding mul-

7

tiresolution isosurfaces or interval volumes extracted from a hierarchy of diamonds. The

basic idea here is to exploit the regular nested decomposition of the domain to produce

compact hierarchical representations of a single isosurface or a single interval volume.

Since the desired isosurface or interval volume is determined in advance, these represen-

tations are able to decouple the implicit hierarchical and geometric relationships in the

hierarchy of diamonds from the field values of the volume dataset. Thus, such models

enable a compact encoding of modifications to the irregular isosurface or interval volume

in terms of regular modifications to the corresponding nodes of the hierarchy of diamonds.

We introduce two multiresolution models based on this framework. The first model,

which we call a Relevant Isodiamond (RI) hierarchy, encodes a collection of active mod-

ifications to a coarse representation, corresponding to the diamonds in the hierarchy of

diamonds intersected by the isosurface or interval volume. An RI hierarchy also encodes

all relevant modifications, which are ancestors of active modifications that are not inter-

sected by the isosurface or the interval volume. Relevant modifications enable spatial

access to the active modifications and guarantee that all the meshes extracted from the RI

hierarchy are free of cracks.

The second multiresolution model that we propose, which we call a Minimal Isodi-

amond (MI) hierarchy, encodes the active modifications as well as a small subset of the

relevant modifications corresponding to the creation of new isosurface or interval volume

components. As a consequence, this model requires a careful analysis to guarantee that

the extracted meshes do not self-intersect. In addition to the reduced storage requirements,

we show that the same uniform- and variable-resolution representation of the encoded iso-

surface or interval volume can be extracted from the MI hierarchy as from the RI model,

but in less time, and using less memory. Both representations support efficient general

selective refinement operations to extract conforming meshes at different resolutions from

the model using application-dependent selection criteria.

8

Hierarchies of balanced hypercubes. Although the focus of this thesis is on nested

simplicial decompositions, there are many applications of nested hypercubic grids in-

cluding those based on quadtrees, octrees and their higher dimensional extensions [165].

Downstream applications typically require mesh elements to satisfy certain quality con-

straints related to the shapes of the elements as well as the rate of adaptivity within the

mesh.

Geometric quality constraints can be enforced by using refinement rules that only

generate mesh elements from a small set of acceptable modeling primitives [15]. A

common adaptivity constraint is to ensure that neighboring elements differ in resolution by

at most one refinement level, i.e. the ratio of edge lengths between neighboring elements

can be at most 2:1. This constraint has been considered in many different application

domains, including computational geometry [13,23], scientific visualization [54,205] and

computer graphics [190] under various terms such as restricted [176, 190], smooth [131]

and balanced [129, 178].

We introduce hierarchies of balanced hypercubes defining families of nested hyper-

cubic meshes with balancing restrictions. We provide a formal treatment of the dependency

relation among hypercubes in a nested hypercubic mesh, necessary to generate balanced

hypercubic meshes. This framework is general enough to encompass traditional quadtrees

and octrees, which we refer to as unbalanced.

Our analysis stems from a novel reinterpretation of nested hypercubic meshes

through the lens of diamond hierarchies, whereby hypercubes are seen as a special class

of diamonds. This yields a compact pointerless encoding for balanced hierarchies of hy-

percubes, which provides random access to the hierarchical ancestors of each hypercube

as well as for meshes extracted from such hierarchies. The connection to diamonds also

suggests a supercube-based representation for encoding the vertices and cells of a bal-

anced hypercubic mesh, and for a local diamond-based triangulation algorithm to generate

conforming RSB meshes from balanced hypercubic meshes.

9

1.2 Thesis organization

The remainder of this dissertation is organized as follows.

In Chapter 2, we review some background notions on cell and simplicial complexes,

on modeling scalar fields and on mesh-based multiresolution models.

In Chapter 3, we review the state of the art on domain decompositions and on

visualization of scalar fields, with an emphasis on approaches based on regular simplex

bisection.

In Chapter 4, we introduce our dimension-independent approach for diamonds. We

frame our discussion in terms of two related simplicial decompositions of a hypercubic

domain, and prove that a diamond can be defined as a cross complex of these two de-

compositions. This enables a comprehensive description of the properties of diamonds

in arbitrary dimensions. We conclude with a discussion of diamond-based simplicial

complexes extracted from a hierarchy of diamonds and some implications of our diamond-

based approach.

In Chapter 5, we introduce the supercube as a high-level primitive for hierarchies

of nested RSB meshes. After considering the underlying domain decomposition induced

by RSB, we investigate the properties of supercubes, and the number of vertices, edges,

simplices and diamonds uniquely indexed by each supercube.

We follow this in Chapter 6 with an encoding for diamonds, diamond hierarchies,

supercubes and RSB meshes extracted from a hierarchy of diamonds.

We next introduce the Diamond-based Multiresolution Scalar Field (DMSF) model

for a scalar field in Chapter 7. The Full DMSF model applies to datasets defined over a

hypercubic domain of resolution (2N + 1)d, while the Partial DMSF model applies to a

subset of samples from a full DMSF that is closed with respect to the diamond dependency

relation. We discuss the advantages of a partial DMSF from a theoretical perspective, and

introduce several practical applications.

In Chapter 8 we reexamine the structure of extracted diamond meshes to define

10

optimal algorithms for topological navigation on 2D and 3D diamond meshes. We then

compare our diamond-based and supercube-based representations for RSB meshes to a

simplex-based representation and to a compact topological data structure for general sim-

plicial meshes. Compared to the latter, our representations require an order of magnitude

less space.

In Chapter 9, we introduce the Isodiamond Hierarchy framework for spatial access

structures defined on a hierarchy of diamonds. The two multiresolution models for isosur-

faces and interval volumes are introduced in Sections 9.3 and 9.4, respectively, and are

compared in Section 9.5.

In Chapter 10, we apply our understandings of diamond hierarchies to balanced

hierarchies of nested hypercubes. We first analyze the dependency relation induced by

balanced hypercubic refinement to define a multiresolution model. Next, we adapt our

diamond encoding of Chapter 6 to yield an efficient representation for nested hypercubic

meshes. Finally, we introduce a diamond-based triangulation algorithm to convert nested

hypercubic meshes into conforming RSB meshes.

We conclude in Chapter 11 with a summary of our results. In particular, we discuss

how the supercube primitive relates the families of nested RSB meshes generated by

simplex bisections, by diamond subdivisions and by triangulations of nested hypercubic

meshes.

11

Chapter 2

Background notions

In this chapter, we introduce some background notions on cell complexes, on modeling

scalar fields and on mesh-based multiresolution models that we use in the remainder of

the thesis.

2.1 Cellular meshes

A convex polytope is a subspace of Rn bounded by a set of half-spaces. Polytopes general-

ize line segments (1-polytopes), polygons (2-polytopes) and polyhedra (3-polytopes).

We define a d-dimensional cell, or d-cell, as a convex polytope in some d-dimensional

subspace of Rn. For convenience, we define the empty cell to have dimension −1. Let c be

a d-cell. Then, an i-dimensional face ci of c, denoted ci ⊆ c, where −1 ≤ i ≤ d, is an i-cell

on the boundary of c. We refer to a 0-cell as a vertex, a 1-cell as an edge, and for a given

d-cell, we refer to its (d − 1)-faces as facets. The diameter of a polytope p is defined as

the maximum distance between any two points on the boundary of p.

A cellular mesh Π is a finite collection of cells such that (a) if c is a cell in Π,

then all faces ci ⊆ c also belong to Π, and (b) the interiors of cells in Π are disjoint

(see Figure 2.1) [1]. The dimension, or order, of a cellular mesh is the maximum of the

dimensions (orders) of the cells forming it. In a cellular mesh, cells that are not on the

boundary of any other cells are called top cells. In a cellular mesh of order d with a

manifold domain, as we will consider here, all top cells are d-cells. Intuitively, a manifold

(with boundary) X is a subset of d-dimensional Euclidean space such that each point x ∈ X

has a neighborhood that is homeomorphic to an open ball or to an open ball intersected by

12

(a) Intersect (b) Crack (c) Conforming

Figure 2.1: A decomposition is conforming (c) if its cells do not intersect (a) and it is free of
cracks (b).

a plane when x is on the boundary of X. Such a mesh is also referred to as a pure cellular

mesh.

If, additionally, the intersection of any two cells c1, c2 ∈ Π is a lower dimensional

cell on the boundary of c1 and c2, then Π is said to be conforming, or compatible. A

conforming cellular mesh is also referred to as a cell complex. Conforming meshes are

important in many applications since they ensure that there are no cracks or T-junctions

between adjacent cells.

The (combinatorial) boundary of a cell c in a cell complex Π is the set of all cells

of Π, excluding c, that are faces of c. The co-boundary, or star of a cell c, denoted St(c)

is the set of cells in Π containing c in its boundary. Note that, a cell c ∈ Π is a top cell if

St(c) contains only c. The link of a cell c, denoted Lk(c), is the set of all the faces of the

cells in St(c) which are not incident to c.

Two cells are incident to each other if one of them is a face of the other, while they

are k-adjacent if they share a k-face: in particular, two vertices are called adjacent if they

are both incident to a common edge, and two i-cells (i > 0) are called adjacent if they are

(i − 1)-adjacent.

2.1.1 Hypercubic meshes

Hypercubes are a class of polytopes that can be defined in arbitrary dimension. They gen-

eralize line segments (1-cubes), squares (2-cubes) and cubes (3-cubes). A d-dimensional

hypercube, or d-cube, can be defined recursively: A 0-cube is a single point, and a d-cube

is created by extruding a (d−1)-cube one unit along a direction orthogonal to the previous

13

Figure 2.2: Hypercubes: recursive definition.

Figure 2.3: Diagonal of a hypercube

(d − 1) directions (see Figure 2.2). Thus, d-cubes have twice as many vertices as (d − 1)-

cubes. Unless otherwise indicated, we refer to axis-aligned hypercubes, where all such

directions are parallel with the Euclidean coordinate axes.

An interesting property of hypercubes is that all faces of a d-cube are lower dimen-

sional hypercubes. Given a d-cube h, an i-face of h is any i-cube on the boundary of h,

where 0 ≤ i ≤ d. The number of i-faces of a d-cube is given by
(

d
i

)
2d−i. In particular, a

d-cube h has 2d vertices; (2d−1 · d) edges; and (2 · d) facets. The total number of faces of a

d-cube is thus:∗
d∑

i=0

(
d
i

)
2d−i = 3d. (2.1)

The diameter of a d-cube h is referred to as a diagonal and is defined by a pair of

opposite vertices, that is, two vertices of h whose only common face is h (see Figure 2.3).

Let (v1,v2) be an unordered pair of opposite vertices of a hypercube h with side length s.

Then an edge between v1 and v2 forms a diagonal of h and has length s
√

d. Since faces of

a hypercube are also hypercubes, a diagonal of an i-face of h has length s
√

i.

∗This is a special case of the binomial theorem, see Appendix C.

14

A hypercubic mesh is a cellular mesh containing only cubes. Note that a hypercubic

mesh can only be conforming if all cubes are uniform in size. A hypercubic meshes is

referred to as balanced if edge lengths of neighboring hypercubes are either equal or have

a ratio of 2:1. It is k-balanced if all k-adjacent hypercubes have this property.

2.1.2 Simplicial meshes

The simplices are another class of cells that can be defined in arbitrary dimension. They

generalize line segments (1-simplices), triangles (2-simplices) and tetrahedra (3-simplices).

A d-dimensional simplex, or d-simplex, is the convex hull of (d + 1) affinely independent

points in the n-dimensional Euclidean space. An i-face of a d-simplex σ is the i-simplex

defined by any (i + 1) vertices of σ. The number of i-faces of a d-simplex is thus
(

d+1
i+1

)
.

A simplicial mesh Σ is a cellular mesh containing only simplices, that is, all faces of

a simplex σ ∈ Σ belong to Σ, and the interiors of simplices from Σ are disjoint. Similarly,

a simplicial complex is a simplicial mesh that is conforming. A simplicial complex of

order d is referred to as a simplicial d-complex. As with cubes, all faces of a simplex

are simplices. However, in contrast to hypercubic complexes, simplices in a simplicial

complex do not need to have uniform size.

2.2 Nested mesh refinement

A nested refinement scheme consists of rules for replacing a set of cells Γ1 in a cellular

mesh Π with a larger set of cells Γ2 covering the same domain. When Γ1 and Γ2 share

the same combinatorial boundary, the refinement does not introduce cracks into Π, i.e. the

refinement is conforming.

Recall that two cells τ1 and τ2 are similar if there is an affine map A defined by

translations, rotations, reflections and uniform scaling between them, i.e. τ1 = A · τ2. An

equivalence class of similar cells is referred to as a similarity class of cells. The number

of similarity classes generated by successive refinements is an important characteristic of

15

a refinement scheme, since it enables the analysis of properties of all generated cells. In

particular, it is important in many applications, such as finite element analysis, that the

angles at the vertices are bounded. Such a scheme is referred to as stable [15].

The two primary categories of nested refinement schemes for regularly sampled

domains are those built on regular refinement and on bisection refinement [183]. For an

example of a nested mesh refinement scheme over irregularly sampled domains, see [42].

2.2.1 Regular refinement

The regular refinement of a d-dimensional cell τ is defined by adding vertices at all edge

midpoints of τ and decomposing τ into 2d disjoint cells covering τ [9].

Regular refinement on (hyper)-cubic cells generates quadtree and octree decomposi-

tions as well as their higher dimensional analogues, in which all 2d generated hypercubes

share the midpoint of the refined domain as a common vertex (see Figure 2.4).

Regular refinement of a triangle σ generates four triangles that are similar to σ, of

which, three triangles are incident to a vertex of σ, while the fourth triangle is defined by

the three edge midpoints of σ (see Figure 2.5a). However, on simplicial meshes of order

d > 2, regular refinement is not uniquely defined and can generate multiple similarity

classes of simplices. For example, when refining a tetrahedron σ, the four tetrahedra

incident to the vertices of σ are similar to σ, while the remaining four tetrahedra obtained

by subdividing the octahedral domain O defined by the edge midpoints of σ, are not, in

general, similar to σ (see Figure 2.5b).

Regular refinement does not generally create conforming adaptive refinements of a

domain, i.e. where the cells can be at different levels of resolution. The red/green refine-

ment scheme [9] introduces a set of irregular closure refinement rules (green) to augment

the regular refinement rules (red) for patching cracks between regular cells at different

resolutions. An additional balancing constraint restricts the degree of decomposition be-

tween edge-adjacent cells, thereby reducing the number of green refinement rules that

16

(a) Regular refinement of 2-cube (b) Regular refinement of 3-cube

Figure 2.4: Regular refinement of a d-cube h generates 2d d-cubes all incident on the midpoint of
h. (a) A square is decomposed into four squares. (b) A cube is decomposed into eight cubes.

(a) Triangle Refinement (b) Tetrahedral Refinement

Figure 2.5: Regular refinement of a simplex. (a) A triangle is decomposed into four similar
triangles. (b) A tetrahedron is decomposed into four similar tetrahedra and four non-similar
tetrahedra covering an octahedral domain O (blue).

need to be considered.

2.2.2 Bisection refinement

The second class of nested refinement schemes is defined by bisection refinement, in

which a cell is bisected along a hyperplane into two cells. When the cells are axis-aligned

hyperrectangles which are bisected by axis-aligned hyperplanes, this generates k-d trees

(see Section 3.1.3).

Alternatively, the simplex bisection operation bisects a d-simplex σ along the hyper-

plane defined by the midpoint vm of some edge e and the (d − 1) vertices of σ not incident

to e. We refer to e as the bisection edge of σ. In contrast to regular refinement, which

generates 2d cells, simplex bisection generates only two simplices with disjoint interiors

covering its domain. Figure 2.6 illustrates the simplex bisection rule in 2D and 3D.

Similarly to regular refinement, the decomposition induced by simplex bisection

17

e

vm

(a) Triangle Bisection

vm

e

(b) Tetrahedron Bisection

Figure 2.6: A simplex is bisected along the hyperplane defined by the midpoint vm (red) of an
edge e (green) and all vertices (blue) not incident to that edge.

is not uniquely defined, as it does not specify which edge to bisect. Stable refinement

schemes have been considered in which the bisection edge is determined through geomet-

ric or typographical properties (based on manipulating an ordered set of vertices). Simplex

bisection is not a conforming refinement. Specifically, it introduces cracks between the

neighbors of a bisected simplex σ that are incident to its bisection edge, and the two sim-

plices generated during σ’s bisection (see Figure 2.1b). This can be remedied by ensuring

that all simplices incident to the bisection edge e are refined concurrently.

2.3 Modeling scalar fields

Scientific datasets are often given as a discrete set of points V in a domain Ω ∈ Rd where

one (or more) field values are associated with each point of V . The points in V can be

regularly or irregularly distributed over the domain. In the former case, the data set is

structured, while it is unstructured in the latter case. We assume that the domain Ω of a

field F, denoted ΩF , is a d-dimensional manifold with boundary.

We denote the value of a point p ∈ ΩF as F(p). Such datasets can be modeled

as a mesh ΠF formed by polytopic cells having their vertices at the data points. An

interpolating function defined over the cells of ΠF provides values for all points of ΩF .

We consider models based on simplicial complexes, defined over regularly sampled

rectilinear grids, in which linear interpolation is used over the simplices forming the

18

(a) Isosurface (b) Interval Volume

Figure 2.7: Isosurface (a) and interval volume (b) extracted from a nested triangle mesh.

mesh. The conforming property is important in this application since cracks in non-

conforming meshes correspond to discontinuities in extracted meshes in correspondence

to the boundary of adjacent cells of the underlying mesh.

2.3.1 Isosurfaces and interval volumes

One way of analyzing and visualizing such data sets is through surfaces of constant scalar

value within the field. An isosurface S of isovalue κ within F, denoted as S κ, is defined

as

S κ = F−1(κ) = {x ∈ ΩF |F(x) = κ}. (2.2)

The isosurface S κ passes through all cells having at least one vertex whose associated field

value is greater than κ, and at least one vertex whose value is less than κ. We consider

such cells to be active or non-empty with respect to κ. Otherwise, the cell is considered

to be inactive or empty. Figure 2.7a shows an example of an isosurface extracted from a

nested triangle mesh.

Once a particular isovalue κ is chosen, it implicitly defines a binary-valued sign field

Bκ on the vertices v ∈ V whose bits are set when corresponding scalar values of F are

19

greater than κ, namely:

Bκ(v) =

1, κ > F(v),

0, otherwise.
(2.3)

An alternative method of visualizing regions of a dataset is through an interval

volume, which is the set of points enclosed between two isosurfaces. Let K :=
[
α, β

]
be

defined as the interval between isovalues α and β, where α ≤ β. Then the interval volume

of isorange K within F, denoted as ΣK or Σ[α,β], is defined as

Σ[α,β] = F−1(
[
α, β

]
) = {x ∈ ΩF |α ≤ F(x) ≤ β}. (2.4)

Once a particular isorange K is chosen, it implicitly defines a ternary-valued sign

field RK on the vertices v ∈ V whose values are defined by the relative values of F and K,

namely:

RK(v) =

−1, if F(v) < α,

0, if α ≤ F(v) ≤ β,

1, if β < F(v).

(2.5)

Consequently, an interval volume mesh is bounded by two surfaces: the lower surface

corresponds to the isosurface of isovalue α while the upper surface corresponds to the

isosurface of isovalue β. Thus, an interval volume passes through all cells that intersect

one, or both, isosurfaces, or that lie between the two surfaces. Figure 2.7b shows an

example of an interval volume extracted from a nested triangle mesh.

Note that for a given isorange K = [α, β], if α is below the minimum value in the

range of F (or alternatively, if β is greater than the maximum value in the range of F), then

the lower (upper) surface will not exist. This enables an efficient volumetric representation

for a solid object on three-dimensional domains. Similarly, if α = β, the interval volume

degenerates to a standard isosurface.

20

Within each simplex σ, the sign field can be used to unambiguously triangulate the

intersection of the isosurface (or interval volume) with σ. We call this intersection the

isosurface (or interval volume) patch embedded within σ. Note that, when using linear

interpolation, the vertices of the patch are only generated along active edges of σ.

2.4 Multiresolution models

Multiresolution models based on the decomposition of a shape into a simplicial mesh

compactly encode a large number of different mesh-based representations of the shape.

A general dimension-independent framework for mesh-based multiresolution representa-

tions, referred to as the MultiTessellation model [39,43], has been shown to encompass the

vast majority of multiresolution models developed in the literature. The three components

of a mesh-based multiresolution model of a shape are:

• a coarse mesh Γb, called the base mesh,

• a set of modifications U, and

• a dependency relation R defined on the modifications in U.

Each modification specifies a local change to a mesh. It consists of replacing a subset Γ

of its cells with another set of cells Γ′ and is denoted as u = (Γ, Γ′). Each cell γ in Γ must

either be part of the base mesh, or be created by exactly one modification in U. We are

typically interested in modifications such that both Γ and Γ′ are conforming meshes and

the combinatorial boundary of Γ consists of the same set of cells as that of Γ′.

A direct dependency relation R is defined over the set U of all modifications as

follows: a modification u1 = (Γ1,Γ
′
1) directly precedes a modification u2 = (Γ2,Γ

′
2) if

and only if some cell of Γ′1 is also in Γ2, i.e., if u2 removes some cell inserted by u1.

The transitive closure of the dependency relation can be proven to be a partial order over

set U [39]. The direct dependency relation can thus be described as a Directed Acyclic

21

Graph (DAG), in which the nodes represent modifications and the arcs represent direct

dependency links. We call this graph the dependency graph of the model.

Thus, a multiresolution model M = (Γb,U,R) provides a compact way of encoding

all conforming meshes that can be obtained by recursively applying the modifications in

U to the base mesh Γb. Each such mesh is in one-to-one correspondence with a subset

of U that is closed with respect to relation R. A subset U′ of the modifications in U is

called closed if, for each modification u in U′, all predecessors of u, with respect to R,

belong to U′. The collection of all closed sets of modifications in a multiresolution model

M defines the complete set of meshes that can be extracted from M. By applying all the

modifications in U to the base mesh Γb, we obtain the mesh at full resolution described by

M.

2.4.1 Selective refinement

Selective refinement is the basic query operation on a multiresolution model in terms of

which all application-dependent queries can be expressed [28,121]. A selective refinement

query extracts the mesh of smallest size from a multiresolution model based on a user

specified predicate referred to as the selection criterion. This is equivalent to computing

the closed set of modifications from U necessary to extract a mesh Σ, of minimal size,

satisfying the specified criterion. The selection criterion can be based on many factors,

including approximation error, field-values (e.g. isosurface extraction), proximity to an ob-

ject of interest (e.g. view-dependent and Region of Interest (ROI) queries) and perception

(e.g. screen-space error).

Selective refinement is performed by traversing the dependency graph describing

the multiresolution model in a top-down manner starting from the base mesh; in a bottom-

up manner starting from the mesh at full resolution; or incrementally from an already

extracted mesh. The status of the refinement process is described by a cut on the arcs of

the dependency graph, called the active front, which separates the set of modifications that

22

have been applied from those that have not.

23

Chapter 3

State of the art

In this chapter, we review the state of the art approaches for decomposing a regularly

sampled domain, with an emphasis on those based on nested simplex bisection over

a regular grid. Additionally, we review marching methods for isosurface and interval

volume extraction and hierarchical approaches for scalar field visualization.

Nested meshes have been used for various applications within the field of visu-

alization. Examples include quadtrees and octrees formed by squares and cubes [165],

tetrahedral meshes generated by the red/green tetrahedron refinement [15, 81] or meshes

formed by tetrahedral and octahedral elements [79].

When a nested mesh is used as a spatial index for point data the decomposition

can partition the data or the domain [165]. When the subdivision partitions the data, the

resulting structure depends on the insertion order of the elements. However, when the

partitioning is based on the domain, the resultant structure is independent of the insertion

order. In Sections 3.1 and 3.3 we focus primarily on approaches that regularly decompose

a domain. We present a more comprehensive survey on the decomposition models and

applications of simplex and diamond hierarchies in [202, 203], where we interpret these

structures through the notions we introduce in this thesis.

We enumerate and classify the approaches according to whether their primary func-

tion is as a spatial partition of the domain, as a variable resolution representation or as a

multiresolution device. The recent survey by Knoll [98] classifies octree-based approaches

according to their applications for visualization, including surface extraction, Direct Vol-

ume Rendering (DVR) and ray tracing. It discusses some approaches to point location and

neighbor finding on pointerless octrees. In [194], we classify approaches for the analysis

24

and visualization of time-varying volume data by distinguishing between approaches that

treat the temporal dimension as slices of a three-dimensional domain and those that treat

the temporal and spatial dimensions equally, yielding a four-dimensional representation

of the domain.

3.1 Domain decompositions

In the following, assume we have a domain Ω ⊂ Rn, which we will partition into a set of

(possibly overlapping) cells covering the domain. Each such cell c acts as a container or

bucket for data located within the domain of c, such as the points of a scalar field. Cells

can have their own internal data structure to organize their indexed items. For example, a

cell’s data structure could be an (unsorted) linked list of items or it could be more complex,

such as a sorted tree.

3.1.1 Uniform grid

Conceptually, the simplest way to subdivide a domain is to partition it into a grid con-

taining (hyper)-rectangular cells of uniform size. Since the cells are uniform in size, and

contain the same volume, they can be implicitly indexed. Although this method implicitly

partitions all of Rn, optimizations can be utilized for bounded domains.

For example, assume we are dealing with a 2D domain covering [0,m] × [0, n],

where m, n ∈ N+, and each cell covers a 1× 1 square. Then the lower left corner of the cell

c covering an arbitrary point p = (x, y) in the domain can be easily determined from the

integer component of x and y. E.g. if p = (5.78, 4.23), then p is located in the cell whose

lower left coordinates are (5, 4). A straightforward data structure for a bounded uniform

grid is to store the elements in a multidimensional array.

When dealing with sparse datasets within bounded or unbounded domains, hashing

can provide an efficient data structure. However, the efficiency is highly correlated with

the appropriateness of the hashing function for the data distribution.

25

Alternatively, when the data is not uniformly distributed, a more efficient represen-

tation might be obtained by translating the grid lines along the axes. In such a case, the

data is no longer accessible with constant access, and an access structure such as linear

scales [165] can be used to efficiently locate points.

3.1.2 Quadtrees, octrees and 2d-trees

2d-trees are hierarchical spatial decompositions of Rd based on the regular refinement

of hypercubes. Let Ω be the (bounded or unbounded) domain of the 2d-tree T , then the

interiors of the d-cubes of T are pairwise disjoint and cover Ω.

A tree-based nested decomposition of the domain can be defined recursively. Let

the root of the tree be the cell covering a hypercubic domain Ω ∈ Rd. For a tree rooted at

node k, let its children be the 2d d-cubes with disjoint interior where the vertices of each

child’s diagonal contains one of the corner vertices of k and an interior point p of k. The

2d children of a node k are referred to as siblings and k as their parent. If p is always

chosen as the midpoint of k, as we consider here, then the tree is regular.

We now define some properties of the 2d-tree hierarchy. Let Level(k) be the level of

a node k. Then the level of a child node c of k is define as Level(k) + 1, and the level of the

root r of T is defined as Level(r) = 0. The maximum level LevelMax(T) of an 2d-tree T is

defined as the maximum of the levels of all nodes in T , i.e, LevelMax(T)= max{Level(k)},

where k is a node of T .

A node k in an 2d-tree T is considered to be a leaf node if it has no descendants in

T , otherwise it is an internal node. If all leaf nodes of a 2d-tree T have the same level,

then T is complete. Similarly, the resolution of the tree is defined as the distance between

neighboring leaf nodes of level LevelMax(T). If all leaf nodes in a 2d-tree T have the

same resolution, then we say that T has uniform resolution, otherwise, T has variable

resolution.

If the intersection of nodes k and j is a facet (i.e. a (d − 1)-dimensional face) of k or

26

of j then k and j are denoted as facet neighbors or simply as neighbors. If the intersection

of the interiors of nodes k and j, where Level(k) < Level(j) is nonempty then k is called

an ancestor of j and j is a descendant of k.

3.1.2.1 Balanced 2d-trees

In some applications, it can be useful to limit the variability of subdivision between neigh-

boring cells. A balanced 2d-tree is a generalization of the restricted quadtree, introduced

by van Herzen and Barr [190], where the level of neighboring cells can differ by at most

one. Sivan and Samet [175, 176] first use such decompositions as a spatial data structure,

specifically, for modeling terrain datasets, and study different rules for subdividing the

squares into triangles.

Bern and Eppstein [13] define a balanced quadtree as a mesh in which orthogonally

adjacent nodes cannot be more than one level of refinement apart, and prove that a balanced

quadtree in dimension d is at most a constant factor larger than its unbalanced counterpart.

They also prove that simplices generated by using a Delaunay triangulation of a balanced

hypercubic mesh have bounded angles. Moore [129] identifies different types of neighbors

on which to balance a nested hypercubic mesh and uses this to find optimally tight bounds

on the cost of balancing quadtrees and an upper bound for balancing nested hypercubic

meshes of O(3d) in three and higher dimensions.

Due to the increasing size of scientific datasets, there have been several out-of-

core [185, 186] and parallel [178] algorithms introduced for balancing large octrees.

An appropriately defined set of local refinements of the nodes of a balanced 2d-tree

can be used to patch the cracks in the decomposition. In 2D, these meshes can be patched

using bisection-based rules [161,175,176,190] or through Delaunay-based rules [156,215],

where the triangulation cases are explicitly defined. An advantage of the latter in 2D, is

that it does not require the insertion of extra vertices, referred to as Steiner vertices [35],

to generate conforming meshes. Figure 3.1 illustrates the possible Delaunay-based and

27

(a) Delaunay-based triangulations of a square

(b) Bisection-based triangulations of a square

Figure 3.1: Unique triangulation cases (up to symmetry) for squares (2-cubes) based on Delaunay
triangulation (a) and bisection triangulation (b).

bisection-based cases for triangulating a square, with vertices at the midpoints of some of

its edges.

In 3D, Plantinga and Vegter [151] propose a Delaunay-based triangulation for edge-

balanced octrees in which two cubes sharing an edge must be balanced. In this approach,

the faces are triangulated according to the 2D Delaunay cases (e.g. [215]) and each cube is

tetrahedralized by connecting the face triangulation to the cube’s center. Greaves et al. [74,

75] propose bisection-based cases in 3D, but do not provide details of the triangulation.

Triangulation cases for the facet-balanced hypercubic meshes of arbitrary dimension

were proposed by Castelos et al. [26] in the Ja
1 triangulation. In this scheme, a vertex is

inserted at the center of every hypercube and the simplices within a hypercube h are

defined by the edges connecting this vertex to the vertices on the boundary of h. Note

that facet-balanced meshes are the least restricted of the balanced meshes, and that lower-

dimensional faces of facet-balanced meshes can have neighbors that differ in resolution

by more than a factor of two (see Figure 10.1 in Chapter 10).

In Chapter 10, we introduce a hierarchy on balanced hypercubic meshes and pro-

pose a bisection-based triangulation for edge-balanced hypercubic meshes of arbitrary

dimension, based on our model and encoding scheme for diamond hierarchies. Given an

28

edge-balanced hypercubic mesh, the Ja
1 triangulation produces the same domain decompo-

sition as our algorithm, but is represented using simplices rather than diamonds, and thus

requires more storage space.

Alternatively, conforming representations have been proposed for generating adap-

tive quadrilateral or hexahedral meshes from a balanced quadtree or octree, respectively,

based on explicit decomposition rules for neighboring cells of different sizes [167]. These

rules are based on bisection (2:1) or trisection (3:1) of the hypercube edges. Recent work

has focused on simpler decompositions and implementations for quadrilateral [61] and

hexahedral meshes [92]. To the best of our knowledge, such decomposition rules have not

been generalized to higher dimensional domains.

Compared to simplicial decompositions of balanced hypercubic meshes, conforming

adaptive quadrilateral meshes and hexahedral meshes can be generated using fewer cells.

However, in cases where values must be interpolated within each cell, the latter require

multi-linear interpolation (based on 2d values) while the former admit linear interpolation

(based on only (d + 1) values).

3.1.2.2 MX-2d-trees

In some applications, it is important to store all data at the maximum resolution of the

2d-tree. However, to reduce the storage requirements, empty nodes can be aggregated. Let

T be a 2d-tree with LevelMax(T) = `. Then T is an MX-2d-tree∗ if all leaf nodes containing

data are located at level ` [89, 165]. Let j be a leaf node in an MX-2d-tree that does not

contain data, then Level(j) ≤ `. An MX-2d-tree can be generated in a bottom-up manner

from a complete 2d-tree by merging 2d siblings that do not contain data. If any of the

siblings or one of their descendants contain data they cannot be merged.

Since all nodes containing data are leaf nodes at the maximum resolution, MX-2d-

trees can be considered to be uniform resolution.
∗The prefix MX is based on an analogy to sparse matrices, in which adjacent zeros can be aggre-

gated [165].

29

3.1.2.3 PR-2d-trees

If we remove the restriction that leaf nodes containing data need to all be at the maximum

resolution, then we arrive at a variable resolution 2d-tree called the Point Region-2d-tree

(PR-2d-tree) [165]. In a PR-2d-tree, leaf nodes typically contain a single item and are

located at the deepest level containing no other data below it. Alternatively, nodes in a

bucket PR-2d-tree can contain a predefined number of items [165]. Thus, PR-2d-trees

typically require significantly fewer nodes to represent the same dataset as an MX-2d-tree.

One disadvantage of PR-2d-trees is that since the decomposition process is regular

the maximum resolution can (in the worst case) be determined by the minimum distance

between two data items. Thus certain data distributions can yield unbalanced trees.

3.1.2.4 Pyramids

2d-trees typically contain all data in leaf nodes, which are accessed via the internal nodes.

Some applications require aggregate data to be stored in internal nodes as well. When all

leaf nodes are contained at the finest resolution, this structure is called a pyramid. When

some leaf nodes are located at coarser resolutions, we denote this structure as a truncated

pyramid.

Such structures can accelerate queries e.g. by culling irrelevant regions of the do-

main. Another application is in approximating the data contained deeper within the tree.

In such a case, the structure is considered a multiresolution representation of the data.

3.1.3 K-d trees

Another popular recursive decomposition of a (hyper)-rectangular domain Ω is to subdi-

vide each node into two (hyper)-rectangles along an axis aligned hyperplane. Such a tree

is referred to as a k-d tree [12]. A benefit of k-d trees is that they are always binary trees

regardless of the dimension of the domain Ω. Furthermore, since nodes subdivide into

two nodes rather than 2d nodes, k-d trees are better able to adapt to the data distribution

30

than 2d-trees. The choice of axis to subdivide can be determined from the data or can be

cycled. Due to the subdivision rule, k-d trees are rarely conforming.

3.1.4 Nested simplicial meshes

Recall from Section 2.2 that the two primary categories of nested simplicial meshes are

those based on regular refinement or on simplex bisection, and that both approaches can

lead to unstable refinement if the simplicial decompositions are not carefully chosen.

Thus, researchers have proposed geometric refinement rules, which use the geometry of

the simplex to determine the decomposition, and typographical rules, which manipulate

the order of the vertices of the simplex to determine the decomposition. In the former

case, the resulting decompositions are not affine invariant, while the latter case can require

an expensive initialization process. A comprehensive review of simplicial refinement

strategies is presented by Bey [15].

3.1.4.1 Regular refinement

Regular refinement always generates stable triangle meshes in which all triangles are

similar to their generating triangle. In 3D, the octahedral domain O defined by the edge

midpoints of a refining tetrahedron σ requires a decomposition into four tetrahedra that are

not similar to their generating triangle in the general case (see Figure 2.5b). Zhang [212]

introduces a geometric refinement rule in which O is decomposed into four tetrahedra

along its shortest diagonal. This generates a stable refinement when the angles of the

initial mesh are non-obtuse. Other geometric choices, such as refinement along the octahe-

dron’s longest diagonal, do not yield stable refinements. Bey’s typographical scheme [14]

is based on maintaining a specific vertex ordering during refinement. An interesting modi-

fication is the tetrahedral/octahedral regular refinement scheme [27, 79, 82] in which the

octahedra generated by regular tetrahedral refinement are also treated as primitives. In this

scheme, each tetrahedron is refined into four similar tetrahedra and a single octahedron,

31

while each octahedron is decomposed into six similar octahedra incident to its vertices,

and eight similar tetrahedra corresponding to its truncated triangular faces.

Bey shows [15] that his tetrahedral refinement scheme [14] as well as the 2D scheme

of Banks et al. [9] are instances of a d-dimensional typographical scheme introduced by

Freudenthal [56]. Moore [130] provides a consistent labeling and simplex enumeration

algorithm for the 2d simplices generated by regular refinement.

Since regular refinement does not generate conforming adaptive refinements of a

domain, Banks et al. [9] introduce the red/green refinement scheme in 2D, in which the

regular refinement rules (red) are augmented by a set of irregular closure refinement

rules (green) to patch cracks between regular cells at different resolutions. An additional

balancing constraint restricts the degree of decomposition between edge-adjacent cells,

thereby reducing the number of green refinement rules that need to be considered. This

scheme has been extended to tetrahedral meshes in [14]. The recent RGB subdivision

scheme for triangle meshes [155] introduces blue refinement rules, to transition between

triangles generated by regular (red) and irregular (green) refinements. The addition of the

blue refinements rules enables red and green operations to be applied in arbitrary order.

3.1.4.2 Simplex bisection

In the case of simplex bisection, researchers have also proposed conforming refinement

schemes to implicitly determine the bisection edge via geometric [152, 157, 158] or typo-

graphical [11, 123, 128, 183] bisection rules. Rivara’s geometric Longest Edge Bisection

(LEB) scheme over triangle [157] and tetrahedral meshes [158] chooses the longest edge

of the simplex as its bisection edge, while Mitchell’s typographical newest vertex bisec-

tion [128] in 2D chooses the edge opposite the most recently introduced vertex. This edge

can be implicitly determined through a consistent ordering of the vertices, where, e.g., the

newest vertex is always in the final position. This scheme follows the pioneering work of

Sewell [170, 171] and has been generalized to tetrahedral meshes as well [4, 11, 99, 116].

32

Maubach [123] and Traxler [183] generalize these approaches to d-dimensional

domains through an implicit typographical scheme (different from, but equivalent to [128]

in 2D) that cycles between d rules. In particular, Maubach proves that, when applied to a

hypercubic domain subdivided along its diagonal into d! simplices, his scheme generates

at most d similarity classes of simplices. We refer to nested meshes containing only

simplices generated by Maubach’s bisection scheme over a regular grid as Regular Simplex

Bisection (RSB) meshes and provide a detailed overview of this scheme in Section 4.2.2.

Such approaches differ from red/green refinement approaches [14] by requiring only

one set of regular refinement rules (red) but not an additional set of irregular refinement

rules (green) to guarantee conforming triangulations. Meshes generated through bisection

are significantly more adaptive than those generated by regular refinement since each

bisection only generates two new elements while each regular refinement generates 2d

new elements. Thus, the refinement rate for bisection can be viewed as being independent

of the dimensionality of the domain [146].

On the other hand, for irregular simplicial complexes, it is unknown if all simpli-

cial d-complexes, d > 2, admit a typographical simplex bisection scheme [140]. Kos-

saczký [99] proposes an initialization refinement algorithm to ensure that arbitrary tetra-

hedral meshes are admissible, although this increases the number of simplex classes.

Stevenson [177] generalizes this approach to higher dimensions.

The containment hierarchy among the simplices generated by regular simplex bisec-

tion induces a natural tree representation, in which the nodes are simplices and the two

children of a simplex σ are the simplices generated by bisecting σ. This relationship can

be captured using a binary tree, often referred to as a bintree [45,54,121], whose root is one

of the d! simplices subdividing a hypercubic domain Ω along its diagonal. Thus, a nested

RSB mesh can be modeled as a forest of d! binary trees, which we call a hierarchy of sim-

plices. This model is often referred to as a hierarchy of (right) triangles when the domain

is two-dimensional, and as a hierarchy of tetrahedra for three-dimensional domains. If the

33

tree is encoded using an array, the parents and children of a tetrahedron can be implicitly

determined by their array indices. This representation is used in [68, 69, 102, 122, 214].

We are often interested in generating crack-free, or conforming, meshes, since cracks

in the mesh correspond to discontinuities in scalar fields defined on the vertices. Methods

of ensuring continuity have been proposed based on symbolic neighbor-finding opera-

tions [85, 102], saturated error metrics (in which the errors are monotonic with respect to

the hierarchical dependency relation) [70, 141, 142] or an implicit clustering of tetrahedra

sharing a common bisection edge into a diamond primitive [39, 45, 76]

A pointer-based explicit neighbor-finding algorithm for a hierarchy of triangles is

presented in [121]. Hebert [85] introduces a symbolic neighbor finding operation for

tetrahedra within a nested tetrahedral mesh Σ. Thus, tetrahedra in Σ no longer require

pointers to their four adjacent tetrahedra in Σ. However, since Hebert encodes the bintree

hierarchy using pointers, some neighbor-finding operations require time logarithmic in the

size of the mesh.

When a nested RSB mesh is encoded as a forest of simplex trees, each simplex can

be indexed through a location code [164, 165]. Assuming that each child of a simplex

is labeled using a single bit as (i.e. 0 or 1), a location code of a simplex σ is encoded

as a tuple containing the label of σ’s root simplex, its depth in the bintree, and a binary

string indicating the traversal path from the root of the bintree to σ. Location codes enable

pointerless data structures such as hash tables and B-trees to index the simplices.

Lee et al. [102] introduce a pointerless neighbor finding algorithm for hierarchies

of tetrahedra based on location codes. In this scheme, each neighboring tetrahedron’s

location code can be found in worst-case constant time through hardware bit-shifting

operations. This enables the extraction of tetrahedral meshes satisfying a given unsaturated

error criterion using fewer tetrahedra in the same amount of time as it takes to satisfy a

saturated error criterion. Lee et al. extend this approach to constant-time neighbor finding

in four-dimensional hierarchies of pentatopes in [103].

34

Atalay et al. [5, 6] extend the symbolic approach of Hebert [85] and Lee et al. [102,

103] to arbitrary dimensions. They use hardware bit-shifting to find each neighbor’s

location code in O(log d) time, and use the local subtree of simplices within a hypercubic

domain to find the vertices of a simplex in constant time.

Maubach [124] proves that the set of neighbors can be characterized by a con-

nected (d − 2)-surface and conjectures that this surface is simply-connected. Although the

neighbor-finding algorithm must run O(
∣∣∣Neighbors(σ)

∣∣∣) times for conforming bisections

to a simplex σ, to the best of our knowledge, there have been no previous attempts to

describe the number of such neighbors of a d-simplex on a regular grid. In Chapter 4, we

prove that there are O(d!) such neighbors, and cluster these into O(d) sets of simplices

that are simultaneously generated for efficient extraction and encoding of conforming

modifications to an RSB mesh.

Gerstner et al. [68] pre-compute a saturated error for each vertex splitting a tetra-

hedron in a three-dimensional RSB mesh. The saturation condition implicitly forces all

longest-edge neighbors to split, thus ensuring a conforming mesh. This scheme does not

enable general navigation on the extracted meshes but it is suitable for parallel implemen-

tation [69] and front-to-back traversal [65].

An alternate approach is to cluster the set of d-simplices that share a bisection edge

into a new primitive, referred to as diamonds. Efficient encodings of diamonds have been

developed in 2D [91, 113] and 3D [76], where the regularity of the updates and vertex

distribution enables an implicit encoding of the geometric and hierarchical relationships

among the simplices.

Pascucci’s Slow Growing Subdivision (SGS) scheme [146] generalizes the dia-

mond subdivision paradigm to general d-dimensional meshes. In the SGS scheme, a

d-dimensional cell of class i is subdivided by inserting a vertex v at its center and replaced

with pyramid-shaped cells with apex at v and bases defined by its facets. All pyramids

sharing the same (d − i − 1)-dimensional face of a class 0 cell are then merged into a

35

new cell of class (i + 1) mod d. This paradigm provides intuition for the subdivision pro-

cess, but not for the geometric shape of a diamond or the complexity of its corresponding

simplicial complex.

We generalize the notion of diamonds to arbitrary dimensions as a cross product

of two simplicially decomposed hypercubes, providing a constructive definition for all

classes of diamonds (see Chapter 4 and [197]). We introduce the supercube as a high-level

primitive for regular simplex bisection (see Chapter 5 and [196, 198, 203]). Supercubes

provide a means of analyzing all the relationships among the simplices and diamond

generated through successive RSB operations, as well as an efficient means of associating

information with sparse subsets of these elements. We introduce a pointerless encoding

for diamonds as well as an implicit representation for the multiresolution hierarchy in

Chapter 6. Once a conforming RSB mesh is extracted, there are many applications which

require efficient navigation of the mesh’s local connectivity. We introduce algorithms

for navigating 2D and 3D diamond meshes in Chapter 8 based on only the presence or

absence of vertices and diamonds within the mesh.

3.2 Marching cells

3.2.1 Isosurfaces

A popular divide and conquer approach to isosurfacing scalar fields is the Marching Cubes

algorithm [119]. In this, and related algorithms (see [134] for a recent survey), the domain

is subdivided into cubic (or, more generally, polytopic) cells which are contoured locally.

This is accomplished by first labeling the vertices of each cell based on the relative

value of their field values compared to a specified isovalue. Edges that intersect the

isosurface are referred to as active, and their vertices have different labels. Active cells

contain at least one active edge. The isosurface patch extracted from an active cell consists

of one or more simply connected triangulated polygons whose vertices lie on the active

edges. A globally conforming isosurface is achieved by ensuring that each isosurface

36

patch is crack-free and that the interface between adjacent patches are crack-free.

The vertex generation and patch triangulation steps are typically accelerated through

precomputed lookup tables based on the configuration of a cell’s vertex labels. Assuming

a predetermined order for the vertices of a cell c, the bitpattern of c is the ordered list

of labels of c’s vertices. When the cells are homogeneous this can lead to an efficient

encoding in a lookup table, i.e. for cubic cells defined by 8 vertices, this leads to 28 = 256

cases.

To simplify the analysis and ensure that the cases have the correct geometric and

topological structure, it is common to classify all possible configurations of isosurface

patches that can occur within a cell. These approaches typically use a combination of

symmetry, reflection and topological considerations to reduce the configuration space to

a restricted number of cases. Ambiguous configurations [46], i.e. those that admit more

than one valid triangulation, can be resolved using higher order interpolation functions

[135, 138], gradient calculations [207] or neighboring cells [135].

The Marching Tetrahedra approach [139, 147, 150, 184, 207] operates on tetrahe-

dral meshes, which do not suffer from ambiguities due to the use of linear interpolation.

However when the tetrahedra are obtained through subdividing cubic cells (into 5 or 6

tetrahedra each), the output surface will have more triangles than a surface generated

using Marching Cubes (up to a factor of four [25]). Irregular tetrahedral meshes can yield

variable resolution isosurfaces.

Other Marching methods include the Marching Octahedra and Modified Marching

Hexahedra methods [25], which operate on Body Centered Cubic (BCC) lattices and the

Generalized Marching Method [87] which operates on meshes with more than 2 vertex

categories, as found in segmented volumes.

Algorithms for isosurface extraction from 4D scalar fields have also been pro-

posed [16, 160], although they disagree on the number of cases for the 4-cube. These

differences are reconciled in [10], in which marching approaches are distinguished based

37

on the types of cells, the dimension, the number of vertex categories and the symmetries

used. Weigle and Banks [191, 192] have proposed a recursive algorithm for isosurface

extraction from simplicial meshes, counting 5 possible different cases for a 4-simplex.

Bhaniramka et al. [17] provide marching cases for convex cells of arbitrary dimensions.

An alternative set of intersection cases can be created for surfaces dual to those

of the marching cubes, where a single vertex is generated within each active cell, and

a single quadrilateral is generated for each intersected edge [71, 94]. A dual marching

tetrahedra approach was recently proposed by Nielson [136]. Since vertices can be freely

placed within cells (rather than strictly on edges), dual methods can generate better approx-

imations using fewer triangles. However, care must be taken to ensure that the resultant

surfaces remain manifold [166].

3.2.2 Interval volumes

Interval volumes were introduced concurrently by by Guo [83] and by Fujishiro et al. [57].

Guo [83] introduced interval sets as a bridge between direct volume rendering (DVR)

and indirect volume rendering (e.g. isosurface extraction) techniques. In this method,

the boundary surfaces are approximated using alpha surfaces [50] and the volume is

triangulated using a Delaunay triangulation.

Fujishiro et al. [57, 58] extract interval volumes from cubic cells using an extension

of the Marching Cubes algorithm [119]. Their cases are defined for the half-regions con-

taining a single surface. When a cell contains both surfaces, mesh patches are generated on

the fly by intersecting the two half-regions. Global mesh consistency is ensured through

the use of Nielson and Hamann’s asymptotic decider [138] cases rather than the original

marching cubes cases.

Nielson and Sung [137] offer a case-based lookup table for interval volumes over

tetrahedral meshes. They reduce the configuration space to 15 unique cases and provide a

consistent global triangulation of the polyhedral interval volume patches.

38

Bhaniramka et al. [16] create interval volume cases for cubes by first extracting an

isosurface from a four dimensional hypercube and then projecting the isosurface into an

interval volume in the cube. This concept is extended to 4D interval volume extraction

using 5D isosurfaces in [93]. Bhaniramka et al. [18] further extend this dimension lifting

idea to the extraction of interval volumes from convex cells of arbitrary dimension and

introduce several new visualization techniques for static and time-varying interval volume

datasets. Since it is not feasible to represent all possible cases, they use lazy evaluation to

dynamically generate cases on demand and cache the most frequently observed cases [17].

Zhang et al. [213] introduce a technique for extracting adaptive interval volume

meshes from volume data. Octree cells containing a boundary of the interval are triangu-

lated using a modified dual contouring technique [94], while cells completely within the

interval are triangulated by inserting additional vertices, referred to as Steiner points.

3.3 Hierarchical data structures for scientific visualization

Due to the size of extracted isosurfaces, there has been much research on accelerating the

extraction process and on simplifying the resulting meshes.

There are two significant efficiency issues related to the marching cubes style of

isosurface extraction. First, the algorithm wastes a significant amount of time processing

empty or inactive cells, i.e. cells that do not intersect the isosurface. Second, the ex-

tracted isosurface is typically over-triangulated, i.e. it contains too many triangles. This is

problematic since it increases processing costs in all downstream applications, including

rendering, without improving the fidelity of the surface. Thus, interactivity with such

meshes can be limited.

3.3.1 Hierarchy as spatial access structure

The first issue can be remedied by creating an index of the active cells. There are two

predominant indexing techniques: hierarchical spatial indexing and value indexing. The

39

most widely-used spatial indexing technique is Wilhelms and Van Gelder’s Branch-On-

Need Octree (BONO) [208] (sometimes referred to as the Min-Max octree), which provides

hierarchical access to active cells by aggregating field values within nested regions and

associates with each node of the octree the minimum and maximum field values of its

descendants. BONO efficiently handles datasets whose dimension are not powers of 2, and

uses a caching mechanism to minimize field value lookups of neighboring cells. Patches

are only extracted from cells at the full resolution, thus ensuring the extraction of the same

exact mesh as the original marching cubes algorithm [119].

In contrast, the value-based partitioning approaches [32, 118, 173] attempt to min-

imize isosurface extraction time by reorganizing the data into a two-dimensional span

space on the range of the field. In span space techniques, each cell is projected into a two-

dimensional point whose coordinates are the minimum and maximum field values spanned

by the cell. Efficiency is achieved through optimized data structures on the span space

rather than the spatial coordinates of the cells. The Near Optimal IsoSurface Extraction

(NOISE) algorithm [118] uses a k-d tree to efficiently extract an isosurface from a 3D volu-

metric data set in O(
√

n + k) time, where n is the total number of cells, and k is the number

of active cells. Isosurfacing in Span Space with Utmost Efficiency (ISSUE) [173] improves

the performance of the NOISE algorithm and provides a parallel algorithm by subdividing

the span space into an axis-aligned lattice where each tile contains approximately the same

number of cells.

Interval trees [47] are another efficient method for performing range queries, and

have been used by van Kreveld [188] to extract isocontours from triangulated terrain data.

Cignoni et al. [32] use interval trees to index cells in span space, and prove that their

isosurface extraction algorithm operates in optimal O(log n + k) time.

40

3.3.2 Multiresolution field representations

In this section, we review multiresolution representations for scalar field visualization

with a focus on approaches for interactive terrain rendering and isosurface extraction. We

conclude with a review of the few techniques dealing with higher dimensional datasets

(i.e. d ≥ 4).

3.3.2.1 Two dimensional domains

The ability to extract variable-resolution representations of the terrain, such as having

high resolutions in selected areas of interest or along a view frustum is a fundamental

issue in interactive terrain processing. View-dependent representations are important for

achieving interactivity in rendering. The recent survey by Pajarola and Gobbetti [143]

presents a comprehensive review of approaches for interactive rendering of regularly

sampled terrain datasets, including those based on RSB triangles and diamonds. Here,

we discuss techniques based on RSB triangles and diamonds, as well as representations

based on incomplete diamond hierarchies to deal with data points at the vertices of a

sparse regular grid. We first review approaches applying either on a triangle-based or on a

diamond-based hierarchy to a complete regular (2N + 1)2 grid of scalar values.

Evans et al. [53, 54] introduce a representation of a terrain based on a hierarchy of

triangles that they call Right Triangulated Irregular Networks (R-TINs).† They use loca-

tion codes for encoding the nodes of a hierarchy of triangles and observe that conforming

RSB meshes are balanced, i.e. neighboring simplices can differ in refinement depths by

at most one. Specifically, neighbors along a triangle’s hypotenuse can be at most one

refinement depth higher in the hierarchy, while neighbors along the other two edges can

be at most one refinement depth lower in the hierarchy. Thus, a single bit per edge is

sufficient to determine which of the two possible triangles is present in the mesh. To aid

in mesh extraction, they associate an error with each triangle, and note that this requires

†A TIN (Triangulated Irregular Network) is an irregularly sampled triangle mesh describing a terrain.

41

approximately four times as much storage as associating errors with the vertices.

Lindstrom et al. [112] were the first to consider the simplification dependency re-

lation among the vertices of a nested RSB mesh. They define a triangle’s split vertex as

the vertex introduced during triangle bisection. Two triangles are fused when the inverse

of simplex bisection operation is applied to them. Fusion removes the two children of a

triangle and replaces it with their parent by removing the split vertex.

They observed that each split vertex corresponds to triangles in two different branches

of the hierarchy of triangles (see Figure 3.2), and that cracks are introduced into the mesh

if only one of those branches is fused. They propose a conforming triangle fusion op-

eration that replaces both pairs of sibling triangles with their parent triangles (i.e. from

Figure 3.2b to 3.2a).

For out-of-core access to large datasets, they store the terrain as a set of square

blocks, each containing (2k + 1)2 samples (for some k), where samples on the boundaries

of each block are duplicated. Their error metric only takes the value of the split vertex

into account and is thus unable to guarantee global error bounds on the extracted mesh.

For efficient rendering, they encode the entire mesh as a generalized triangle strip (i.e. one

that allows swapping of vertices).

(a) Fused (b) Split

Figure 3.2: A pair of triangles in an RSB must be bisected concurrently if they share the same
bisection edge (blue edge in (a)). The split vertex (hollow blue) of the triangles in (a) depends
on the four split vertices (hollow white) of the triangles in (b). Filled vertices belong to triangles
while hollow vertices are the midpoint of a triangle’s bisection edges.

In the Real-time Optimally Adapting Meshes (ROAM) approach, Duchaineau et

al. [45] introduce a view-dependent incremental selective refinement for a hierarchy of

42

(a) Original (b) Level 1 (c) Level 2 (d) Level 3

Figure 3.3: Batched triangulations at three levels of resolution. Each additional level has an
increased complexity of 2d simplices.

triangles. Recall from Section 2.4.1 that incremental selective refinement is a variant of

the basic selective refinement query in which the initial mesh can be a previously extracted

RSB mesh. They also introduce split and merge operations, corresponding to conforming

triangle bisection and fusion operations, respectively, and note that any RSB mesh can be

obtained from any other one via a series of merges and splits. Frame-to-frame coherence

is supported through the use of a dual queue system, where one queue holds mergeable

triangles and the other holds refineable triangles.

Due to the shape of its domain, they introduce the term diamond to refer to the two

triangles sharing a split vertex (see Figure 3.2a). To reduce visual artifacts incurred by

refinements, they implement a geomorphing operator, that gradually moves the split vertex

(which we refer to as its central vertex) of a diamond into its new location.

Later work, such as ROAM Using Surface Triangle Clusters (RUSTiC) [153] Cached

Aggregated Binary Triangle Trees (CABTT) [106] and others [22, 29, 91], exploits the

graphics hardware more efficiently through the use of batched updates to an RSB mesh.

Specifically, in these methods, each macro update to the model corresponds to the insertion

of triangles from several hierarchy depths lower in the hierarchy. These batched triangles

are typically preprocessed into triangle strips for efficient streaming to the graphics card.

Despite increasing the number of triangles required to satisfy a given selection criterion,

these methods are able to reduce the processing overhead on the CPU.

Pajarola [142] considers the refinement dependency relation for triangle bisection

43

over a nested RSB mesh.‡ By reversing the dependency relation arcs introduced by Lind-

strom et al. [112], he observes that conforming modifications occur when both triangles

sharing a base vertex are bisected concurrently. Thus, each vertex depends on the split

vertices of two triangles higher in the hierarchy.

Pajarola provides a few simple operations to extract a vertex’s level as well as the

orientation of its corresponding bisection edge directly from its coordinates. Specifically,

the level of a vertex can be derived from its spatial location by finding the index of the

least significant non-zero bit in the binary representation of its x and y coordinates. If both

the x and y coordinates contain a non-zero bit at this location, the vertex is located at the

center of a quadtree node. Otherwise, it is located at the midpoint of one of its edges.

Puppo [154] describes how the vertex dependency relation can be viewed as a special

case of the MultiTesselation (MT) framework of De Floriani et al. [43].

Hebert [86] models a nested RSB mesh in terms of two interlaced quadtrees: The

standard axis-aligned quadtree and a quincunx quadtree, rotated 45 ◦ relative to the stan-

dard lattice.§ The center points of nodes from the quincunx lattice coincide with edge

midpoints while those of the axis-aligned quadtree coincide with square midpoints. Hebert

also provides an indexing scheme for the vertices that is equivalent to location codes for

quadtrees [165].

Lindstrom and Pascucci [113] independently analyze the vertex relationships of a

nested RSB mesh in terms of two interleaved quadtrees. They introduce a hierarchical

indexing scheme for the diamonds that follows the traversal order of the hierarchy. Their

error metric includes an approximation error as well as a nested bounding sphere radius

for distance-dependent refinement (as first introduced by Blow [19]). In the context of

out-of-core rendering, they demonstrate that hierarchical indexing performs an order of

‡Although this method is called Restricted Quadtree Triangulation, it uses the vertex dependency relation
of diamonds, and the underlying triangulation does not correspond to a quadtree, so we classify it as a
diamond-based approach.

§A quincunx is a geometric arrangement of five dots () that commonly appears on dice and playing
cards.

44

magnitude better than array indexing which performs an order of magnitude better than

block-based indexing.

Cignoni et al.’s Batched Dynamic Adaptive Meshing (BDAM) [29] follows up on the

clustering idea of RUSTiC [153] by encoding a set of modifications to an irregular triangle

mesh. Thus, they use the containment hierarchy induced by bisections as an efficient

spatial access structure for conforming irregular triangle meshes describing terrains. This

enables efficient transmission of terrain data to the GPU in batches. A corresponding

texture hierarchy, encoded using a quadtree, enables color texture mapping which produces

more realistic images using fewer triangles.

Gerstner [67] introduces an implicit optimally tight octagon-shaped bounding hier-

archy for distance-dependent rendering based on the limit shape of the domain covered

by a diamond’s hierarchical descendants [7, 181] (see Figure 3.4). He also shows how

the various independent saturated error metrics can be combined at runtime, to achieve

dynamic refinements to the saturated selection criterion.

(a) Octagonal descendant domain (b) Nested descendant domains

Figure 3.4: (a) The limit shape of a diamond’s hierarchical descendants is an octagon with the
edge lengths of its triangles. (b) The descendant domains of its four children (with colored central
vertices) are nested within its octagonal descendant domain.

Hwa et al. [90, 91] present a batched update approach based on diamonds and

provide closed-form equations for the offsets to vertices and neighbors of a diamond as

45

well as its parents and children. They improve on the spatial access structure of BDAM

by using the regular clustering of RUSTiC. Furthermore, their textures are encoded using

a diamond hierarchy, and are thus more closely aligned with the hierarchy defined by the

height values than the quadtree of BDAM [29].

Gobbetti et al. [72] demonstrate that batch-updated diamond-based approaches can

be competitive with the non-conforming state of the art grid-based approaches [120] in

terms of compression rates and runtime performance. Lindstrom and Cohen [111] propose

a batch-updated variable-rate GPU compression scheme for RSB meshes in which the

batches are regularly refined. The recent work by Goswami et al. [73] utilizes a batch-

based hierarchy for parallel rendering of large datasets across multiple machines and

displays.

In [211], we introduce parallel algorithms for extracting conforming triangle meshes

on the GPU from a two-dimensional hierarchy of diamonds in a parallel terrain processing

framework.

Compact encodings for incomplete hierarchies. All the above methods exploit the

regularity of the data distribution by encoding the multiresolution model as a regular

grid where all vertices are present. Consequently, many of the above techniques exploit

the regularity of the dataset to reduce the geometric and topological overhead of the

multiresolution model. Since all vertices in a (2N + 1)2 terrain are present, they can be

stored linearly and accessed using row-major ordering (or a more complicated indexing

scheme [113, 165]). Furthermore, the implicit dependency relation can be used to locate

parents, children and neighboring triangles, enabling pointerless representations.

However, in cases where values for portions of the domain are unavailable or the

field is oversampled, efficient representations of such incomplete hierarchies can signifi-

cantly reduce storage requirements and processing times. Although simplex and diamond

hierarchy approaches that represent the dependency relation explicitly, i.e. with point-

46

ers, can handle incomplete hierarchies, we focus here on the approaches that exploit the

regularity of the sampling to reduce the hierarchical overhead incurred for each retained

sample in the dataset.

To the best of our knowledge, the only method to encode an incomplete nested RSB

mesh has been proposed by Gerstner [66]. He introduces a compression method based

on a linearization of the domain using a Sierpinski space-filling curve associated with the

complete hierarchy of triangles. He uses a containment hierarchy as a multiresolution

representation, and encodes in each node of the resulting partial tree the number of nodes

that need to be skipped if the node is not to be refined. Variable-size relative pointers

are used to indicate the number of bytes to skip if a node is not refined, and an average

overhead of 3 bytes per vertex is reported. However, since each node is accessed via

pointers stored in its parents, this representation does not provide random access to the data

in the model. Gerstner [66] also introduces the notion of incorporating higher resolution

blocks of samples into a coarse dataset. Although few details are given regarding how to

accomplish this, he indicates that this requires the addition of some interpolated samples

to align the new data with the hierarchy.

Our work on supercubes (see Chapters 5 and 7 as well as [196, 198]) implicitly

clusters data associated with the diamonds of an incomplete hierarchy. In contrast to

the approach of Gerstner [66], supercube-based representations provide random access

to the data associated with each diamond. Empirically, the supercube encoding has an

overhead of less than one byte per encoded sample, while the approach of Gerstner exhibits

an average overhead of three bytes per sample. Both approaches provide a means of

embedding higher resolution regions of data within the multiresolution terrain model (see

Section 7.5.4).

47

3.3.2.2 Three dimensional domains

In this subsection, we review approaches for nested RSB meshes in 3D, with a focus on

methods used to model multiresolution volume datasets and to enable efficient extraction

of isosurfaces.

Zhou et al. [214] extend the triangle fusion algorithm of Lindstrom et al. [112] to

create a conforming tetrahedral fusion operation over nested RSB tetrahedral meshes.

They compute the dependency relation of the vertices through a recursive application

of tetrahedral bisection to the initial six tetrahedra subdividing the cubic domain. The

dependencies are explicitly encoded in a dividing point table, where the dividing point is

equivalent to the split vertex of [112] and to the central vertex in our terminology, and are

used to extract simplified isosurfaces from the hierarchy.

One interesting feature of their approach is that it incorporates a method to ensure

that the topology of the simplified surface matches that of the surface at full resolution.

This is accomplished by disallowing fusion of tetrahedra whose bisection edge vertices lie

on the same side of the isosurface, but whose split vertex lies on the opposite side of the

isosurface.

Gerstner and Pajarola [68] note that the topology preserving approach of Zhou et

al. [214] is too conservative. Although their proposed solution is based on bintrees, they

consider changes to an isosurface’s topology at the diamond level. To do so, they define

isosurface cases within each diamond based on the relative values of a diamond’s vertices

and the given isovalue. Their saturated topology-based error metric encodes the range of

isovalues in which the topology of the extracted mesh changes.

However, topology preservation limits the adaptability of the approach since all

nodes in which the topology changes must be present in all extracted meshes. Conse-

quently, surfaces with complicated topology can never be simplified beyond a certain

point. To resolve this, they introduce a topology control mechanism which weights the

topology metric at each node. As an example, they demonstrate how this can clean up a

48

noisy isosurface by reducing the genus of the extracted mesh.

Gerstner and Rumpf [69] accelerate the extraction of isosurfaces using parallel

processors and a view-dependent saturated error metric. Using this approach, they can

extract isosurfaces up to 2.4 times faster with four processors than with one. Additionally,

they introduce a mechanism to cull the isosurface backfaces through the use of a view-

dependent curvature-based error criterion, reducing the size of the extracted isosurfaces

by a factor of two. They note that the gradient of a vertex is necessary for smooth shading,

but requires three times as much space to encode as the scalar values. Thus, rather than

encoding the gradient, they compute it on the fly and cache the values in a hash table. In

follow-up work [65], Gerstner describes a hierarchical scheme to compute the gradient of

a tetrahedron from that of its parent. When used in conjunction with a sorting scheme for

tetrahedra based on the bisection’s splitting plane, this enables back-to-front isosurface

extraction, which they use to extract multiple transparent isosurfaces during a single

traversal of the hierarchy.

Gregorski et al. [76] generalize the ROAM algorithm [45] to tetrahedral meshes

using a diamond-based approach. They avoid the need to deal with boundaries by treating

the domain as a 3-torus of resolution (2N)3. In contrast to the explicit dependency relation

encoding of Zhou et al. [214], Gregorski et al. implicitly encode the dependency relation of

the entire hierarchy in terms of scaled offsets from 26 archetypal diamonds, corresponding

to the possible oriented directions of a diamond’s bisection edge. Specifically, they identify

eight diamonds whose bisection edge is aligned with a cube diagonal (referred to as 0-

diamonds), twelve diamonds with bisection edges aligned with a face diagonal of a cube

(referred to as 1-diamonds) and six diamonds with bisection edges aligned with cube edges

(referred to as 2-diamonds).

They encode the locations of the vertices of a diamond as well as the central vertices

of its parents and children as scaled offsets from its central vertex. Access to a diamond’s

entries in this dependency table requires only its central vertex, its level and its type

49

(i.e. orientation), saving 6–12 pointers (i.e. 24–48 bytes) per diamond compared to the

encoding of Zhou et al. [214]. Although they indicate how the vertices and the dependency

relation are recovered, they do not discuss how such offset tables are generated or how the

orientation of a diamond is determined.

Our encoding of diamonds (see Chapter 6 and [195, 197, 200]) extends this by

providing an efficient means of determining a diamond’s class and level as well as the

orientation of its spine directly from the binary representation of its central vertex. We,

therefore, only require the coordinates of a diamond’s central vertex.

The diamond-based scheme of Gregorski et al. uses ROAM’s [45] dual-queue se-

lective refinement algorithm to exploit the frame-to-frame coherence between extracted

meshes during view-dependent isosurface extraction. This is accomplished by initializing

the extraction with the RSB mesh extracted at the previous frame. This scheme is also used

during small adjustments to the isovalue. They compress the scalar values, field gradient

and min-max ranges within each diamond from 19 bytes to 4 bytes. Additionally, they

rearrange the data hierarchically [113] and use the operating system’s virtual memory pag-

ing for cache-coherent out-of-core memory management. Recently, Gregorski et al. [77]

proposed a method to further accelerate view-dependent isosurface extraction through the

use of occlusion culling [117].

Linsen et al. [114] use diamond connectivity [146] as an adaptive subdivision basis

for volumetric datasets. They use trilinear B-spine wavelets to downsample the dataset (i.e.

rather than the more commonly used subsampling) to generate similar approximations

using approximately 10-15% fewer tetrahedra.

Marchesin et al. [122] consider the orientation edge vectors of a tetrahedron’s edges,

and prove that the components of any edge vectors of a tetrahedron at level k in a hierarchy

of tetrahedra are either −2k, 0 or 2k. They exploit this to create an efficient enumeration

algorithm for the points within a tetrahedron that is similar to a raster scan conversion

algorithm. The algorithm first enumerates the axis aligned planar slices of a tetrahedron.

50

Within each triangular slice, it enumerates all axis aligned lines. Finally, it enumerates the

points within each line.

They use the nested hierarchy for view-dependent Direct Volume Rendering (DVR)

and examine the implications of applying non-conforming bisections, which can be used

to extract smaller meshes much faster than a conforming algorithm, but can introduce

significant noise into the visualization. In some cases, though, the resulting image was

determined to be of sufficient quality.

3.3.2.3 Higher dimensional domains

Approaches for higher dimensional domains have primarily focused on representations for

time-varying volumetric datasets. The temporal dimension of such datasets can be treated

as a set of values in the same 3D location [78], or as a fourth spatial dimension [103, 115].

Lee et al. [101, 103] extend their tetrahedral neighbor-finding algorithm to 4D hi-

erarchies of pentatopes. As in the 3D case, they use hardware bitshifting operations to

guarantee a worst-case constant time neighbor finding operation. One source of ineffi-

ciency in their approach is that they store an approximation error for each pentatope (i.e.

4-simplex) rather than for each diamond. Results on small datasets of resolution 334 indi-

cate that an unsaturated error metric can reduce the size of extracted RSB meshes by 1%

compared to a saturated metric.

Gregorski et al. [78], apply their diamond-based isosurface extraction framework [76]

to time-varying volumetric datasets modeled as a stack of volumetric datasets covering

the same volumetric domain. They exploit the temporal coherence of the dataset by ini-

tializing the isosurface extraction for each new time-step with the RSB mesh extracted

during the previous time-step. Additionally, they propose a batched update approach for

the subtrees of tetrahedra within each diamond [153] to reduce the granularity of each

modification and accelerate hardware rendering of isosurfaces.

Linsen et al. generalize their 3√2 approach [114] to 4D grids with the n√2 scheme [115].

51

This enables treating the temporal dimension in time-varying volume data as a fourth spa-

tial dimension. An advantage of their approach is that their wavelet-based downsampling

approach approximates the data at lower resolutions rather than subsampling the data.

They then use volume rendering techniques to render the extracted hypervolume.

Atalay and Mount [6] use a hierarchy of pentatopes as a point-location structure to

accelerate ray tracing of atmospheric effects. In this scheme, each ray is represented as a

4D point, and values for unrepresented points are interpolated based on the RSB decompo-

sition. Compared to a non-adaptive approach, the hierarchy of pentatopes achieved a six

times savings in time. Further optimizations were achieved by applying a lazy neighbor-

finding algorithm to patch cracks locally where necessary, resulting in a further 3 times

savings in extraction time and 9.3 times in space.

3.3.3 Adaptive representations for extracted meshes

Algorithms have also be proposed to obtain variable resolution surfaces by post processing

a surface extracted from volume datasets. One approach is to first extract the mesh at full

resolution (e.g. using Marching Cubes [119]) and to then simplify the mesh in a post-

processing step [62, 169]. However, this requires processing time and storage for the

isosurface at full resolution. Other approaches [64, 210] involve generating a coarse

topologically correct representation of the mesh from the volume dataset followed by a

refinement process that satisfies certain constraints such as surface error and triangle aspect

ratio. Such approaches can suffer (in speed or accuracy) from not taking the volumetric

representation into account, e.g. the resulting meshes are no longer guaranteed not to

self-intersect.

Another class of algorithms target adaptive grids to reduce the number of extracted

isosurface primitives. However, care must be taken to prevent cracks in the surface when

extracting from neighboring cells of different sizes. The key distinction of these repre-

sentations is that they do not store the field values but, instead, they represent the sign

52

field at each vertex of the hierarchical grid. Consequently, they only represent a single

(variable- or multi-resolution) mesh and do not support scalar field operations such as

distance computations and Boolean operations.

The two most common solutions to the cracking problem are to either effectively

increase the resolution of the larger cells by using the values of the higher resolution cells

or to decrease the resolution of the higher resolution cells by using the interpolated values

from the lower resolution cells rather than the actual field values. To reduce the number of

possible cases, balanced octrees [175, 190] are typically (but not always [96]) employed.

Muller and Stark [132] introduce a top-down splitting box algorithm yielding an

adaptive isocontour. Edges of cells can contain more than two vertices, but can only

contain a single label transition. Since only the values along edges are checked, internal

features can be missed. Cracks are handled by removing higher resolution points (i.e.

internal to cubes), effectively simplifying shared boundaries of adjacent faces at different

resolutions to line segments.

In the approach of Shu et al. [174], the domain is first subdivided into a coarse

grid. Each cell of this grid is then subdivided if a curvature constraint is not met. Cracks

introduced between adjacent cells of different resolutions are patched using polygons

whose boundaries are defined by the intersection of the interface between the cell domains

and both of the isosurface patches. This approach is optimized through lookup tables on

the possible configurations of the two isosurface patches (they reduce this to 22 possible

cases). Since this approach does not check field values within its cells, it too can miss

features of the full resolution isosurface. The authors propose (but do not implement) an

adaptation of BONO [208] to catch these missing features. The meshes extracted using this

approach are approximately 55% smaller than those of the original MC algorithm [119].

Shekhar et al. [172] patch cracks on interfaces between cells of different resolu-

tion by forcing higher resolution features to align with their lower resolution neighbors,

effectively subsampling the data. This approach is similar to [132] in that higher res-

53

olution features are aligned with those of their lower resolution neighbors. Ohlberger

and Rumpf [141] present a similar solution using subsampling. Although subsampling

approaches achieve a continuous representation, they can change the topology of the

extracted surfaces from that of the fine resolution data.

In the work of Westermann et al. [205] samples at higher resolution are averaged,

resulting in smoother extracted surfaces; however, this modifies the underlying dataset.

Their work is simplified by using balanced octrees, which greatly reduce the number of

cases that need to be considered. Finally, they force the boundaries of lower resolution

nodes to match those the higher resolution ones. Kazhdan et al. [96] generalizes the above

approach without requiring the octree to be balanced.

Mello et al. [125] extract an approximate variable-resolution representation of an

isosurface from a 3D point cloud by first computing the sign field of the vertices of a

nested RSB mesh.

The Adaptive Dual Contouring method proposed in [94] represents the isosurface as

an octree in which the leaves contain the isosurface, and the connectivity between nodes

is implicitly determined through the face neighbors in the octree. This method enables

a bottom-up simplification process, but does not guarantee that the extracted meshes are

conforming. Later approaches [80, 166] ensure that the extracted surface is manifold,

but do not guarantee that it is free of self-intersections. Conversely, the approach of

Ju and Udeshi [95] ensures that the surface does not intersect, but does not guarantee

that it is manifold. Zhang et al. [213] extend the adaptive dual contouring method for

variable-resolution interval volumes.

Most of these approaches support a (bottom-up) simplification process, rather than

the more general (top-down) selective refinement query, i.e., it is not possible to extract

variable-resolution meshes of minimal size satisfying an error criterion. Alternatively, a

multiresolution representation of the extracted mesh enables the generation of variable-

resolution meshes satisfying an application-dependent error criterion at runtime.

54

3.3.4 Multiresolution representations for extracted meshes

Pascucci and Bajaj [148] introduce an interruptible progressive isosurfacing algorithm over

RSB hierarchies in 2D and 3D. They introduce a small set of primitives which they use to

define all possible updates to the isocontour as vertices are introduced at the midpoint of

a simplex’s bisection edge. They define a one-to-one correspondence between isosurface

modifications and the conforming modifications that generate them.

However, since the modifications are defined in terms of basic mesh operations, it be-

comes more difficult to define the different intersection cases and to guarantee correctness

as the dimension and complexity of the cases increases (e.g. for conforming modifications

to interval volume meshes). Also, they do not discuss a data structure for the extracted

meshes or how this structure might be queried.

The advantage of such a scheme over offline mesh decimation (such as [62]) is that

the generated surfaces are guaranteed not to self intersect due to the embedding volumetric

grid and can be computed interactively. However, the vertices of these surfaces are more

constrained than those created by general mesh decimation algorithms. They prove that

for a hierarchy with n nodes, the extraction of an isosurface of size k requires O(k log n)

size and time.

Borgo et al. [21] extract isosurfaces from nested tetrahedral RSB meshes one depth

at a time using a breadth-first traversal, requiring two depths of the DAG to be in memory

at once. They use an explicit mapping to pass isosurface vertices from parent tetrahedra to

child tetrahedra to reduce redundant computation of isosurface vertices and report a three

times savings in extraction time on datasets of sizes 643 and 1283

Lewiner et al. [107–109] introduce a progressive hierarchical representation for iso-

surfaces extracted from LEB grids in terms of the tubular neighborhood of an isosurface,

which includes all cells intersected by the isosurface. Their model defines a total order for

the modifications, rather than a partial order, limiting the number of encoded meshes.

Our isodiamond hierarchy framework (see Chapter 9 and [195, 200]) improves on

55

previous approaches by abstracting the mesh extraction method to treat multiresolution

isosurfaces and interval volumes in the same framework. It supports efficient selective

refinement queries to extract conforming meshes satisfying an application dependent

selection criterion and requires significantly less memory than the multiresolution scalar

field model. We also introduce minimal isodiamond hierarchies as a means of reducing the

storage and computational costs associated with extracting variable resolution isosurfaces

and interval volumes.

3.4 Discussion

In this chapter, we have classified and analyzed approaches for representing nested meshes,

with a focus on RSB approaches and on how they have been applied to model multireso-

lution scalar fields.

We now present a taxonomy of these approaches in Tables 3.1 and 3.2. We first

distinguish between simplex-based approaches, which we list in Table 3.1 and diamond-

based approaches, which we list in Table 3.2. For the purposes of this taxonomy, we

classify methods that utilize the dependency relation among the vertices of a nested RSB

meshes as diamond-based approaches.

Within each table, we first classify methods based on the underlying dimension of

the scalar field’s domain and then by the queries that these models support. Such queries

can be run from a coarse base domain in a top-down manner, from the full resolution

mesh in a bottom-up manner or incrementally from a previously extracted mesh. We also

distinguish between the class of selection criteria supported by the approach: those based

on approximation error, isosurface error and view-dependent criteria which depend on an

object’s distance to the viewpoint.

For simplex-based approaches the precomputed errors can be associated with the

simplices or with the split vertices. The former can require significantly more storage, but

can return smaller meshes as a result of a query. Similarly, a saturated error metric enables

56

simpler queries but can also increase the size of its resultant meshes. The precomputed

approximation error can be based on the approximation error between its current value

and that of its subdivided children at the next depth, which we refer to as a local error

metric. Alternatively, it can be based on the maximum interpolation error over all samples

within its domain, which we refer to as a total error metric [121].

Our final classification relates to the optimizations introduced or implemented by

the various approaches to enable interactive queries on large datasets. This includes

compressed meshes in the form of triangle or tetrahedral strips, view frustum culling and

cache-coherent access to subsets of the dataset. Since the underlying data structure in all

approaches are simplex-based or diamond-based nested RSB meshes, the optimizations

developed for one scheme can usually be applied to the other schemes, but are useful for

our taxonomy in distinguishing among the various methods.

57

Table 3.1: Taxonomy of simplex-based approaches

Query Error Optimizations

A
pp

ro
ac

h

D
im

en
si

on

E
xt

ra
ct

io
n

A
pp

ro
xi

m
at

io
n

E
rr

or
D

is
ta

nc
e

to
V

ie
w

po
in

t
Is

os
ur

fa
ce

A
ss

oc
ia

te
d

w
ith

Sa
tu

ra
te

d

H
ie

ra
rc

hi
ca

l

Fr
us

tu
m

C
ul

lin
g

Fr
am

e-
fr

am
e

co
he

re
nc

e
Si

m
pl

ex
St

ri
pp

in
g

O
ut

-o
f-

co
re

C
lu

st
er

ed
up

da
te

s

In
co

m
pl

et
e

Fi
el

d

Pa
ra

lle
l

Evans et al. [54] 2D Top-down X X Simplex Global

Lee et al. [102] 3D Incremental X Simplex Global X

Lee et al. [103] 4D Top-Down X Simplex Global

ROAM [45] 2D Incremental X X Vertex X Local X X X [106, 153]

Marchesin et al. [122] 3D Incremental X X Vertex X Local X X

Gerstner [66] 2D Top-down X Vertex X Local X X

Gerstner [67] 2D Top-down X X Vertex X Global X

Gerstner et al. [65, 68, 69] 3D Top-down X X Vertex X Local [69]

Pascucci [147] 3D Top-down X X Vertex X Local X X X

BDAM [29] 2D Top-down X X Vertex X Local X X X [30]

Tetrapuzzles [31] 3D Top-down X X Vertex X Local X X X X X X

Lewiner et al. [109] 3D Top-down X Vertex Local

Balmelli et al. [7] 2D Bottom-up X Vertex Global

58

Table 3.2: Taxonomy of diamond-based approaches

Queries Error Optimizations

A
pp

ro
ac

h

D
im

en
si

on

E
xt

ra
ct

io
n

A
pp

ro
xi

m
at

io
n

E
rr

or
D

is
ta

nc
e

to
V

ie
w

po
in

t
Is

os
ur

fa
ce

Sa
tu

ra
te

d

H
ie

ra
rc

hi
ca

l

Fr
us

tu
m

C
ul

lin
g

Fr
am

e-
fr

am
e

co
he

re
nc

e
Si

m
pl

ex
St

ri
pp

in
g

O
ut

-o
f-

co
re

H
ie

ra
rc

hi
ca

lL
ay

ou
t

C
lu

st
er

ed
up

da
te

s
In

co
m

pl
et

e
Fi

el
d

Lindstrom et al. [112] 2D Bottom-Up X Local X X X

Pajarola [142] 2D Top-Down and Bottom-Up X X Global X X

SOAR [113] 2D Top-Down X X X Local X X X X

Hwa et al. [91] 2D Incremental X X Local X X X X X X

Yalçın et al. [211] 2D Bottom-up X X Global X

Zhou et al. [214] 3D Bottom-up X X Local

Gregorski et al. [76] 3D Incremental X X Global X X X X

Gregorski et al. [78] 3D + Time Incremental X X Global X X X X X

Linsen [114, 115] 3D,4D Top-Down X Global X

Borgo [21] 3D Top-Down X X X Local

Weiss [195, 200] 3D Top-Down X Global

Weiss et al. [196, 198] 2D,3D Top-Down X Global X X

59

Chapter 4

Diamond hierarchies of arbitrary dimension

In this chapter, we provide a theoretical foundation for diamonds of arbitrary dimensions

through a constructive decomposition of diamonds in terms of two simplicially decom-

posed hypercubes. This enables us to characterize the distinct classes of diamonds, and

to derive closed-form equations for the number of simplices, vertices, parents and chil-

dren of each diamond class. In particular, we prove that d-dimensional diamonds have

O(d!) simplices, and thus, when using a simplex-based approach, conforming refinements

require factorial time and space. In contrast, since these simplices are generated during

the refinement of a diamond’s O(d) parents , conforming refinements on a diamond-based

approach require only linear time and space.

This chapter is organized as follows. We first introduce the cross simplex and cross

complex in Section 4.1 as a means of generating higher dimensional simplices and sim-

plicial complexes from simplices in lower dimensional affinely independent spaces. We

then discuss a family of simplicial decompositions of a hypercube in Section 4.2 related

through the Regular Simplex Bisection (RSB) operator. This operation has been used in the

literature to define a hierarchy of simplices, which we review in Section 4.3. We then intro-

duce diamonds and their hierarchical dependency relations in Sections 4.4 and properties

of diamonds in Section 4.5. We discuss querying algorithms on a hierarchy of diamonds

in Section 4.6 and conclude in Section 4.7 with a discussion on some implications of our

decomposition.

60

4.1 Cross simplex and cross complex

We utilize the simplicial join operation [110,163] to generate higher-dimensional simplices

from a pair of affinely independent simplices and refer to the result as a cross simplex.

Given an a-simplex σa and a b-simplex σb in affinely independent subspaces, the cross

simplex is the d-simplex σ = σa ⊗ σb, defined by the vertices of σa and σb, where

d = a + b + 1.

For example, if σa is a triangle (2-simplex) defined by 3 vertices and σb is a vertex

(0-simplex) that is not coplanar with the vertices of σa, then the cross simplex σ = σa⊗σb

is the tetrahedron (3-simplex) defined by the vertices of σa and σb (see Figure 4.1a).

Given a simplicial i-complex Σi and a simplicial j-complex Σ j whose cells are

pairwise affinely independent, we define the cross complex Σd = Σi ⊗ Σ j as the simplicial

d-complex whose d-simplices are cross simplices of cells from Σi and Σ j, i.e., ∀ cells

σ ∈ Σd, σ = σi ⊗ σ j, where σi is a cell of Σi and σ j is a cell of Σ j (see Figure 4.1b). We

note that this operation is defined when all pairs of simplices from the two complexes

are affinely independent, but the two complexes themselves do not need to be affinely

independent.

4.2 Simplicial decomposition of hypercubes

We are often interested in generating simplicial complexes that cover a hypercubic domain.

To this aim, we first consider the canonical subdivision of a hypercube into d! simplices

along a diagonal. This decomposition was initially proposed by Freudenthal [56] and was

popularized by Kuhn [100] in the context of fixed point calculations. We next consider

a family of nested decompositions, which we call the Maubach complexes, generated by

successively applying regular simplex bisection to the top simplices of a Kuhn-subdivided

hypercube.

61

(a) Cross simplex

(b) Cross complex

Figure 4.1: (a) The cross simplex of a triangle (blue) and a vertex (red) is a tetrahedron. (b) The
cross complex defined by an eight edge complex (blue) and a one edge complex (red) is composed
of eight tetrahedra.

(a) 1-cube (b) 2-cube (c) 3-cube

Figure 4.2: Kuhn-subdivided hypercubes in (a) 1D (b) 2D (c) 3D. One of the d! simplices is
highlighted in blue. All edges are aligned with the diagonal of an axis-aligned hypercube.

62

4.2.1 Kuhn subdivisions

The Kuhn-subdivision of a d-dimensional cube h, which we denote as K(h), is a sim-

plicial complex [3] defined by the d! top simplices, sharing a common diagonal of h.

Figure 4.2 illustrates Kuhn-subdivided d-cubes for d ∈ {1, 2, 3}, and highlights one of the

d! simplices.

Assume, without loss of generality, that a unit d-cube h is embedded in a subspace

[0, 1]d of Rn. Let 0d and 1d denote a pair of opposite vertices forming a diagonal ψ =

(0d, 1d). Also, let e0 denote 0d and ei the ith unit vector in Rd, e.g. e1 = (1, 0, 0, . . .),

e2 = (0, 1, 0, 0, . . .).

We refer to the d-simplex with vertices

vi =
∑
0≤ j≤i

e j

as the base simplex, which we denote as S 0. For example, when d = 3, S 0 has vertices

(0, 0, 0), (1, 0, 0), (1, 1, 0) and (1, 1, 1). The base simplex for d ∈ {1, 2, 3} is highlighted in

blue in Figure 4.2.

Let π be a permutation of the integers {0, 1, . . . , d − 1} and let v′ = πv indicate the

application of permutation π to the coordinates of vertex v. For example, if v = (1, 1
2 , 0)

and π = {2, 0, 1}, then v′ = πv = (0, 1, 1
2). Finally, let πσ denote the application of

permutation π to each vertex of simplex σ.

Then, the Kuhn-subdivision of hypercube h, which we denote as K(h), is defined

by the d! simplices of order d obtained by mapping each distinct d-permutation π onto the

vertices of the base simplex S 0. Formally,

K(h) = { π S 0 | π is a permutation of {0, 1, . . . , d−1}}. (4.1)

Figure 4.3 illustrates the 3! = 6 tetrahedra of a Kuhn-subdivided 3-cube.

63

Figure 4.3: Decomposition of a 3-cube into 3! = 6 simplices.

Since coordinate permutations do not modify 0d or 1d, every d-simplex in K(h)

contains diagonal ψ of h. Also, the ith vertex vi of any cell σ ∈ K(h) contains (d − i + 1)

coordinates of value 0 and i coordinates of value 1. Thus, the edge (0d, vi) of σ is a

diagonal of an i-face of h, and edge (vi, 1d) is a diagonal of a (d − i)-face of h. Kuhn

subdivisions can be generalized to any d-cube h′ with diagonal ψ′ = (v1, v2) by an affine

mapping from the vertices of ψ′ to (0d, 1d).

An interesting property of Kuhn subdivisions, which will be of use later and which

we prove now, is that it provides a Kuhn-subdivision to all faces of the initial hypercube.

Theorem 4.2.1. Let K(h) be the simplicial decomposition of a d-cube h, and hi an i-face

of h. Then K(hi) = hi ∩ K(h) is an i-dimensional Kuhn subdivision of the domain of hi.

Proof. If i = 0 then K(hi) is trivially a Kuhn subdivision. Assume, without loss of

generality, that h is a unit d-cube with diagonal ψ = (0d, 1d). We show that the (d − 1)-

faces of h are Kuhn-subdivided. Since d was arbitrary, the proof for the remaining i-faces

follows by induction.

Consider the simplicial (d − 1)-complex Σ obtained by removing vertex 1d from

every simplex σ ∈ K(h). All cells of Σ are defined by d vertices and are thus (d − 1)-

simplices. In fact, since ψ was the only diagonal of h, and all vertices of K(h) lie on its

boundary, we can decompose Σ into d subcomplexes, each containing simplices within a

(d− 1)-dimensional axis aligned hyperplane of Rd. In the nth such subcomplex Σn ⊂ Σ this

hyperplane can be defined by the equation xn = 0. Thus, the d vertices of a cell σ ∈ Σn are

64

of the form

v′k = π(
n−1∑
j=0

e j +

i∑
j=n+1

e j). (4.2)

By projecting Σn onto the (d − 1)-dimensional subspace of Rd that excludes coordinate xn,

we obtain the (d − 1)! cells of a Kuhn subdivided (d − 1)-cube (compare Equation 4.2 to

Equation 4.1).

Similarly, the simplicial complex defined by removing vertex 0d gives us Kuhn

subdivisions for the d remaining (d − 1)-faces of h, where each hyperplane is of the form

xn = 1. �

4.2.2 Maubach’s typographical bisection scheme

Recall from Section 2.2.2 that a d-simplex σ is bisected along one of its edges e, by

inserting a new vertex vm at the midpoint of e and bisecting σ along the hyperplane

defined by vm and the (d − 1) vertices of σ that are not incident to e (see Figure 2.6 for

examples in 2D and 3D). This creates two new d-simplices, covering the same domain as

σ, each containing vertex vm and one (but not both) of the endpoints of e.

Maubach’s bisection scheme [123] specifies the bisection edge for any top simplexσ

in an initial simplicial d-complex Σ or generated by repeated application of a typographical

bisection rule to the cells of Σ. It depends only on the ordering of the vertices of σ, and

on the subdivision depth `σ of σ, which is initialized to zero for any cell in the original

complex Σ. Given a d-simplex

σ =(v0, v1, . . . , vk−1, vk, vk+1, . . . , vd),

where k = d − (`σ mod d), the bisection edge is defined by vertices v0 and vk, and its

midpoint is vm = (v0 + vk)/2. The two d-simplices generated by the bisection rule have

65

vertices

σ0 = (v0, v1, . . . , vk−1, vm, vk+1, . . . , vd)

σk = (v1, v2, . . . , vk, vm, vk+1, . . . , vd),

and the depth of these simplices is incremented, e.g.

`σ0 = `σk = (`σ + 1).

Maubach proves that when his bisection scheme is applied to a Kuhn-subdivided

d-cube h whose simplex vertices are ordered as in Section 4.2.1, the generated d-simplices

belong to at most d similarity classes [123]. Recall that simplices are similar if there is

an affine mapping consisting of only uniform scaling, reflection, rotation and translation

between them. Since coordinate permutations are rigid mappings, the d! cells in K(h)

belong to the same similarity class. Furthermore, all cells at depth (` mod d) belong to

the same similarity class.

We note that, although the term Longest Edge Bisection (LEB) [157, 158] has been

applied to this family of decompositions, it is no longer applicable when the dimension d

is greater than three. To see this, consider the d-dimensional unit cube h with edge length

1 and diagonal length
√

d, where d > 3. All simplices in K(h) contain the diagonal of

the cube as well as at least one edge of h (see Figure 4.2). After bisecting a simplex σ of

K(h), the resultant simplices contain an edge e′ of length
√

d/2 as well as some edges of

the original cube h. Neither edge e′ nor edges of h are bisected in the (d − 2) bisections

that follow. In the dth bisection step, the bisection edge is an edge of h (of length 1), but

e′ has length greater than or equal to 1 since
√

d/2 = 1 when d = 4 and is greater than 1

when d > 4.

We therefore use the term Regular Simplex Bisection (RSB) to describe the sim-

plex bisection operation applied to a Kuhn-subdivided hypercubic domain according to

66

1-triangle0-triangle

(a) 2D RSB classes

2-tetrahedron1-tetrahedron0-tetrahedron

(b) 3D RSB classes

Figure 4.4: The d-dimensional RSB scheme has d similarity classes of top simplices. In 2D, there
are two classes of triangles (a) while in 3D, there are three classes of tetrahedra (b). The bisection
edge (green) of a class i simplex is aligned with the diagonal of an axis aligned (d − i)-cube.

Maubach’s scheme. We refer to any simplex generated by successive RSB operations as

an RSB simplex, and to nested meshes consisting of RSB simplices as RSB meshes.

We denote the cells of K(h) as class-0 simplices, and to an RSB simplex σ of order

d as a class-i simplex if i = (`σ mod d). Observe that the bisection edge ψ = (v0, vd−i) of

a class-i simplex is aligned with the diagonal of a (d − i)-cube. Figure 4.4 illustrates the

two classes of RSB triangles and the three classes of RSB tetrahedra generated using the

RSB scheme.

Consider the family of simplicial d-complexes Mi(h), which we refer to as the

Maubach complexes, generated through successive bisections to the cells of K(h), where

i denotes the depth of the d-simplices inMi(h) andM0(h) contains the d! cells of K(h).

Since each d-simplex inM0(h) is replaced by two d-simplices inM1(h),M1(h) contains

2 · d! cells, and in general,Mi(h) contains 2i · d! cells. Figures 4.5 and 4.6 illustrates the

first few Maubach complexes for d = 2 and d = 3, respectively.

4.2.3 Fully subdivided hypercubes

Let us analyze the properties of the dth Maubach complex,Md(h), which we refer to as a

fully subdivided hypercube, and denote as F (h). F (h) is a simplicial d-complex defined

by the 2d · d! cells resulting from d bisections of the cells in K(h). Each such cell belongs

to class-0 and is a factor of two smaller than those of K(h) [131].

67

(a)M0(h) = K(h) (b)M1(h) (c)M2(h) = F (h)

Figure 4.5: Three consecutive Maubach complexesMi(h) in 2D. (a)M0(h) is equivalent to K(h)
and has 2! = 2 triangles. (b)M1(h) has 2 · 2! = 4 triangles. (c)M2(h) is equivalent to F (h) and
has 22 · 2! = (2 · 2)!! = 8 triangles.

(a)M0(h) = K(h) (b)M1(h) (c)M2(h) (d)M3(h) = F (h)

Figure 4.6: Four consecutive Maubach complexesMi(h) in 3D. (a)M0(h) is equivalent to K(h)
and has 3! = 6 tetrahedra. (b) M1(h) has 2 · 3! = 12 tetrahedra. (c) M2(h) has 22 · 3! = 24
tetrahedra. (c)M3(h) is equivalent to F (h) and has 23 · 3! = (2 · 3)!! = 48 tetrahedra.

68

We simplify the notation by observing that 2d · d! can be defined in terms of the

double factorial function [126] as

2d · d! = (2d)!!

where the double factorial n!! is equal to 1 if n ∈ {0, 1} and n · (n − 2)!! otherwise. The

values of (2d)!! for d ∈ [1, 2, 3, 4] are [2, 8, 48, 384].∗

Let h be a d-cube with midpoint vc, K(h) the Kuhn subdivision of h along diagonal

ψ, and F (h) its corresponding fully subdivided hypercube. We first show that each cell of

F (h) has a bisection edge defined by a vertex of h and the midpoint vc of h.

Lemma 4.2.1. For all cells σ ∈ F (h), vc is a vertex of σ. Furthermore, the bisection edge

of σ is defined by vc and one of the 2d vertices of h.

Proof. This follows from the generation of F (h) in terms of the Maubach complexes

Mi(h) starting withM0(h) = K(h). After the first application of the bisection rule to the

cells ofM0(h), all cells σ ofM1(h) have the midpoint vc of ψ as their dth vertex. Since

none of the next (d−1) bisections modify the dth vertex, all cells ofMd(h) = F (h) contain

vc.

Since all cells in F (h) are class-0, the bisection edge is determined by the first and

last vertices of σ. As described above, the last vertex of σ is vc. Since σ is a class-0

simplex, its bisection edge must be the diagonal of a d-cube. The only edges of F (h) that

satisfy this constraint are those between vc and a vertex of h. �

Recall that for a d-cube h, K(h) contains d! class-0 simplices. An alternate interpre-

tation of F (h) is as a collection of Kuhn-subdivided subcubes covering the domain of h

and centered at the midpoint of h.

∗We provide a more thorough treatment of the double factorial function and its properties in Appendix A.

69

Corollary 4.2.2. F (h) consists of 2d Kuhn-subdivided d-cubes covering h and with side

length half that of h. Thus, each of the 2d subcubes contributes d! cells to F (h) for a total

of 2dd! = (2d)!! cells.

Similarly to the Kuhn subdivision, all i-faces of a fully subdivided d-cube are fully

subdivided i-cubes.

Theorem 4.2.3. Each i-face hi of a fully subdivided d-cube F (h) is a fully subdivided

i-cube F (hi).

Proof. Consider the simplicial (d − 1)-complex Σ obtained by removing the vertex vc at

the midpoint of F (h) from each cell σ ∈ F (h). Since each j-face h j of a Kuhn-subdivided

cube is a Kuhn-subdivided j-cube, the removal of vc from a Kuhn-subdivided subcube

within F (h) adds the (d−1)! cells of a Kuhn-subdivided (d−1)-cube to each of the d facets

of h on which it is incident (see the proof of Theorem 4.2.1 for details). Since there are

2d−1 subcubes incident with each facet hi of h, hi contains 2d−1(d − 1)! = (2(d − 1))!! cells.

Since these (d−1)-simplices are from a Kuhn-subdivided (d−1)-simplicial complex, they

are all class-0 cells of dimension d − 1. Further, all cells of F (hi) contain the midpoint of

hi coinciding with the midpoint of the 2d−1 subcubes adjacent to hi. �

This enables us to compute the number of vertices in F (h).

Corollary 4.2.4. Since F (h) contains the midpoint of all i-faces of h, F (h) contains∑(
d
i

)
2d−i = 3d vertices†. Each vertex coincides with a face of h.

Using the above properties, we can define a fully subdivided d-cube as a cross-

complex of its boundary faces and vc.

Corollary 4.2.5. Let hi denote one of the 2 · d facets of h. A fully subdivided d-cube F (h)

with midpoint vc can be decomposed as the cross-complex of the (d − 1)-simplices from

†This summation is a special case of the binomial theorem, see Appendix C.

70

each fully subdivided facet F (hi) with the singleton simplicial complex {vc}. E.g.

F (h) = {
⋃
F (hi) ⊗ {vc} | hi is a facet of h}.

Corollary 4.2.5 motivates the double factorial notation. Each of the 2 · d facets hi

of h contributes the (2(d − 1))!! cells generated by F (hi) ⊗ vc, so F (h) is composed of

2d · (2(d − 1))!! = (2d)!! cells.

We are also interested in the simplicial complex defined by the simplices on the 2 · d

facets hi on the boundary of F (h), which we call a fully-subdivided d-cube boundary and

denote as BF(h). Thus,

BF(h) = {
⋃
F (hi) | hi is a facet of h}.

is the simplicial (d − 1)-complex defined by (2d)!! cells of dimension (d − 1). Each such

cell corresponds to a cell of F (h) where the vertex at the center of F (h) has been removed.

Figure 4.7 shows examples of fully subdivided i-cube boundaries for i = 1, 2, 3, and

highlights (in red) the midpoint of each facet of BF(h).

4-cube (a) 1-cube4-cube (b) 2-cube4-cube (c) 3-cube

Figure 4.7: Fully subdivided i-cube boundary BF for (a) 1-cube (b) 2-cube and (c) 3-cube, con-
taining 2 vertices, 8 edges and 48 triangles, respectively.

71

4.3 A hierarchy of RSB simplices

Consider a d-dimensional hypercubic domain h initially decomposed into d! cells asK(h).

A hierarchical containment relationship exists between cells in consecutive Maubach

complexes. The two d-simplices σ1 and σ2 generated through a bisection operation on

simplex σ are the children of σ, and conversely, σ is the parent of σ1 and σ2.

This nested relationship can be captured as a simplex tree, a binary tree whose

root is a d-simplex from K(h). Furthermore, the entire nested simplicial complex can be

represented as a forest of d! simplex trees whose roots are the class-0 cells of K(h). We

call this forest of simplex trees a hierarchy of RSB simplices, which we will also refer to as

a hierarchy of simplices [6] in general, and as a hierarchy of (right) triangles [45, 54, 66]

a hierarchy of tetrahedra [69, 85, 102, 214] or a hierarchy of pentatopes [103] in 2D, 3D

and 4D, respectively.

The depth of a simplex is defined recursively as 0 for the bintree roots, and one

greater than the depth of its parent otherwise. All root simplices belong to K(h), so they

are all class-0 simplices. Since RSB is used to generate the simplices at successive depths,

all simplices at the same bintree depth belong to the same class of simplices. Furthermore,

since there are d classes of simplices in a hierarchy of simplices, and the classes repeat

cyclically, the class of a simplex σ at depth m is (m mod d). The simplices at d successive

depths define a level of the hierarchy. The level of a simplex at depth m is then bm/dc.

The bisection edge of σ is the diagonal ψ of a (d− i)-cube, and the vertex introduced

during the bisection of σ coincides with the midpoint of ψ.

Figure 4.8 illustrates the hierarchical relationship between the triangles in a hierar-

chy of triangles at four successive depths (two levels). Note that the hierarchy of triangles

contains two binary trees, and that each triangle has two children that cover its domain,

thus forming a nested decomposition of the square domain.

The fundamental operation performed on a hierarchy of simplices is the extraction

of adaptive simplicial complexes via a selective refinement query (see Section 2.4.1). Let

72

(a) Hierarchy of RSB triangles (b) Simplex containment relation

Figure 4.8: A hierarchy of RSB triangles. (a) The triangles at four depths (two levels) of the
hierarchy. (b) The simplex containment relation defines a forest of binary trees.

σ be a cell of a simplex tree T and σ1 and σ2 its children. Since σ1 and σ2 cover the same

domain as σ, the hierarchical relationship between cells of T defines a nested simplicial

mesh. Thus, since K(h) is a simplicial decomposition of the domain, repeated application

of the simplex bisection operation to cells in the forest always provides a non-overlapping

simplicial decomposition of the domain.

However, due to the local nature of an individual RSB operation, it does not, in

general, generate valid simplicial complexes. Consider the faces of a cell σ in a simplicial

complex Σ generated according to the regular simplex bisection rule. Since Σ is a simplicial

complex, all faces adjacent to those of σ intersect only at common faces. However, after σ

is bisected along edge ψ, faces that were previously incident to ψ are no longer conforming

(see Figure 2.1b).

Thus, the bisection rule requires additional constraints to ensure the generation of

valid simplicial complexes. Namely, (a) the depth of all cells incident to bisection edge ψ

73

of a cell σ must be equal to that of σ before the bisection; and (b) all such cells must be

bisected concurrently with σ. To satisfy this constraint, we must first find the set of neigh-

bors of cell σ along bisection edge ψ. The so-called neighbor-finding operation, finds all

d-simplices adjacent to σ along its bisection edge. Neighbor finding can be accomplished

by storing pointers to each of the d + 1 neighboring cells [123] or symbolically by manipu-

lating location codes that uniquely identify each cell in the forest [6, 54, 85, 102, 103, 124].

Symbolic neighbor-finding enables a pointerless representation for cells in the forest, thus

enabling each neighbor-finding operation to be carried out in O(1) time. However, since

each neighbor must be found, this operation must be performed O
(∣∣∣Neighbors(σ)

∣∣∣) times.

4.4 A hierarchy of diamonds

We have seen that conforming updates to a simplicial complex generated using the RSB

scheme are related to the set of RSB simplices surrounding a common bisection edge.

An alternative model can be defined by clustering all d-simplices sharing a common

bisection edge into a new primitive, called a diamond [45,68,76,146] and considering the

hierarchical relationships between diamonds rather than those between RSB simplices.

An RSB diamond is the set of all d-simplices in a d-dimensional hierarchy of RSB

simplices with a common bisection edge, called the spine of the diamond. Since all

d-simplices within a diamond are congruent, there are d similarity classes of diamonds

in correspondence to the d similarity classes of RSB simplices. We refer to a diamond

whose d-simplices belong to class-i as an i-diamond and note that its spine is aligned

with the diagonal of an axis-aligned (d − i)-cube. Figure 4.9 illustrates the two classes of

two-dimensional diamonds and the three classes of three-dimensional diamonds.

4.4.1 Diamond subdivision

A diamond δ is subdivided by bisecting all of its d-simplices using the RSB scheme.

Thus, subdivision doubles the number of cells within δ and we denote its corresponding

74

vc
vc

1-diamond0-diamond

(a) 2D Diamond Classes

vc

2-diamond2-diamond2-diamond2-diamond2-diamond2-diamond2-diamond

vcvvc

1-diamond

vc

0-diamond0-diamond

vc

(b) 3D Diamond Classes

Figure 4.9: The two classes of diamonds in 2D (a) and the three classes of diamonds in 3D (b).
The spine of an i-diamond (green edge) is aligned with the diagonal of a (d − i)-cube.

(a) 2D (b) 3D

Figure 4.10: Diamond subdivision in 2D (a) and 3D (b).

subdivided diamond as δs (see Figure 4.10 for examples in 2D and 3D).

Diamond subdivision is an instance of stellar subdivision [2, 110, 133] and is a

conforming refinement in arbitrary dimensions. An important property of diamond sub-

division is that all changes occur within the interior of the subdividing diamond δ. Con-

sequently, the faces on the boundary of δ are unaffected by its subdivision. The local

effect of the subdivision of a diamond δ is to (a) remove its spine (b) add a vertex vc at the

midpoint of its spine, which we refer to as its central vertex and (c) add edges from vc to

each vertex v of δ, which we refer to as its subdivision edges. A diamond can be uniquely

identified by its spine, or alternatively, by its central vertex, the midpoint of the spine.

4.4.2 Diamond dependency relation

The hierarchical relationship among RSB simplices defines a direct dependency relation

on the diamonds. In contrast with the containment relationship among the simplices

75

within the hierarchy, which can be represented as a forest of binary trees, the diamond

dependency relationship defines a partial order on the diamonds, which can be described

using a Directed Acyclic Graph (DAG).

A hierarchy of diamonds is a multiresolution model (see Section 2.4), which we

denote as ∆. When defined over a cubic domain Ω,

• the base mesh of ∆ is defined by the 0-diamond decomposing Ω and contains all

simplices of K(Ω);

• a modification in ∆ is a pair defined by an (unsubdivided) diamond δ and by the sub-

divided diamond δs associated with it, and is denoted as u = (δ, δs) (see Figure 4.11);

and

• the dependency relation is defined as in Section 2.4 and thus ∆ is described by a

dependency graph which is a DAG.

Let up = (δp, δps) be a modification that directly precedes uc = (δc, δcs) in the dependency

graph of ∆. Then, there is at least one d-simplex in the subdivided diamond δps that is also

in the unsubdivided diamond δc. We call δp a parent diamond of δc and, conversely, δc a

child diamond of δp in the hierarchy. Figure 4.11 shows the direct dependency relation

between two modifications up = (δp, δps) and uc = (δc, δcs) in 2D. up is a parent of uc since

δps and δc have a triangle in common (light blue).

For a diamond δ, we denote the set of its children diamonds as Children(δ), and the

set of its parent diamonds as Parents(δ). Although each parent diamond δp ∈ Parents(δ)

may only partially cover the domain of δ, the set, Parents(δ), collectively covers δ’s domain

(and similarly for Children(δ)). Figure 4.12 illustrates the diamonds in a 2D hierarchy of

diamonds at four successive depths (two levels). Each diamond is identified with its spine

(a colored edges) and with its central vertex (filled circles at the midpoint of its spine).

76

sδpδp
(a) Parent up = (δp, δps)

sδcδc
(b) Child uc = (δc, δcs)

Figure 4.11: Modification up is a parent of modification uc in ∆ since subdivided diamond δps and
unsubdivided diamond δc have a triangle in common (light blue).

4.4.3 Parent-child duets

By definition, a subdivided parent diamond δps and its (unsubdivided) child δc always have

at least one cell in common. We refer to the set of simplices shared by a subdivided parent

and one of its children as a parent-child duet or, simply, a duet. Duets define the unique

contribution of simplices from a parent diamond to one of its children, and thus, they are in

one-to-one correspondence with the arcs of the dependency graph of ∆ (see Figure 4.13).

Observe that a duet between subdivided parent δps and child δc always contains the central

vertex of δps as well as the spine of δc. In 2D, each duet consists of a single triangle: the

central vertex of the parent and the spine of the child. In 3D, we observe that δps and δc

consists of a pair of face-adjacent tetrahedra whose shared face is defined by the spine of

δc and by the central vertex of δps .

4.5 Properties of a hierarchy of diamonds

We now focus on the combinatorial structure of an arbitrary i-diamond δ of dimension

d. This leads to the derivation of closed-form equations for the number of simplices and

vertices in δ as well as the number and location of its parents and children.

Theorem 4.5.1. An i-diamond δ in dimension d is the cross-complex defined by K(hk), a

Kuhn subdivided (d − i)-cube, hk, and BF(hi), the boundary of a fully subdivided i-cube,

77

(a) A hierarchy of diamonds (b) Diamond dependency relation

Figure 4.12: A hierarchy of diamonds in 2D. (a) Diamonds at four depths (two levels) of the
hierarchy. Each diamond is uniquely identified by its spine (colored edge) and its central vertex
(filled circle). (b) The diamond dependency relation defines a partial order on the diamonds and
can be encoded as a rooted DAG.

hi, i.e.,

δ = K(hk) ⊗ BF(hi)

such that hk and the facets of hi are in affinely independent subspaces of Rd, and the center

of hk and of hi coincide.

Proof. Consider the vertices of an arbitrary d-simplex σ ∈ δ

σ =(v0, v1, . . . , vk−1, vk︸ ︷︷ ︸
(d−i+1) vertices

, vp1 , vp2 , . . . , vp j , . . . , vd︸ ︷︷ ︸
i vertices

),

where k = d − i. Since δ is defined by its spine ψ = (v0, vk), which is the diagonal of a

(d − i)-cube, the vertices in position 0 in all d-simplices of δ are identical, and similarly

for the vertices in position k = d − i. Furthermore, the midpoint vc = 1
2 (v0 + vk) of ψ is the

central vertex of δ and is the vertex that will be inserted in position k for all d-simplices

78

A

B

vc

(a)

A
B

A
B

sδp δcDuet

vc

(b)

Figure 4.13: Parent-child duets are in one-to-one correspondence with the arcs of the dependency
graph and always contain the central vertex vc of the parent (red vertex) as well as the spine vertices
A and B of the child diamond (green vertices). (a) 2D duet between a 0-diamond and a 1-diamond
(b) 3D duet between a 1-diamond and a 2-diamond.

generated during the subdivision of δ.

Due to the use of Maubach’s bisection scheme, vertex vp1 at position (d − i + 1) of

σ, where i > 0, is the center of a (d − i + 1)-cube hp. Also, vp1 is the central vertex of the

diamond δp whose subdivision generated σ. Similarly, for j ≤ i, the vertex vp j at position

(d − i + j) of σ is the center of a (d − i + j)-cube and vp j is the central vertex of the level- j

ancestor diamond of δ.

The proof is split into two parts. We first show the (d − i)-dimensional Kuhn-

subdivided component of δ, K(hk), whose vertices are in the initial (d − i + 1) positions

of any d-simplex σ ∈ δ. Next, we show the fully subdivided i-cube boundary component,

BF(hi), whose vertices are in the final i positions of σ. Since σ is a d-simplex, all of its

vertices must be in affinely independent subspaces of Rd, and thus σ is a cross-simplex of

a (d − i)-simplex from K(hk) and an (i − 1)-simplex from BF(hi).

Kuhn component. Consider the set of d-simplices within δ whose final i vertices are the

same, i.e. if σa and σb are two such d-simplices, then the vertex at position (k + j) of σa

is equal to the vertex at position (k + j) of σb, for 0 < j ≤ i. Since we use Maubach’s

ordering for the simplices, the subspace of Rd spanned by these simplices is a (d − i)-cube

hk, whose diagonal is ψ. Furthermore, since our hierarchy began with a Kuhn subdivision

of h and all i-faces of a Kuhn subdivided d-cube are Kuhn subdivided (Theorem 4.2.1),

these simplices comprise a Kuhn subdivision of hk, i.e. K(hk), and there are (d − i)! such

79

simplices.

Fully subdivided component. This proof involves a grid that is dual to the one we have

been using (i.e. the primal grid). A vertex of the dual grid corresponds to the center of

a d-cube of the primal grid, and, in general, a j-cube of the dual grid corresponds to a

(d− j)-cube of the primal grid (see Figure 4.14). Observe that the vertices of this dual grid

are offset from those of the primal grid by one half unit in each axis-aligned direction.

Recall that, on the primal grid, the vertex vp j at position (d − i + j) of σ is the center

of a (d− (i− j))-cube whose center coincides with the central vertex of a parent of δ. Then,

on the dual grid, vertex vp j of σ is the center of an (i − j)-cube, 1 ≤ j ≤ i. Note that the

central vertex of δ (which is not a vertex of δ until after it subdivides) is the center of an

i-cube, hi on the dual grid.

In the following, consider the collection of d-simplices within δ whose initial (d −

i + 1) vertices are the same, i.e. if σa and σb are two such d-simplices, then the vertex at

position j of σa is equal to the vertex at position j of σb, for 0 ≤ j ≤ (d − i). We can thus

project these d-simplices into an (i − 1)-dimensional subspace of Rd.

Our claim, which we prove through induction on i, is that these (i − 1)-simplices

decompose the boundary of a fully subdivided i-cube hi, e.g. BF(hi). In the base case,

i = 0, and BF(hi) is empty and is therefore the boundary of a fully subdivided 0-cube.

For the inductive step, assume that in an (i− 1)-diamond δp, the final (i− 1) vertices

of each simplex correspond to the boundary of a fully-subdivided (i − 1)-cube BF(hp),

whose simplices therefore have dimension i − 2. When δp is subdivided, its central vertex

v′ coinciding with the center of hp is inserted. In addition, edges are created from v′ to all

vertices of δp, including the vertices of BF(hp). This increases the dimension of each of

BF(hp)’s simplices and generates F (hp) (recall from Section 4.2.3 that F (hp) is defined

as the cross-complex of BF(hp) and the vertex at its center). All simplices generated

during this subdivision contain vertex v′ in position d − i. The final i vertices of each such

80

d-simplex defines an (i − 1)-simplex, and together these (i − 1)-simplices form the fully

subdivided (i − 1)-cube F (hp).

Now, consider the subset of these simplices that get contributed to an i-diamond δc

that is a child of δp. These are characterized by having the same spine vertices (e.g. v0

and vk). Since δc is an i-diamond its central vertex is the midpoint of an i-cube hi in the

dual grid. Among the 2 · i facets of hi, one is the fully subdivided (i − 1)-cube F (hp). By

symmetry, each of the other facets are subdivided similarly, and, thus, the boundary of hi

is subdivided as a fully subdivided i-cube, i.e. BF(hi). �

Figure 4.14: The midpoint of a 1-cube (black edge) in the primal grid in 3D is the midpoint of a
2-cube (red square) in the dual grid.

Figure 4.15 illustrates how a three dimensional 1-diamond (Figure 4.15a) can be

decomposed into a Kuhn-subdivided 2-cube (Figure 4.15b) and the boundary of a fully

subdivided 1-cube (Figure 4.15c).

(a) 1-diamond (d = 3) (b) K(h2) (c) BF(h1)

Figure 4.15: A three dimensional 1-diamond (a) can be decomposed into a Kuhn-subdivided
2-cube h2 (b) and the boundary of a fully subdivided 1-cube h1 (c). In general, an i-diamond in d
dimensions can be decomposed into a Kuhn-subdivided (d − i)-cube and the boundary of a fully
subdivided i-cube.

81

Let δ be an i-diamond of dimension d, K(hk) be the (d − i)-dimensional Kuhn-

subdivided component of δ andBF(hi) be the fully subdivided i-cube boundary component

of δ. The decomposition of Theorem 4.5.1 suggests the following closed-form equations

for the number of d-simplices, vertices, parents and children of any diamond δ.

Simplices. The number of d-simplices in an i-diamond is (d − i)!(2i)!! This follows from

the fact that δ is defined by the cross complex of K(hk) which contains (d − i)! cells

and BF(hi) which contains (2i)!! cells. The d-simplices of δ are cross simplices

of those from K(hk) and BF(hi). Thus, a diamond contains O(d!) cells. Table 4.1

summarizes these properties for d ≤ 5.

Vertices. The number of vertices in an i-diamond is (2d−i + 3i − 1). Since K(hk) contains

2d−i vertices, and BF(hi) contains 3i − 1 vertices and they are both in (pairwise)

affinely-independent subspaces, the number of vertices in δ is just their sum. Ta-

ble 4.2 summarizes these properties for d ≤ 5.

Children. The number of children of an i-diamond is 2 · (d − i) if i < (d − 1) and 2d

if i = (d − 1). The spines of children of an i-diamond, i < (d − 1), coincide with

diagonals of the 2 · (d − i) facets of the Kuhn-subdivided cube hk. When i = (d − 1),

hk is a 1-cube (an axis-aligned edge), and hi is a (d − 1)-cube. The spine vertices

of δ’s children are located at positions 0 and d of each d-simplex, corresponding to

one of the two vertices of hk and one of the 2d−1 vertices of hi. There are thus, 2d

such children. Table 4.3 summarizes these properties for d ≤ 5.

Parents. The number of parents of an i-diamond is 2 · i, if i > 0 and d if i = 0. The central

vertex of each parent of an i-diamond, i > 0, coincides with the midpoint of one of

the 2 · i facets of hi. When i = 0, hi is a 0-cube coinciding with the central vertex

of δ. Let σ denote one d-simplex of δ and let (v0, vx) denote the spine vertices of

its parents, where v0 is the vertex at position 0 of σ and vx is the spine vertex of the

parent δp that generated σ (at position 1 of σ). Then, since δp is a (d − 1)-diamond,

82

Table 4.1: Number of d-simplices in an i-diamond of dimension d is (2i)!!(d − i)!. The (d − i)!
factor comes from the Kuhn-subdivided component K(hk) (rows), while the (2i)!! factor comes
from the fully-subdivided i-cube boundary component BF(hi) (columns).

0 1 2 3 4 i

1 1
2 2 2
3 6 4 8
4 24 12 16 48
5 120 48 48 96 384

d d! 2(d − 1)! 8(d − 2)! 48(d − 3)! 384(d − 3)! (2i)!!(d − i)!

its spine is aligned with a coordinate axis of Rd, and δ has d parents. Furthermore,

if ψ = (v0, vd) is the spine of δ, then let v = vd − v0 be the difference between these

vertices. The spine of the jth parent of δ is defined by v0 and vx = v0 +2(v ·e j) (where

the (·) indicates the dot product and e j is the jth unit vector). Table 4.4 summarizes

these properties for d ≤ 5.

Duets. Since each simplex in the hierarchy is associated with a single diamond, and is

generated during the subdivision of a single parent diamond, we can determine

the number of d-simplices in a parent-child duet as the quotient of the number of

simplices and the number of parents. Since the former is O(d!) and the latter is O(d),

each duet contains O(d!) simplices that are generated simultaneously. Table 4.5

summarizes these properties for d ≤ 5

Figure 4.16 illustrates the decomposition of all classes of diamonds for d ≤ 4. Note

that given the decompositions from dimension d, only two new hypercube decompositions

are necessary for dimension (d + 1): a Kuhn-subdivided (d + 1)-cube and the boundary of

a fully subdivided d-cube.

83

4-cube

d=1

d=2

d=3

d=4

i=0 i=1 i=2 i=3

Figure 4.16: An i-diamond δ of dimension d is the cross-complex of K(hk), a Kuhn subdivided
(d − i)-cube, hk (top cube in each cell) and BF(hi), the boundary of a fully subdivided i-cube, hi

(bottom cube in each cell). For i < d − 1, the central vertices of children of δ are located at the
midpoints of each (d − i − 1)-face of hk (blue vertices). For i > 0, the central vertices of parents
of δ are located at the midpoints of each (i − 1)-face of hi (red vertices). Figures 4.1b and 4.15a
illustrate the decompositions for a 2-diamond and a 1-diamond in 3D, respectively.

84

Table 4.2: Number of vertices in an i-diamond of dimension d is 2d−i + (3i−1). The 2d−i term
comes from the Kuhn-subdivided component K(hk) (rows), while the (3i − 1) term comes from
the fully-subdivided i-cube boundary component BF(hi) (columns).

0 1 2 3 4 i

1 2
2 4 4
3 8 6 10
4 16 10 12 28
5 32 18 16 30 82

d 2d 2d−1+2 2d−2 + 8 2d−3 + 26 2d−4 + 80 2d−i + (3i − 1)

Table 4.3: Number of children of an i-diamond in dimension d is 2d when i = (d−1) and 2(d−i),
otherwise.

0 1 2 3 4 i

1 2
2 4 4
3 6 4 8
4 8 6 4 16
5 10 8 6 4 32

d 2d 2(d − 1) 2(d − 2) 2(d − 3) 2(d − 4) 2(d − i)
∣∣∣ 2d

Table 4.4: Number of parents of an i-diamond in dimension d is d when i = 0 and 2i, otherwise.

0 1 2 3 4 i

1 1
2 2 2
3 3 2 4
4 4 2 4 6
5 5 2 4 6 8

d d 2 4 6 8 d
∣∣∣ 2i

85

Table 4.5: Number of d-simplices in a parent-child duet from a parent diamond to a child i-
diamond is (2(i − 1))!!(d − i)! if i > 0 and (d − 1)! otherwise. Entries are derived as the quotient of
corresponding entries from Tables 4.1 and 4.4.

0 1 2 3 4 i

1 1
2 1 1
3 2 2 2
4 6 6 4 8
5 24 24 12 16 48

d (d − 1)! (d − 1)! 2(d − 2)! 8(d − 3)! 48(d − 2)! (d − 1)!
∣∣∣ (2(i − 1))!!(d − i)!

4.6 Querying an RSB hierarchy

Observe that the hierarchy of simplices and the hierarchy of diamonds are different hi-

erarchical models over the same family of nested RSB meshes, which we refer to as an

RSB hierarchy. Whereas the former is focused on the containment relationship among

RSB simplices, the latter is focused on the dependency relation required for conforming

refinements to an RSB mesh.

We are often interested in extracting conforming meshes from an RSB hierarchy

since cracks in non-conforming meshes correspond to discontinuities in functions defined

on those meshes. We use a selective refinement process to extract a conforming RSB

mesh from an RSB hierarchy. This extracts the mesh with the fewest possible elements

satisfying an application-dependent predicate µ, referred to as the selection criterion.

Recall from Section 2.4.1 that selective refinement is performed by traversing the

graph describing the dependency relation either top-down by starting from a coarse ap-

proximation, bottom-up by starting with the mesh at full resolution or incrementally by

modifying an already extracted mesh. In this process, a conforming RSB mesh Σ, referred

to as the current mesh, is extracted from the hierarchy. The status of a query is described

by a cut C of the hierarchy’s dependency graph, called the active front, separating the set

of modifications that have been applied from those that have not.

A conforming RSB mesh corresponds to a set of modifications that is closed with

86

respect to the diamond dependency relation. Conforming refinements to an RSB mesh

correspond to the subdivision of complete diamonds, i.e. where all simplices are present

in the current mesh.

Alternatively, a nested RSB mesh corresponds to a set of modifications that is

closed with respect to the containment hierarchy induced by bisections, and does not

need to be conforming. Such meshes are extracted from a hierarchy of simplices using

a simpler adaptive refinement query, outlined in Algorithm 4.1, which does not involve

backtracking or neighbor finding. An adaptive refinement query is initialized with the d!

bintree roots. Nodes that fail the selection criterion µ are bisected and their children are

tested recursively.

When the hierarchy is modeled as a hierarchy of simplices, a conforming mesh is

extracted through the use of a saturated selection criterion (see Section 3.1.4.2), which

incorporates the diamond dependency relation into the selection criterion, in conjunc-

tion with an adaptive refinement query, or through a selective refinement query [38] in

conjunction with a neighbor-finding algorithm.

In the former case, saturation of the selection criterion, ensures that the ancestors of

simplices along the bisection edge refine before it does, so tests against a node’s ancestors

are not necessary to guarantee the extraction of conforming meshes. In the latter case, the

neighbor-finding algorithm recursively bisects simplices that are at shallower depths than

the bisecting node. In either case, since the number of simplices in a diamond is factorial

in the dimension d, the complexity of conforming updates to a simplex-based hierarchy is

O(d!).

In contrast, when the RSB hierarchy is modeled as a hierarchy of diamonds ∆,

diamonds are complete once all of their parent diamonds have subdivided. This completion

process is carried out by (recursively) forcing all parents of δ to refine, thereby satisfying

the transitive closure of the dependency graph. The active front of the query consists of

the arcs of the dependency graph connecting subdivided diamonds to their unsubdivided

87

Algorithm 4.1 AdaptiveRefine(σ)

Require: σ is an RSB simplex in a nested RSB mesh Σ

Require: µ is a selection criterion
1: if µ(σ) fails then
2: BisectSimplex(σ)
3: AdaptiveRefine(Child0(σ))
4: AdaptiveRefine(Child1(σ))

Algorithm 4.2 SelectiveRefine(δ,ForceRefine)

Require: δ is a diamond in a nested RSB mesh Σ

Require: ForceRefine is a boolean
Require: µ is a selection criterion

1: if ForceRefine is true or µ(δ) fails then
2: // Ensure diamond is complete
3: for all δp ∈ Parents(δ) do
4: if δp is not subdivided then
5: SelectiveRefine(δp, true)
6: // Bisect all simplices of δ
7: SubdivideDiamond(δ)
8: // Check all children
9: if ForceRefine is false then

10: for all δc ∈ Children(δ) do
11: SelectiveRefine(δc, false)

children. Thus, the current mesh Σ consists of the simplices associated with the parent-

child duets corresponding to these arcs (see Figure 4.17).

Algorithm 4.2 outlines a top-down selective refinement query for a hierarchy of

diamonds, which is initialized using the root diamond of the hierarchy. Most diamonds

are checked against the selection criterion µ. However, forced refinements short-circuit the

selection criterion using the boolean ForceRefine (Line 1). The algorithm consists of three

steps. First, we complete the diamond by recursively subdividing its parents (Lines 3–5).

Next, the diamond is subdivided (Line 7). Finally, the children of diamonds that are not

forcibly refined are checked for refinement (Lines 9–11). Since a diamond δ has O(d)

parents, and each diamond is refined only once, diamond refinements in SelectiveRefine

have an amortized complexity of O(d).

88

(a) Closed set of modifications (b) Active front (c) Current mesh Σ

Figure 4.17: During selective refinement, a conforming RSB mesh Σ (c) is extracted from a
hierarchy of diamonds ∆ through a traversal of its dependency graph (a). Σ corresponds to the
active front (b), a closed cut of the DAG describing ∆’s dependency relation (a). Simplices in the
current mesh (c) belong to duets in the active front and correspond to subdivided parents (filled
circles) of unsubdivided diamonds (unfilled circles).

Figure 4.17 illustrates the results of a selective refinement query on a 2D hierarchy

of diamonds after subdividing the root diamond (filled red circle), three of its children

(filled orange circles), and one of its grandchildren (filled green circle).

4.7 Discussion

We have generalized the notion of a diamond to arbitrary dimensions as a cross-complex of

two related simplicial decompositions of lower-dimensional hypercubes. This has enabled

us to analyze the properties of diamonds and to derive closed-form equations for the

number of d-simplices, vertices, parents and children of all types of diamonds in arbitrary

dimensions.

In particular, we proved that an i-diamond in d-dimensions contains (d − i)!(2i)!!

d-simplices. Thus, representations in which the primitives are d-simplices become very

expensive to store as the dimension d of the problem domain increases. Specifically,

89

since neighbor-finding operations are required for extracting conforming meshes before

any bisection operation, extracting conforming modifications to a simplicial complex is a

problem with O(d!) complexity.

We also identified parent-child duets, which are in one-to-one correspondence with

the arcs of the dependency graph of a diamond hierarchy, as the atomic building block

of conforming RSB meshes. This is useful for our efficient selective refinement query

(Algorithm 4.2) for compact encodings of RSB meshes (Chapter 6), for efficiently travers-

ing these meshes (Chapter 8) and for transmitting information down the hierarchy during

refinement (Chapter 9). Since a diamond has O(d) parents, a diamond-based approach

enables conforming updates to an RSB mesh in (amortized) linear time and space.

Although saturated metrics are typically applied to simplex-based representations,

they subsume the diamond hierarchy into the selection criterion. Thus, our analysis of

the diamond-dependency relation implies that a diamond-based generation for saturated

metrics have O(d) complexity, while the typical simplex-based generation, in which errors

are passed up through the containment relation, have O(d!) complexity.

Since diamond hierarchies satisfy the MultiTessellation (MT) model [43], and are

defined by stellar refinement along an edge of the mesh, we can view a diamond hierarchy

as a restricted version of a multiresolution model based on half-edge collapses [34]. Con-

sider the (d · N)th Maubach complexMd·N , for some n ∈ N. Then, if we restrict our edge

collapse operations to subdivided diamonds (with all of their simplices), and collapse the

central vertex of such a diamond into one of its spine vertices, we obtain a partial order on

these half-edge collapses that is equivalent to that of the diamond dependency relation.

Finally, we observe that the hierarchy of simplices defines a containment hierarchy

over the domain, but nested bisections alone are not sufficient to guarantee the extraction

of a conforming mesh, which requires a saturated selection criterion or a neighbor finding

algorithm. On the other hand, the diamond dependency relation ensures the extraction

of conforming meshes but does not define a containment hierarchy. Thus, conforming

90

refinements require the subdivision of a diamond’s parents before it can subdivide, which

can propagate refinements up the hierarchy. Thus, a nested refinement domain would

enable a simple top-down adaptive refinement algorithm that guarantees the extraction of

conforming meshes. In 2D, the octagonal descendant domain of a diamond [7, 67, 181]

(see Figure 3.4) defines a nested hierarchy of octagons satisfying these conditions.

A promising initial result towards this aim for three dimensional diamond hierar-

chies [201] builds on the 2D octagonal descendant domains to define nested refinement

domains in 3D. We observe that the descendant domain of a diamond has a fractal bound-

ary (see Figure 4.18b) which would be difficult to work with in an interactive setting, and

introduce two new nested refinement domains that would be easier to work with. The

convex descendant domain of a diamond is the convex hull of its descendant domain (see

Figure 4.18c), and the bounding box descendant domain is the axis-aligned bounding box

of its descendant domain (see Figure 4.18d). All three nested refinement domains extend

the domain under consideration by at most a factor of three. The original descendant do-

main is typically the region under consideration for saturated error metrics [68, 142], but

can be used to precompute the range of field values covered by all descendants (i.e. a sat-

urated analogue of the Min/Max octree [208]). This can also be conservatively estimated

for a diamond δ from an unsaturated Min/Max range by considering the range within a

constant number of diamonds that cover the convex descendant domain or bounding box

domain of δ. The bounding box domain can be used to quickly determine if a diamond

intersects a geometric object in the domain, for example, in hierarchical frustum culling

algorithms.

91

(a) Three classes of diamonds in 3D

(b) Descendant domains

(c) Convex descendant domains

(d) Bounding box descendant domains

Figure 4.18: The three classes of diamonds (a) and their corresponding nested refinement domains
(b-d) in 3D. In each case, the corresponding refinement domain of one of the diamond’s parents,
grandparents and great-grandparents (right column) illustrates the nested nature of these shapes.

92

Chapter 5

Supercubes: A high-level primitive for RSB hierarchies

We are often interested in associating information with coherent subsets of the entities

of an RSB hierarchy. This includes its geometric entities, such as its vertices, edges,

simplices and diamonds; its hierarchical entities, such as the parents or children of an

element; and the connectivity among neighboring elements. A common approach is to

associate information with only the desired elements, and to index these in a spatial data

structure. However, this can impose significant overhead when an element’s index requires

more storage than the data we would like to associate with it.

Due to the way RSB meshes are generated, there is typically a great deal of coher-

ence among its elements. For example, when dealing with a variable-resolution diamond

mesh extracted from the hierarchy, we have a sparse subset of the total dataset, but the

presence of a diamond in the mesh strongly implies the presence of its neighbors or those

of its parents or children, in the mesh.

In particular, since diamond hierarchies are defined in terms of the subdivision of

diamonds along their spines, and vertices are inserted at the midpoints of these edges, it is

useful to consider the spatial and hierarchical relationships among the edges of a nested

RSB mesh.

An analysis of this structure reveals a higher level of symmetry within the hierarchy

than that which is apparent at the level of diamonds. Specifically, each level of resolution

is tiled by a repeating pattern of edges arranged in a cubic domain, which we call a

supercube and derive from the fully subdivided hypercubes of Section 4.2.3.

In this chapter, we analyze fully subdivided hypercubes to better understand the

structure of nested RSB meshes (Section 5.1). We then propose supercubes as the basis for

93

(a) K1 triangulation (b) J1 triangulation

Figure 5.1: Tiling the plane with Kuhn squares. (a) Translating adjacent tiles leads to Freuden-
thal’s triangulation K1. (b) Reflecting adjacent tiles leads to the Tucker-Whitney triangulation
J1.

(a) Level ` (b) Level ` + 1 (c) Level ` + 2

Figure 5.2: The J1 triangulation is the canonical tiling for RSB hierarchies. It tiles each level of
resolution of d-dimensional space with scaled copies of fully subdivided d-cubes. Three consec-
utive levels of resolution covering the same 3D domain are shown, containing 1, 8 and 64 cubes,
respectively. One fully subdivided cube at each level or resolution is highlighted in blue.

a higher-level primitive within RSB hierarchies, and analyze their properties in Section 5.2.

In Section 5.3, we discuss some implications of supercubes. We present our encoding of

the elements within a supercube and of collections of supercubes in Chapter 6.

5.1 Tiling space with Kuhn cubes

As discussed in Section 4.2.1, one of the interesting properties of the Kuhn subdivision

K(h) of a hypercube h is that it provides a Kuhn subdivision to the faces of h (Theo-

rem 4.2.1). Furthermore, opposite faces of K(h) are compatibly decomposed, so a regu-

larly sampled domain can be tiled by Kuhn-subdivided cubes [100,182] (see triangulations

94

in Figure 5.3).

When a hyper-rectangular domain is tiled by Kuhn cubes using only translation, this

tiling is referred to as Freudenthal’s triangulation [182] and is typically denoted as K1

(see Figure 5.1a). Alternatively, the Tucker-Whitney triangulation [187, 206], typically

denoted as J1, is obtained over the same grid by reflecting adjacent Kuhn cubes across

cube facets. Due to the reflectional symmetry, J1 can be viewed as a tiling of an integer

lattice by clusters of 2d oriented Kuhn-cubes, which define the fully subdivided hypercubes

F (see Figures 5.1b and 5.2 for examples in 2D and 3D).

Given a Kuhn-subdivision K(Ω) of a hypercubic domain Ω, Freudenthal’s triangu-

lation [15, 56], generates K1 by applying regular refinement to its simplices (blue arrows

in Figure 5.3). Alternatively, this decomposition can be obtained by applying Kuhn’s

subdivision to the leaves of a complete 2d-tree (red arrows in Figure 5.3). Since K1 is

generated using regular refinement of hypercubes or of simplices these meshes are referred

to as triangle quadtrees in 2D [104], tetrahedral octrees in 3D and generally as simplicial

2d-trees [130].∗ K1 is therefore the canonical decomposition for red/green refinement

meshes.

In contrast, the Tucker-Whitney triangulation J1 can be obtained by applying RSB

operations (a multiple of d times) to all elements of K(Ω) [124] (green arrows in Fig-

ure 5.3), or by reflecting the Kuhn-triangulations in facet-adjacent hypercubes (red arrows

in Figure 5.3). Thus, J1 is the canonical decomposition for RSB meshes.

Properties of fully subdivided hypercubes. Let us consider the number of edges in a

fully subdivided hypercube F (h) of dimension d. Recall that the number of i-faces of

a d-cube is
(

d
i

)
2d−i. The subdivision F (hi) of each i-face hi ⊆ h induced by F (h) has 3i

vertices, and there is an edge from the midpoint of F (hi) to each of the 3i − 1 vertices on

its boundary (see Figures 4.5c and 4.6d). Since each of these edges is internal to hi, and

∗Actually, Moore and Warren [130] refer to the d-dimensional variant as a simplicial quadtree.

95

not to any other face of h, we can count all of the unique edges within F (h) as:

d∑
i=0

(
d
i

)
2d−i(3i − 1) =

d∑
i=0

(
d
i

)
2d−i · 3i −

d∑
i=0

(
d
i

)
2d−i

= 5d − 3d.

(5.1)

The latter equality follows from the binomial theorem (see Appendix C).

Thus, there are 5d − 3d edges in a fully subdivided d-cube.

5.2 Supercubes

Although fully-subdivided cubes are the underlying symmetry unit within RSB hierarchies,

and tile each level of resolution of J1, we observe that simplices on their boundaries can

be incident to several fully-subdivided cubes. We therefore introduce the supercube as a

high-level primitive for RSB hierarchies.

Supercubes provide a unique mapping from each element within the hierarchy to

a single entity through the use of the half-open interval convention [165]. That is, each

supercube is associated with the simplices at a given level of resolution within the RSB

hierarchy that are within its domain or that coincide with its lower boundaries but not those

that coincide with its upper boundaries. For example, we consider any edge of a fully

subdivided cube F whose endpoints are both on an upper boundary of F , to belong to a

neighboring supercube. Figure 5.5b illustrates the edges that remain in two-dimensional

and three-dimensional supercubes after applying the half-open interval convention to

their corresponding fully subdivided cubes. Solid lines indicate edges that remain in the

supercube, and dashed lines indicate the edges whose endpoints both lie on an upper

boundary of the supercube, and are thus indexed by a neighboring supercube. Figure 5.4

illustrates supercubes covering the same domain at three levels of resolution. Note that

each edge is only associated with a single supercube.

Entities within the hierarchy that are not simplices can be associated with supercubes

96

K₁ tilingHypercube lattice

Level 0

Level 1

Level 2

Level 3

J₁ tiling

Figure 5.3: Relationship between regular refinement of hypercubes, the Freudenthal triangulation
K1 and the Tucker-Whitney triangulation J1. Regular refinement of hypercubes produces a regular
hypercubic lattice, i.e. a complete quadtree, octree or 2d tree (gray arrows). A complete 2d-tree can
be triangulated through a Kuhn-subdivision of its leaves (red arrows). Tiling by translation across
hypercube facets produces the Freudenthal triangulation K1, while tiling by reflection across facets
produces the Tucker-Whitney triangulation J1. Applying regular refinement to each simplex in K1
at level ` produces K1 at level ` + 1 (blue arrows). Alternatively, applying d steps of RSB to each
simplex in K1 or J1 at level ` produces J1 at level ` + 1 (green arrows).

97

(a) Level ` (b) Level ` + 1 (c) Level ` + 2

Figure 5.4: Supercubes (in 2D) are structured sets of edges tiling each level of resolution within
an RSB hierarchy. Three consecutive levels of resolution covering the same domain are shown,
containing 1, 4 and 16 supercubes, respectively. Dashed edges are excluded due to the half-open
interval rule.

through a representative proxy simplex. For example, due to the one-to-one correspon-

dence between diamonds and their spines, a diamond can be associated with the same

supercube as its spine.

Let the origin of a hypercube h be the vertex of h that is at its lower interval in all

dimensions. For example, on the unit cube, the origin is the vertex 0d, and its opposite

vertex along a diagonal is 1d.

We first consider the number of i-faces of h that remain when utilizing the half-open

interval convention. We do so through a mapping of h to the unit cube, where the origin is

mapped to 0d and its opposite vertex is mapped to 1d. Then an i-face of h that is incident

to the origin will have a diagonal along i of the d coordinate axes, but not the remaining

(d − i) coordinate axes, i.e. its opposite vertex will have i coordinates at position 1 and

(d − i) coordinates at position 0 along its axis. The number of i-faces within the half-open

interval is thus
(

d
i

)
, which leaves a total of

∑(
d
i

)
= 2d faces of the original 3d faces re-

maining after applying the half-open interval convention. Note that each such face can be

mapped to a vertex of h defined by the unique diagonal from the origin to this vertex (see

Figure 5.5).

Number of edges. We are now able to determine the number of edges in a supercube s as

98

(a) Faces of a half-open d-cube

(b) Edges of a supercube

Figure 5.5: (a) A half-open d-cube retains the
(
d
i

)
i-faces incident to its origin. In particular it has

a single d-face (red) and a single vertex corresponding to its origin (white). (b) Each i-face of a
half-open cube contributes its 3i − 1 internal edges to a supercube.

(a) Cube diagonals (b) Face diagonals (c) Cube edges

Figure 5.6: Edges of a three-dimensional supercube s that remain after applying the half-open
interval to its corresponding fully subdivided cube. The edge colors highlight the 2d copies of

(
d
i

)
types of i-diamonds within s. (a) Eight edges aligned with a cube diagonal. (b) Eight groups of
three edges aligned with a face diagonal of a cube. (b) Eight groups of three edges aligned with an
edge of a cube.

99

the number of edges in a fully subdivided cube F that remain after applying the half-open

interval condition. Since the number of i-faces is
(

d
i

)
, and each i-face contributes (3i − 1)

edges, there are a total of

d∑
i=0

(
d
i

)
(3i − 1) =

d∑
i=0

(
d
i

)
3i −

d∑
i=0

(
d
i

)
= 4d − 2d

(5.2)

edges remaining in a supercube (see Figure 5.5b).†

Number of vertices. To determine the number of vertices in a supercube, we rearrange

the final term of Equation 5.2 as:

4d − 2d = 2d · (2d − 1)

= 2d ·

 d∑
i=0

(
d
i

)
− 1

= 2d ·

d∑
i=1

(
d
i

) (5.3)

which better highlights the geometry of a fully subdivided hypercube.‡ That is, a supercube

s is defined by 2d hypercubes, each locally satisfying the half-open interval convention.

The single face of each such such hypercube that does not correspond to an edge in s is

a vertex of s (i.e. a 0-face). So there are 2d vertices remaining, which correspond to the

origins of the 2d Kuhn cubes that comprise the supercube s.

However, these vertices do not uniquely correspond to a single supercube. Consider

the origin of a supercube at level `, as in Figure 5.4a. Then this point belongs to a

supercube at each successive level within the hierarchy (e.g. the lower left corners in

Figures 5.4(b) and (c)).

†This equality follows from the binomial theorem, see Appendix C.
‡The latter term is achieved by incorporating the −1 into the sum’s index using the identity

(
d
0

)
= 1.

100

(a) Reflection ir (b) Permutation ip (c) Descendant id

Figure 5.7: Each RSB simplex σ within a supercube (shown in 2D) is uniquely indexed by
the reflection number ir of its containing Kuhn cube Kσ (a), the permutation number ip of its
containing class 0 simplex σ0 within Kσ (b) and the descendant number id of σ from σ0 (c).

Instead of mapping vertices of the hierarchy to supercube vertices, we can use the

correspondence between edges in the hierarchy and their unique midpoints to uniquely

map the vertices. So, each supercube uniquely indexes 4d − 2d vertices of the hierarchy.

Number of simplices. Supercubes also provide a mapping to the d-simplices within the

hierarchy, as considered by Hebert in 2D [86] and 3D [85] and generalized to arbitrary

dimensions by Pascucci [145] and by Atalay and Mount [6] under the term subtree of

simplices.

Consider a d-simplex σ of class-i at depth m = (d · ` + i) in a d-dimensional RSB

hierarchy. Then we can index σ according to its containing Kuhn-cubeKσ at depth d · ` in

the hierarchy (see Figure 5.7a), its class-0 ancestor simplex σ0 withinKσ (see Figure 5.7b)

and a traversal of the local bintree from σ0 to σ (see Figure 5.7c).

Since its containing Kuhn cube Kσ is one of the 2d subcubes within a supercube s,

we refer to this as its reflection number ir ∈ [0, 2d). Its class-0 ancestor σ0 is one of the

d! class-0 simplices within Kσ, which we refer to as its permutation number ip ∈ [0, d!).

Finally, the bintree rooted at σ0 is a complete binary tree of depth d − 1. This provides

σ with a unique descendant number id ∈ [0, 2d − 1). Thus, a supercube uniquely indexes

2d · (2d − 1) · d! distinct RSB simplices.

101

Number of diamonds. The one-to-one correspondence between edges of an RSB hier-

archy and the spines of diamonds provides a unique association from each diamond to a

single supercube. Specifically, each supercube indexes 4d − 2d = 2d(2d − 1) diamonds.

Furthermore, we can break this down by diamond class to see how many copies

of each class of diamond are in a supercube. Recall that the spine of an i-diamond is

aligned with the diagonal of an axis-aligned (d − i)-cube, which is an i-face of a d-cube.

Returning to Equation 5.3, we see that there are
(

d
i

)
i-diamonds associated with each of

the 2d Kuhn-cubes within a supercube s (see Figure 5.6).§

Figure 5.8 illustrates the four 0-diamonds and twelve 1-diamonds that map to each

2D supercube. Note that the spines of the diamonds coincide with supercube edges and

that the midpoint of each edge coincides with the diamond’s central vertex. Similarly,

Figure 5.9 illustrates the eight 0-diamonds, twenty-four 1-diamonds and twenty-four 2-

diamonds that map to each 3D supercube. Observe that there are 2d copies of each of

the following (a) one 0-diamond in Figure 5.9a (blue, green, orange or red); (b) three 1-

diamonds in Figure 5.9b (orange, green and blue); and (c) three 2-diamonds in Figure 5.9b

(orange, green and blue).

By comparing the edges of a supercube (Figures 5.6) to its diamonds (Figures 5.8

and 5.9), we see that there is a directional bias to the alignment of diamond spines due to

the directional bias within reflected Kuhn-cubes. However, when considered at the level

of a supercube, the diamonds at the same relative positions are identical. We therefore

refer to a diamond at a particular location within a supercube as a unique diamond type,

of which there are 4d − 2d. Table 5.1 lists the number of i-diamonds in a d-dimensional

supercube, d ≤ 5.

Number of parents. We can also consider a mapping from the set of diamond parents to

§For this, we used the binomial identity
(

d
i

)
=

(
d

d−i

)
to change the meaning of the terms to i-diamonds

which correspond to the (d − i)-faces

102

Table 5.1: Number of i-diamonds in a d-dimensional supercube is
(
d
i

)
2d.

0 1 2 3 4 i Total

1 2 2
2 4 8 12
3 8 24 24 56
4 16 64 96 64 240
5 32 160 320 320 160 992

d
(

d
0

)
2d

(
d
1

)
2d

(
d
2

)
2d

(
d
3

)
2d

(
d
4

)
2d

(
d
i

)
2d 4d − 2d

(a) Twelve vertices (b) Four 0-diamonds (c) Eight 1-diamonds

Figure 5.8: A 2D supercube s contains four 0-diamonds (b) and eight 1-diamonds (c), whose
central vertices coincide with the midpoints of its twelve edges (a).

a supercube. For this, we can associate the set of parents of a given diamond to the edge of

the supercube corresponding to its spine. This is an especially interesting property due to

the one-to-one correspondences between parents of a diamond, arcs of the the dependency

graph and duets in the hierarchy.

Recall that a 0-diamond has d parents, and an i-diamond has 2i parents otherwise.

Then, by multiplying the number of diamond classes by the number of parents per dia-

103

(a) Eight 0-diamonds (b) Twenty-four 1-diamonds (c) Twenty-four 2-diamonds

Figure 5.9: A supercube in 3D is composed of eight 0-diamonds (a) twenty-four 1-diamonds (b)
and twenty-four 2-diamonds (c). Alternatively, it contains 2d copies of a single 0-diamond, three
1-diamonds and three 2-diamonds.

mond, we find the number of parents in a supercube to be:¶

2d · d + 2d
d−1∑
i=1

(
d
i

)
· 2i = 2d ·

d +

d−1∑
i=1

(
d
i

)
· 2i

= 2d ·

 d∑
i=0

(
d
i

)
· 2i − d

= 2d ·

(
2d · d − d

)
= 2d · (2d − 1) · d.

(5.4)

Since there are 2d · (2d − 1) diamonds in a supercube, the average number of parents per

diamond in a supercube is d.

5.3 Discussion

Supercubes capture the symmetry of the decomposition structure within the RSB hierar-

chy. In contrast to diamonds, which have d distinct similarity classes and different spine

orientations within each class, or to RSB simplices which also vary along the various

vertex permutations, all supercubes are identical up to translation and uniform scaling by

a factor or 2.
¶The inductive proof that

∑d
i=0

(
d
i

)
· 2i = 2dd is presented in Theorem C.2.1 of Appendix C.

104

This suggests the utility of supercubes as an algorithmic primitive for processing

RSB hierarchies and for reasoning about their relationships. When designing algorithms

for RSB hierarchies, we can guarantee that all possible cases are handled by accounting

for the distinct relationships within and between supercubes.

The supercube perspective of RSB hierarchies reinforces our analysis from Chap-

ter 4 of the relative complexities of the simplex-based and diamond-based approaches.

There are:

• 2d · (2d − 1) distinct diamond types (also, unique edges and vertices),

• 2d · (2d − 1) · d distinct parents of diamonds (also, unique parent-child duets), and

• 2d · (2d − 1) · d! distinct RSB simplices of order d.

Thus, for each of the 2d(2d − 1) diamond types in the hierarchy, there are an average of d!

RSB simplices and an average of d parents.

Similarly, supercubes provide a memory-less means of iterating through the ele-

ments in an RSB hierarchy, leading to streaming algorithms for RSB hierarchies. As can

be seen in the right column of Figure 5.3, the origins of supercubes form a hypercubic

lattice that tiles each level of resolution within the hierarchy. Since it is trivial to iterate

through a regular grid, all that remains is an efficient method of iterating through the

elements of a given supercube. We provide this in Chapter 6 by considering the edge mid-

points of a supercube as offsets from its origin. In contrast, previous approaches [21, 214]

process the entire hierarchy through a breadth-first traversal of the DAG, in which memory

is required for each element. Since the number of simplices double at each successive

depth in the hierarchy, this can become prohibitive after a few levels of resolution within

the hierarchy. We exploit these properties to generate the approximation errors of a mul-

tiresolution scalar field in Section 7.1.1, and in our GPU-based parallel framework for

multiresolution terrain processing [211].

105

Supercubes also provide a formal approach to processing collections of diamonds

that are ‘outside the cube,’ that is, the base domain is no longer restricted to a hypercube of

resolution (2N + 1)d. This is useful from a practical point of view, since many datasets of

interest are not hypercubic, and embedding the dataset in its smallest enclosing hypercube

can impose a significant amount of unused storage space. A similar type of decomposition

is used by Maubach [123] and by Tanaka et al. [180, 181], where a rectangular (or cuboid-

shaped) domain is initialized with Freudenthal’s K1 triangulation, and is converted into an

RSB decomposition after one level of refinement (as in the arrows leading from K1 to J1

at the next level of resolution in Figure 5.3).

We explore the use of supercubes as a clustering primitive for coherent subsets of an

RSB hierarchy in Chapter 7 to encode closed subsets of the vertices of a multiresolution

scalar field as well as its extracted RSB meshes. This is useful in reducing the geometric

and sampling overhead when representing scalar fields that are oversampled and for scalar

fields in which values for some regions are not defined or are not available. This can also

be useful in dynamic datasets in which we would like to be able to locally increase the

resolution without requiring the entire field to have uniform high resolution.

Finally, the supercube can be viewed as an intermediate primitive between spatial

decompositions based on nested hypercubes, such as 2d-trees, and those based on nested

RSB hierarchies. Compared to 2d-trees, where each subdivision adds 2d cubes to a mesh,

RSB hierarchies provide significantly more adaptivity by spreading this growth over the

course of d refinements. The 2d children of a 2d-tree node can be seen as corresponding

to the 2d 0-diamonds of a supercube σ covering the same domain as a 0-diamond one

level higher in the hierarchy, while the intermediary i-diamonds in a supercube enable the

increased adaptability achieved by RSB hierarchies compared to 2d-trees. In Chapter 10,

we exploit the connection between hypercubes and 0-diamonds to define a multiresolution

model over hypercubes generated by regular refinement defining a dependency relation for

balanced hypercubic refinement. We also propose a supercube-based pointerless encoding

106

for nested hypercubic meshes extracted from a balanced 2d-tree.

107

Chapter 6

Encoding diamond hierarchies

In this chapter, we introduce a novel interpretation of the binary representation of a di-

amond’s central vertex, vc in terms of three components: its scale, encoding its level of

resolution in the hierarchy; its embedding supercube at this level of resolution; and its dia-

mond type, encoding its class and position within its embedding supercube. This provides

all the required information to compute the local mesh topology of a d-dimensional dia-

mond, including the location of its vertices and simplices, as well as the central vertices of

its parents and children in terms of scaled offsets from vc. This leads to the development

of an efficient pointerless representation for d-dimensional hierarchies of diamonds as

well as for simplicial complexes extracted from such hierarchies. This encoding is derived

from the diamond decomposition of Chapter 4 as well as the analysis of supercubes from

Chapter 5.

A key distinction needs to be made between a hierarchy of diamonds ∆, which is a

multiresolution model over the domain induced by the diamond dependency relation and

is encoded as a DAG of diamonds, and a conforming variable resolution RSB mesh Σ

that we extract from ∆, which corresponds to a cut of the arcs of the DAG, separating the

modifications that have been applied from those that have not.

In the following, we assume that a d-dimensional hierarchy of diamonds ∆ covers

a regularly sampled hypercubic domain Ω containing (2N + 1)d samples, where N is

the maximum level of resolution LevelMax and vertices of diamonds in ∆ have integer

coordinates in the range [0, 2N].

Due to the one-to-one correspondence between diamonds and grid points, a diamond

δ ∈ ∆ is uniquely defined by its spine ψ, or alternatively, by its central vertex vc, the unique

108

midpoint of ψ.

We first provide our implicit encoding for diamonds in Sections 6.1– 6.1.4, and

illustrate this encoding through an example in Section 6.1.5. We then discuss how we

encode supercubes and collections of supercubes in Section 6.2. In Section 6.3, we discuss

simplex-based, diamond-based and supercube-based encodings for nested RSB meshes.

6.1 Encoding diamonds

The regularity of the vertex distribution in ∆ and the subdivision operation, enables us to

derive all geometric and hierarchical relationships of a diamond δ directly from the binary

representation of the coordinates (x1, x2, . . . , xd) of its central vertex vc.

Let

vc =

x1 = x1
1 x2

1 . . . xm
1 τ1

1 τ
2
1 00 . . . 0

x2 = x1
2 x2

2 . . . xm
2 τ1

2 τ
2
2 00 . . . 0

...

xd = x1
d x2

d . . . xm
d︸ ︷︷ ︸

s

τ1
d τ

2
d︸︷︷︸

τττ

00 . . . 0︸ ︷︷ ︸
γ

T

(6.1)

be the binary representation of vc. Our encoding depends on three quantities which can

be efficiently extracted from the binary representation of the central vertex of a diamond

through bit shifting operations: the scale γ, the type τ and the supercube origin s of δ.

6.1.1 Diamond scale

Let Trailing(xi) denote the number of trailing zeros in the binary representation of a

coordinate xi of vc. Then, the minimum of the number of trailing zeros among each of the

d coordinates of vc encodes the scale γ of δ, e.g.

γ = min
i≤d

(Trailing(xi)).

109

Then, for a diamond δ at scale γ, the rightmost γ bits in any coordinate of vc are zero, but

at least one of the bits in position γ + 1 (e.g. τ2) is nonzero.

Recall from Section 4.4 that the depth of an i-diamond δ is the length of a path

from the root diamond to δ in the dependency graph of ∆, i.e. the number of subdivisions

required to obtain δ. The level of an i-diamond δ is the number of i-diamonds above δ

along any path to the root diamond. Since the class of a diamond cycles with every d

subdivisions, its depth is thus Level(δ) ∗ d + i.

The level and scale are related through LevelMax as

Level(δ) = LevelMax − γ.

6.1.2 Diamond type

The two bits at position γ + 1 and γ + 2 of each coordinate xi, which we denote as τ2
i and

τ1
i , respectively, uniquely encode the type τ of δ. Since vertices in ∆ have d coordinates,

and τ has two bits for each coordinate, there are (22)d = 4d possible values for τ. However,

the definition of γ precludes the 2d cases where all bits of τ2 are zero. This gives us the

4d − 2d diamond types of Section 5.2.

The similarity class of δ is encoded within τ as the number of zeros in position τ2,

e.g. an i-diamond has (d − i) nonzero bits at this position, and there are
(

d
i

)
variations in

this encoding. Since there is no similar restriction on the bits in position τ1, we have 2d

possibilities for τ1, corresponding to the 2d subcubes within its embedding supercube, for

the total
(

d
i

)
2d distinct types of i-diamonds.

We can now interpret the diamond types 4d − 2d in terms of midpoints of edges

of the supercube as defining a local grid of 4d points, where each of the d coordinates

indexes into this grid using two bits (with four values). Furthermore, the 2d vertices of the

supercube (i.e. where all τ2 bits are zero) are not valid midpoints of edges on this grid (see

Figure 6.1).

110

The oriented direction of δ’s spine ψ can be computed from τ using the following

encoding. First, initialize a sign variable sgn to +1. Component ui of the direction vector

~u is then:

ui =

1, if τ1
i = 0 and τ2

i = 1

−1, if τ1
i = 1 and τ2

i = 1

0, if τ1
i = 0 and τ2

i = 0

0, if τ1
i = 1 and τ2

i = 0.

(6.2)

In the fourth case, where τ1
i = 1 and τ2

i = 0, we multiply the sign sgn by −1. This

global negation corresponds to a reflection across the median plane of s corresponding to

coordinate axis i.

The orientation of spine ψ is then:

orient(ψ) = sgn ∗ ~u. (6.3)

Note that Equation 6.3 maps diamond types into axis aligned vectors with 3d − 1

possible values (~ui ∈ {−1, 0,+1}, but ~u , 0d), and relates our diamond type to the oriented

spine direction of Gregorski et al. [76].

6.1.3 Supercube origin

The final m = N − (γ + 2) bits in each of the coordinates of vc encode the origin of the

supercube s containing δ. Since there are no restrictions on the values of these bits, the

origins of supercubes at a fixed level of resolution ` = m + 2 are points on a regular

d-dimensional grid that has been scaled by a factor of 2γ+2.

The encoding of Equation (6.1) provides an alternate interpretation for the diamond

type τ as the scaled offset of its central vertex vc from its containing supercube’s origin

(see Figure 6.1), i.e.

vc = s · 2γ+2 + τ · 2γ. (6.4)

111

00
00

01

10

11

01 10 11

(a) Supercube diamonds

00

10

11

(b) Diamond as offset

Figure 6.1: A diamond’s spine coincides with an edge (solid lines) of a single supercube (a).
Alternatively, a diamond’s central vertex lies at the midpoint of a supercube edge (b). The midpoints
of edges of a supercube implicitly define a local grid of 4d locations (indexed by two bits), of which
its 2d vertices are not the midpoints of edges.

Since the type τ of a diamond δ is determined by the supercube edge with which its

spine coincides, each supercube can be seen as containing a single copy of each unique

type of diamond within the hierarchy.

6.1.4 Diamond components

The geometric and hierarchical components of a diamond δ such as the location of its

vertices and of the central vertex of its parent and children diamonds can be calculated as

scaled offsets from its central vertex vc. These offsets are scaled d-dimensional vectors

~g = 2γ · ~f such that fi ∈ {−1, 0, 1} and γ is the scale of δ. Specifically, a component of

diamond δ, at scale γ, whose center is p and whose unscaled offset from vc is ~f can be

computed as:

p = vc + 2γ · ~f . (6.5)

These offsets can be derived directly from the type τ and the scaleσ of δ using the diamond

decomposition from Theorem 4.5.1 or can be precomputed and accessed at runtime from

a lookup table.

112

6.1.4.1 Kuhn-subdivided component

Since the class i of δ is encoded in the number of zeros in the rightmost bits of τ, the

subspace of Rd spanned by the Kuhn subdivided (d− i)-cubeK(hk) is defined by the (d− i)

coordinates of τ2 with value τ2
j = 1.

Specifically, δ’s spine ψ = (v0, vk) can be calculated using the oriented spine di-

rection ~u. That is, v0 has offset vector ~f = −~u and vk has offset vector ~f = ~u. Their

coordinates can be obtained by plugging ~f into Equation 6.5. The remaining vertices and

cells can be found through an affine mapping to the canonical subdivision of Section 4.2.1,

or, if d is reasonably small, through precomputed lookup tables.

Since the 2 · (d − i) children of δ have central vertices that coincide with the facets

of hk (for i < (d − 1)), offsets from vc to their central vertices can be computed as ~f = ±e j,

in all coordinates that τ2
j = 1. When i = (d − 1), the 2d children of δ are at offsets

~f = (±1,±1, . . . ,±1), and at scale γ − 1.

6.1.4.2 Fully-subdivided component

The i-dimensional subspace spanned by BF(hi) is along the coordinates in which τ2
j = 0.

Consequently, for i > 0, offsets to the parents of δ are ~f = ±e j, in all coordinates that

τ2
j = 0. For i = 0, we can use the oriented spine direction to find vertices v0 and vd of

the spine. Then, as in Section 4.5, v = vd − v0 and the central vertices of a diamond’s d

parents are located at offset ~f = −u + v · e j.

Since the vertices and d-simplices of BF(hi) are defined along all directions spanned

by hi, they can be found by incrementally traversing in a direction within hi orthogonal to

the directions that have already been traversed. That is, since the ancestor of a diamond

at the center of an i-cube of BF(hi) is the center of one of its facets, the traversal is only

along a single dimension.

113

6.1.5 Example

Consider the two dimensional diamond δ whose central vertex vc has coordinates (72, 20).

Using Equation (6.1) on the binary representation of vc, we can determine its scale γ, its

type τ, and its supercube origin s as follows:

vc =

 72

20

 =

 100 10 002

001 01 002

 =

 100 10 00

001︸︷︷︸
s

01︸︷︷︸
τττ

00︸︷︷︸
γ

 .

Thus, γ = 2, τ = (102, 012) = (2, 1) and s = (1002, 0012) = (4, 1). Since only one of

the bits in τ2 is zero, δ is a 1-diamond. Also, we can scale s to obtain the location of its

supercube’s origin within the grid as (4, 1) · 24 = (64, 16)

The vertices of δ’s spine ψ = (v0, vk) can be determined using Equation (6.2) as

~u = (0,−1). This vector points down the y-axis, thus, we can find the coordinates of

its spine vertices v0 and vk by subtracting, and adding, respectively, the scaled spine

orientation vector ~u to vc:

v0 = vc − 2γ · ~u = (72, 20) − 4 · (0,−1)) = (72, 24).

By adding the scaled offset ~u to vc, we obtain, vk = (72, 16).

Since δ is a 1-diamond, both its Kuhn and fully-subdivided components are 1-

dimensional. From the rightmost bits of τ, we can determine that its Kuhn component hk

is aligned with the y axis and its fully-subdivided component is aligned with the x axis

(see Figure 6.2). Thus, for example, we can use Equation (6.5) to find the central vertex

of its parent δp (in the negative x direction) at unscaled offset ~f = (−1, 0). We first scale ~f

by 2γ and then add the result to vc, so

vc(δp) = (72, 20) + 22 × (−1, 0) = (68, 20).

114

(-4,0)(-4,0)(-4,0)(-4,0)(-4,0)(-4,0) (4,0)(4,0)(4,0)(4,0)(4,0)(4,0)
(72,20)(72,20)

Figure 6.2: The vertices, parents and children of a diamond δ are located at scaled offsets from its
central vertex. These offsets are computed from the type τ and scale γ of δ. Here, the parents of a
diamond with central vertex (72,20) are located four units away on the x-axis.

Figure 4.16 illustrates the components of all diamond classes up to dimension d = 4.

Each cell corresponds to a diamond δ of class i (columns) in dimension d (rows). The top

hypercube in each cell is a Kuhn subdivided (d − i)-cube containing the oriented spine,

whose vertices are colored black and gray, respectively, and the children, whose central

vertices (blue) are located at the center of its facets, at an offset ~f = ±e j, in all coordinates

that τ2
j = 1. The bottom hypercube in each cell is the boundary of a fully subdivided

i-cube. The central vertices of the parents (red) of δ are located at the center of its facets

at offset ~f = ±e j, in all coordinates that τ2
j = 0. The two hypercubes intersect at their

midpoints.

6.1.6 Domain corners

Although they are not diamonds, we can apply Equation (6.1) to the 2d corner vertices

of the domain boundary. The lower left corner maps to a supercube with coordinates

0d whose scale is determined by the number of bits used by the machine to represent

coordinates (e.g. 32 for 4 byte integers). The remaining 2d − 1 corners map to a supercube

at location (0, 0) at a scale of LevelMax + 1.

115

6.2 Encoding supercubes

Since one of the primary applications of supercubes is to efficiently encode information

about a subset of the entities of an RSB hierarchy, supercubes require some form of

bookkeeping to index their encoded entities.

For example, when encoding a supercube’s diamonds, edges or vertices (edge mid-

points), a simple approach would be to encode this data as an array with one entry for

each of the 4d − 2d possible entities in the supercube. The data associated with each

entity can then be indexed by its type τ, and unencoded entities can be marked in place as

missing. However, this can waste a considerable amount of storage for supercubes with

many unencoded entities. We refer to this approach as array-based supercube indexing.

On the other extreme, if we expect a low occupancy rate, we can use a map data

structure (a tree or a hash map) to index the encoded entities. This requires lg(
⌈
4d − 2d

⌉
) ≈

2 · d bits of indexing data per encoded entity. We refer to this approach as map-based

supercube indexing.

A more efficient approach for static representations in relatively low dimensional

domains, in which we expect a moderate number of entities to be encoded can be obtained

by indexing the encoded entities using a bitflag of 4d − 2d bits (e.g. 2 bytes in 2D, 7 bytes

in 3D) along with a corresponding array with storage only for the encoded entities. The

data associated with a entities with associated type τ can then be indexed in the array

by the prefix sum of τ’s position in the bitflag, i.e. since each set bit for positions before

τ in the bitflag correspond to occupied locations, and each unset bit corresponds to an

unoccupied location, the position of τ’s data is in the position corresponding to its prefix

sum in the bitflag. Since prefix sum computations can be performed efficiently in hardware,

the processing overhead of this representation compared to that of the simpler encoding

above is negligible. Each supercube in this representation incurs a fixed storage overhead,

regardless of the number of entities encoded. Thus, the overhead of this representation is

reduced as the average number of encoded entities per supercube increases. We refer to

116

this approach as bitflag-based supercube indexing.

Since this bitflag representation requires a reorganization of the array data every

time a diamond is added or removed, we typically use the array representation during the

dynamic operations (such as initial generation), and convert to the bitflag representation

when the values become static.

6.2.1 Encoding collections of supercubes

We observe that within a given level of resolution `, supercubes can be uniquely indexed

by their origin. However, supercubes from different levels can map to the same origin (see

Figure 5.4).

We propose a two step access structure, where supercubes are first indexed by their

level of resolution, and then by their origin. This also enables the level ` of a supercube to

be implicitly encoded within the access structure.

The encoded supercubes at a given level of resolution ` belong to a uniform grid

that has been scaled by a factor of 2γ+2. Thus, depending on the data distribution, we have

several options for access structures to the supercubes. When the majority of the data

within a given level is present, the supercubes can be indexed using a full array. However,

most of the time, this will not be the case, and we can organize the supercubes into an

auxiliary data structure, such as a B-tree (for efficient out-of-core access) or a hash table

(for O(1) in-core access).

Thus, the data associated with a diamond δ (or its spine ψ or midpoint vc) with

supercube origin s, type τ and scale γ can be accessed in three steps. First, the set of

supercubes at level ` = N − (γ + 2) is located. Next, the supercube s within this set is

found. Finally, the data at location τ within s is found using the internal map of s.

117

6.3 Encoding RSB meshes

Recall from Section 4.6 that variable-resolution simplicial meshes (not necessarily con-

forming) are extracted from an RSB hierarchy using an adaptive refinement process, while

variable-resolution simplicial complexes are extracted from an RSB hierarchy in a se-

lective refinement process. The former corresponds to a closed set of refinements with

respect to the simplex bisection operation, while the latter corresponds to a closed set of

refinements with respect to the diamond dependency relation. In either event, the current

RSB mesh Σ corresponds to the active front of the query that is closed with respect to the

given relation.

To ensure that extracted meshes do not contain cracks, selective refinement requires

all of a diamond δ’s simplices to be present in the current mesh before δ can subdivide, i.e.

delta must be complete. Although, in the worst case, this requirement can trigger subdivi-

sions recursively up to the root of the hierarchy, the cost of such non-local subdivisions is

amortized over the set of elements in the local neighborhood. Consequently, an efficient

implementation of selective refinement requires fast access to the simplices or diamonds

in the active front as well as their ancestors and descendants.

Below, we first describe the pointerless simplex-based representations for RSB

meshes. We then introduce our pointerless diamond-based approach, and finally, our

pointerless supercube-based approach for diamond meshes.

6.3.1 Simplex-based representation

Pointerless encodings for a simplex-based simplicial complex Σσ extracted from a forest

of simplices typically use location codes to index the encoded simplices, but vary in their

adaptation of 2d-tree location codes [59, 60, 165, 168] to nested RSB meshes.

The bintree location code [54,102,103] for a simplex σ at depth m is encoded as the

index ip ∈ [0, d!) of the bintree containing σ followed by an m-bit binary string indicating

the traversal path from the root of bintree ip to σ. Each such simplex can be indexed using

118

(m +
⌈
lg(d!)

⌉
) bits. Note that, in this encoding, the vertices of a simplex are not stored, and

can be determined from those of its bintree root in O(m) time by descending the tree.

Alternatively, the subtree location codes [6, 85, 86, 145] are based on the simplex

encoding scheme for supercubes outlined in Section 5.2 (see Figure 5.7). A simplex σ at

depth m = d ·`+i requires an encoding for its reflection number ir ∈ [0, 2d), its permutation

number ip ∈ [0, d!) and its descendant number id ∈ [0, 2d − 1), in addition to the path in

the 2d-tree to its containing supercube, requiring `σ = O(d · `) bits. The subtree location

code for an RSB simplex σ at level ` can be encoded using (d · ` + d · 2 +
⌈
lg(d!)

⌉
) bits

per simplex in the mesh,

By substituting the level ` and class i for the depth m of the simplex, i.e. m = d · `+ i,

we observe that both types of location codes have the same complexity O(d · ` +
⌈
lg(d!)

⌉
).

Furthermore, by substituting the maximum level of resolution N for `, and using the

identity lg(n!) = Θ(n lg n) [33], we can determine the space complexity of simplex-based

location codes to be O(dN + d lg d) bits.

Additional information can also be required for efficient (i.e. constant time) neighbor

finding. For example, in [102, 103], an additional 1 byte neighbor mask is required to

efficiently determine the appropriate bisection-edge neighbors of a simplex.

An advantage of subtree location codes over bintree location codes is that the ver-

tices of a simplex can be directly computed without requiring a tree traversal [6, 85].

Besides the storage savings achieved by diamond-based encodings, the simplex-

based encodings cannot efficiently cache the status of its subdivided neighbors, and thus

each simplex bisection necessarily requires O(d!) neighbor-finding operations before its

O(d!) bisections.

6.3.2 Diamond-based representation

The encoding presented in Section 6.1 leads to an efficient pointerless representation for a

diamond-based simplicial complex Σd extracted from a hierarchy of diamonds. Σd can be

119

encoded as a collection of diamonds, each of which contains a set of d-simplices, such that,

the collection of simplices from all diamonds in Σd forms a simplicial complex covering

the domain Ω. Since we can reconstruct the location of all vertices, simplices, parents and

children of a diamond δ from the coordinates of its central vertex, each diamond can be

entirely indexed by the d coordinates of its central vertex. Thus, encoding the coordinates

of a diamond’s central vertex in a hierarchy with maximum level of resolution N, requires

d · N bits.

In general, not all d-simplices of a diamond will belong to the complex Σ (see

Figure 6.3a, where, e.g., the blue diamonds contain only one of their two triangles). Thus,

each diamond δ requires some bookkeeping to track the set of its d-simplices belonging

to the complex Σd. However, as observed in Section 4.4.3, a diamond’s d-simplices are

generated concurrently during the during the subdivision of a single parent of δ as a

parent-child duet. Thus, a single bit is sufficient to track the presence or absence of each

parent-child duet within δ and, consequently, 2 · d bits are sufficient to track all O(d!)

d-simplices of diamond δ ∈ Σd.

An advantage of the correspondence between parents and duets is that, when a dia-

mond contains all of its duets, it is complete, and can refine. Thus, the O(d) bookkeeping

bits of a diamond simultaneously cache the subdivision status of each parent of δ. This

can be used to further accelerate diamond refinement since it can reduce the number of

required spatial accesses.

As a consequence, the cost of encoding diamonds in a diamond-based simplicial

complex scales linearly with respect to the dimension, even though the number of sim-

plices scales factorially with respect to the dimension.

The cost of encoding a diamond in this representation is: (d · N + d · 2) bits per

diamond in the mesh.

A straightforward representation for encoding an active front utilizes a hash table

of diamonds. Each diamond δ is indexed by its central vertex vc, and contains a set of

120

bitflags tracking its subdivided parents as well as any additional information that must be

encoded for the diamond.

In 2D, if each coordinate can be encoded in 15 bits, diamonds can be encoded using

4 bytes of overhead. In 3D, this representation requires 7 bytes of overhead for each

encoded diamond: 6 bytes for the coordinates of its central vertex and one additional byte

of bookkeeping.

(a) (b) (c)

Figure 6.3: (a) A portion of a conforming RSB mesh Σ (in 2D). (b) Highlighted triangles from Σ

map to triangles in the supercube s, while gray triangles map to other supercubes. (c) The set of
all triangles (tetrahedra in 3D) in a supercube overlap.

6.3.3 Supercube-based representation

We can encode an RSB mesh Σs generated by selective refinement in terms of supercubes

as well. There is a considerable amount of coherence among the simplices in Σ that a

simplex-based or diamond-based representation of an active front cannot exploit. Due to

the RSB rule, neighboring simplices in Σ can differ by at most one level of refinement, so

the presence in Σ of a simplex σ from diamond δ often indicates the presence of simplices

from neighboring diamonds in the hierarchy. We therefore propose a supercube-based

representation Σs for simplicial complexes extracted from a hierarchy of diamonds.

Since we are only considering the cost of encoding the presence or absence of

121

simplices in a conforming mesh, our encoding can use a bitflag-based supercube represen-

tation on the 2d(2d − 1)d supercube parents. In addition, we require d · N bits to encode

the origin of each supercube. Thus the cost of this representation is: d · N + 2d(2d − 1)d

bits per supercube in the active front.

Assuming that each coordinate requires 2 bytes, then in 2D, each supercube in Σs

requires 7 bytes: 3 bytes to represent the bitflags (e.g. 1 bit for each of the 24 possible

duets in the supercube) in addition to the 4 bytes for the coordinates of its origin.

Alternatively, in 3D, each supercube in Σ requires 27 bytes: 21 bytes to represent

the bitflags (e.g. 1 bit for each of the 168 possible duets in the supercube) in addition to

the 6 bytes for the coordinates of its origin.

Note, however, that when considered collectively, the duets in a supercube overlap

(see Figure 6.3c for an illustration in 2D), but simplices in a simplicial complex cannot

overlap. Due to the containment relation among the simplices in the hierarchy, the presence

of a simplex σ in Σ precludes the presence of its parent simplex as well as both of its

children simplices from Σ. Thus, in practice, a supercube in Σ contains significantly fewer

than the 2d(2d − 1)d possible duets (see Figure 6.3b, where the 2D supercube contains 7

of the 24 possible triangles).

122

Chapter 7

Diamond-based multiresolution scalar fields

One of the primary applications of diamond hierarchies has been as a multiresolution

model for scalar fields such as terrain and volumetric datasets defined at the vertices of a

regularly sampled rectilinear grid. We call this model a Diamond-based Multiresolution

Sscalar Field (DMSF).

7.1 DMSF Model

A hierarchy of diamonds is the basis for a multiresolution model of a scalar field. In the

case of a DMSF, the base mesh is a coarse RSB mesh and the modifications correspond

to the diamond subdivisions. Since each diamond has a one-to-one correspondence with

its central vertex, the vertices are ordered according to the dependency relation of a

hierarchy of diamonds ∆. Thus, the spatial decomposition and dependency relation of a

DMSF are obtained from the implicit relationships among the diamonds in ∆, and only

the modifications need to be explicitly encoded.

The minimal information encoded in a diamond δ is given by the scalar value F(vc),

associated with the central vertex vc of δ. In addition to encoding F(vc), it is often useful

to encode aggregate information about the field values within the domain of δ, which can

be used to accelerate mesh extraction. This typically includes an approximation error for

the diamond to guide the refinement, as well as the range of values within the domain of

δ. which can be used to cull irrelevant regions during field-based queries [208]. The field

gradient can also be maintained to accelerate visualization and analysis of the dataset. All

such information is associated with a diamond, or its central vertex, and thus a DMSF can

123

be efficiently encoded as a d-dimensional array indexed by vc.

7.1.1 Generating a DMSF

To generate the model, we need to find the approximation error for each diamond δ ∈ ∆.

The error ε(δ) associated with diamond δ encodes the maximum approximation

error for any point within the domain of δ, i.e.,

ε(δ) = Max
p∈δ

(ε(p)), (7.1)

where ε(p) =
∣∣∣F(p) − F̂(p)

∣∣∣ is the absolute difference between the field value at point p

and the approximated value obtained through barycentric interpolation of the field values

at the vertices of δ.

The points of a diamond δ can be efficiently enumerated using a recursive scheme

based on [122], where, in 3D, each tetrahedron is split into triangular slices that are aligned

with a coordinate plane, and each triangle is in turn sliced into axis aligned line segments.

The final component in generating a DMSF relates to enumerating the diamonds. A

straightforward approach is to perform a top-down breath first enumeration of the DAG.

However, this approach requires an amount of memory proportional to the number of

diamonds at the current level. Since this roughly doubles with each increasing subdivision

level, this method can exhaust the memory store or cause thrashing when processing

deeper levels of the hierarchy.

We use supercubes as an algorithmic primitive to directly enumerate all diamonds

on a level by level basis. Since the origins of supercubes at level ` of the hierarchy

coincide with the vertices of a scaled regular grid, these points can be easily generated

without incurring any memory overhead. Similarly, the diamonds within each supercube

can be enumerated using successive diamond types. Thus, this approach can be run on

the levels of the hierarchy in any order, i.e. top-down manner from the root of ∆, bottom-

124

up from the leaves of ∆, or in an arbitrary order. As such, this method admits highly

parallel implementations for processing each level of the hierarchy, as well as individual

supercubes, diamonds or simplices within those supercubes.

7.2 Full DMSF

A full DMSF, which we denote as ∆ f , contains diamonds corresponding to all vertices of a

scalar field of resolution (2N + 1)d. The base mesh of ∆ f is a single 0-diamond δ0 covering

the entire hypercubic domain Ω. The 2d corner points of Ω (i.e. the vertices of δ0) are the

only points within ∆ f that do not correspond to diamonds.

A full DMSF ∆ f can be encoded as a d-dimensional array whose entries represent

the information associated with each diamond and can be indexed using a C-style row

major ordering, or a more complicated indexing scheme such as a hierarchical space-filling

curve [76, 149].

Alternatively, ∆ f can be encoded by a supercube-based representation without in-

curring any storage overhead. Since all vertices of ∆ f are present, the internal map within

each supercube can be encoded in an array with 4d − 2d elements. Furthermore, since all

supercubes at each level of resolution are present, each level can be encoded as an array of

supercubes, indexed by their origin. The advantage of this representation is that diamonds

are clustered near their spatial and hierarchical neighbors. Thus, these coherent diamonds

can be loaded in the cache at the same time.

7.3 Partial DMSF

However, when some of the vertices of a full DMSF ∆ f are unavailable or irrelevant for an

intended application, a partial DMSF, which we denote as ∆p, can be much more efficient

to encode than ∆ f .

The base mesh of a partial DMSF ∆p is a coarse RSB mesh consisting of diamonds

from a corresponding hierarchy of diamonds ∆, whose vertices are tagged with values

125

from the scalar field F. The diamonds in ∆p are a subset of the diamonds of ∆ f subject to

the transitive closure constraint that if a diamond δ belongs to ∆p then all ancestors of δ

belong to ∆p as well. Finally, the dependency relation of ∆p is the dependency relation of

∆ restricted to the diamonds in ∆p.

Such sparse representations are important, for example, when not all the data in a

volume data set are available and instead of having a full grid, we have the data points

at a subset of the vertices of the domain, or when the portion of data of interest is small

compared to the full dataset, as, for instance, when only certain portions of the dataset are

available at a higher resolution. Furthermore, when the dataset is locally oversampled, e.g.,

samples covering a large body of water in a terrain dataset, we can accurately interpolate

these values from samples at a higher resolution. Figure 7.1 shows a zero approximation

error sparse representation of a 6000 × 4800 sample tile from the gtopo30 dataset [179].

For this dataset, a partial DMSF requires less than 1/6 of the original samples since

flat regions do not need to be subdivided to the highest resolution to obtain an accurate

approximation.

The main challenge in representing such sparse datasets relates to the efficient en-

coding of the coordinates of its diamonds. Whereas the coordinates of diamonds in a full

DMSF ∆ f can be implicitly determined e.g. by representing ∆ f as an array, such a repre-

sentation is impractical for a partial hierarchy ∆p where much of the data is non-existent

or redundant.

A straightforward representation for ∆p is to explicitly encode the d coordinates

of each diamond’s central vertex in addition to the scalar field data. We denote such a

diamond-based partial DMSF as ∆d.

However, due to the transitive closure constraint of the partial DMSF model, the en-

coded diamonds exhibit both a spatial and a hierarchical coherence which can be exploited

by clustering the diamonds into supercubes. We denote such a supercube-based partial

DMSF as ∆s. Since ∆p is static, and typically sparse with respect to a corresponding full

126

(a) GTOPO30 Tile (b) Partial DMSF

Figure 7.1: Terrains covering large flat regions such as oceans are oversampled by a regular grid
(a). A zero error sparse representation of this terrain (b) requires less than 1/6 of the samples from
the original dataset. Image (a) courtesy of USGS [179].

127

DMSF ∆ f we can represent the internal map within supercubes using the bitflag-based

encoding of Section 6.2. The supercubes at each level are indexed by the coordinates of

their origin.

7.4 Theoretical evaluation

In this section, we consider when it is appropriate to represent a DMSF using a partial

representation. We measure this in terms of the density of the dataset, i.e. the percentage

of samples from a full DMSF that are retained in the partial representation. Next, we

analyze when supercube-based representations of a partial DMSF are appropriate. For

this, we consider the concentration of the clustering, that is, the average number of dia-

monds encoded per supercube. A supercube-based representation for a partial hierarchy

of diamonds provides the maximum benefit when the desired dataset is sparse with respect

to the full dataset and concentrated with respect to the supercube clustering.

We begin by introducing some notation. Let ∆ f denote the full DMSF, containing

n f = (2N + 1)d diamonds and let ∆p denote the desired partial DMSF, containing np

diamonds. ∆p can be encoded using a diamond-based partial DMSF ∆d or a supercube-

based representation ∆s, whose np diamonds are clustered into ns supercubes. Finally, let

bδ denote the number of bytes required to encode the data associated with each diamond,

bv the number of bytes required to encode the coordinates of the central vertex of each

diamond and bs the number of bytes required to encode the indexing and bookkeeping

information associated with each supercube.

We compare the costs of these representations in Table 7.1 with respect to an ideal

representation ∆p, which only represents the np diamonds. This representation is not

practical since it has no way of indexing the encoded diamonds, but we use it to compare

the remaining representations. ∆ f must encode all n f samples but the indexing of its

elements is implicit. However, it encodes n f − np extraneous diamonds. In contrast, ∆d

encodes only the np diamonds but must also explicitly encode the spatial coordinates of

128

Table 7.1: Storage requirements and overhead, in bytes, for the full DMSF ∆ f containing n f sam-
ples and the partial DMSFs ∆p containing np samples – the diamond-based ∆d and the supercube-
based ∆s. Costs and overhead are with respect to the number of bytes required to encode the
coordinates of vertices (bv), the data associated with each sample (bδ), and for indexing and book-
keeping of supercubes (bs). Overhead is relative to the theoretically optimal ∆p.

DMSF Representation Storage cost Overhead

∆p np · bδ 0
∆ f n f · bδ (n f − np) · bδ
∆d np · bδ + np · bv np · bv

∆s np · bδ + ns · bs ns · bs

each diamond. Finally, the overhead in ∆s can be attributed entirely to the ns supercubes.

Using this notation, we define the density D = np/n f of the dataset as the ratio of

retained diamonds in ∆p compared to ∆ f . Also, we define the concentration C = np/ns of

the dataset as the average number of diamonds per supercube. We note that C ∈ [1, 4d−2d]

since we only encode supercubes that contain at least one diamond.

By rearranging the equations in Table 7.1 and substituting terms for D and C, we

can compare the representations.

The supercube-based partial DMSF ∆s is more compact than the full DMSF ∆ f

when

D <
bδ

bδ + (bs/C)
. (7.2)

The diamond-based partial DMSF ∆d is more compact than the full DMSF ∆ f when

D <
bδ

bδ + bv
. (7.3)

Finally, the supercube-based partial DMSF ∆s is more compact than the diamond-based

partial DMSF ∆d when

C > bs/bv. (7.4)

However, since all representations must encode the np diamonds, a more relevant measure

of the effectiveness of each representation is related to its overhead with respect to ∆p

129

Table 7.2: Comparison between a full DMSF ∆ f and a supercube-based partial DMSF ∆s in terms
of density D = np/nδ and supercube concentration C = nd/ns for our terrain DMSF model, where
bδ = 4, bv = 4 and bs = 6. Values indicate maximum density for which the cost of ∆s is less than
that of ∆ f .

C 1 2 3 4 5 6 7 8 9 10 11 12
4

(4+6/C) 40% 57% 67% 73% 77% 80% 82% 84% 86% 87% 88% 89%

(third column of Table 7.1). While ∆d has a constant overhead of bv bytes per diamond,

the overhead in ∆s is related to C as (bs/C) bytes per diamond.

As a first example, consider a terrain dataset where each elevation is encoded using

2 bytes and the approximation error is also encoded using 2 bytes. Then bδ = 4 bytes.

Also, assume that coordinates are encoded using unsigned shorts, so bv = 4 bytes. Finally,

let bs = 6 bytes consisting of: the origin of the supercube (4 bytes) and 2 bytes for the 12

bitflags to indicate encoded diamonds. Then, in terms of density and concentration, ∆s is

more compact than ∆ f and ∆d, respectively, when D < 4
(4+6/C) , and when C > 6/4 = 1.5.

Table 7.2 lists the maximum density D at which ∆s is more compact than ∆ f for integer

values of C.

For three-dimensional volumetric datasets, let the size of each refinement be bδ = 4

bytes as in [76]. Further, assume vertices are encoded in 6 bytes as three unsigned shorts,

then bv = 6 bytes. Finally, let bs = 17 bytes consisting of: the origin of the supercube

(6 bytes), bitflags to indicate the encoded diamonds (7 bytes) and a pointer to an array

containing the data (4 bytes). Then, in terms of density and concentration, ∆s is more

compact than ∆ f and ∆d, respectively, when D < 4
(4+17/C) , and when C > 17/6. The curves

in Figure 7.2 separate the half-spaces in which ∆s is more compact than ∆ f by the constant

to its right. For example, when C = 17 and D = .2, ∆ f requires four times as much space

to encode as ∆s.

130

1.5 x

1 x

2 x

3 x
4 x
5 x

10 x
20 x

100 x

D
en

si
ty

Concentration

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 6 11 16 21 26 31 36 41 46 51 56

Figure 7.2: Comparison between storage costs of a full DMSF ∆ f and a supercube-based partial
DMSF ∆s in terms of density D and concentration C for bδ = 4, bv = 6 and bs = 17. Curves
highlight the factor by which ∆s is more compact than ∆ f .

7.5 Applications

In this section, we discuss several applications in which it can be beneficial to generate a

partial DMSF ∆p from a full DMSF ∆ f .

7.5.1 Error-based generation

As a first application, consider a partial DMSF ∆p generated from a full DMSF ∆ f by

retaining all diamonds whose error is greater than a given threshold ε. When ε = 0, this

generates a lossless encoding of ∆ f , i.e. ∆ f can be reconstructed from ∆p without any

error.

Since ∆p is a partial DMSF, it must also retain all ancestors of the retained samples.

This ensures the transitive closure of the diamond dependency relation (as described in

Section 7.3).

Due to the transitive closure requirement, and the definition of the error metric there

is a high degree of hierarchical coherence in addition to the spatial coherence among

samples associated with a given supercube. Namely, if a diamond is required to satisfy

131

Table 7.3: Number of supercubes (ns) and diamonds (np) as well as disk size (in KB = 1024
Bytes or MB = 10242 Bytes) for supercube-based partial DMSFs extracted from full DMSF terrain
datasets with different uniform errors. Note that the values for Puget Sound 4k dataset for 0% error
are actually for 0.03% error rather than 0% error.

Dataset Dims
10% Error 1% Error 0.1% Error 0% Error

ns np size ns np size ns np size ns np size

San Bernadino 1282 222 867 4.7K 1.2K 8K 39K 1.4K 14K 63K 1.4K 16K 71 K
Devil’s Peak 165×301 275 1.5K 7.3K 2.8K 19K 89K 3.3K 32K 145K 3.3K 32K 145K

Grand Canyon 1280×640 3.5K 16K 83K 28K 172K 836K 62K 556K 2.5M 62K 556K 2.5M
Mt. Marcy 12012 1.3K 6K 32K 13K 68K 340K 63K 426K 2M 101K 939K 4.2M

Puget Sound 1k 10252 710 3.3K 17K 41K 219K 1.1M 82K 761K 3.4M 86K 1M 4.3M
Puget Sound 4k 40972 754 3.5K 18K 75K 354K 1.8M 880K 5.5M 26M 1.2M 9.7M 44M

Australia 4800×6000 18K 99K 490K 20.1K 110K 546K 50.1K 262K 1.3M 528K 4.78M 21M

a given selection criterion, it is likely that its neighbors, parents and children are also

necessary. The non-full supercubes are typically those that are close to the boundary of

the domain or those containing leaf nodes.

7.5.1.1 Terrain modeling

An important example in the field of GIS, is the use of a supercube-based partial DMSF

for terrain datasets. A partial DMSF provides a solution for a long-standing problem

of representing subsets of a regular grid. For example, elevation data for surfaces and

coastlines are required to be sampled at a high resolution, but regions covered by water

are considered to be flat and are often highly oversampled. This is especially relevant for

global datasets since approximately 70% of the earth’s surface is covered by water.

We performed our experiments on several regular datasets, including Digital Eleva-

tion Models (DEM)s of Mt. Marcy, the Grand Canyon, Devils Peak, San Bernardino, two

versions of the Puget Sound at different resolutions, and a tile of the gTopo30 covering

a portion of Australia (see Figure 7.1). Datasets whose dimensions are not (2N + 1)2

were embedded into the smallest containing virtual grid of dimensions (2N + 1)2. All

experiments were run on a 2 GHz Intel Core 2 Duo laptop with 4 GB of RAM.

Table 7.3 summarizes the sizes of partial DMSFs extracted from the dataset testbed

with a range of uniform errors.

132

4

5

6

7

8

9

10

11

12

10% 1% 0.1% 0.03% 0.01% 0%

San Bern

Devil's Peak

Grand Canyon

Marcy

Puget 1k

Puget 4k

Australia

Figure 7.3: Average density of supercubes (vertical axis) with uniform error (horizontal axis).
Derived from Table 7.3 as (nd/ns).

Figure 7.3 shows the average density of the various datasets from Table 7.3. As can

be seen from the table, when encoding a supercube-based partial DMSFs of uniform error

less than one percent, there are between 5 and 12 diamonds per supercube on average, and

for errors less than 0.1 percent, the average concentration is between 9 and 11 diamonds

for most datasets. Note also, that the average density of supercubes increases as the error

threshold decreases.

Since the overhead per supercube bs is 6 bytes, our supercube based partial DMSF

representation has an overhead of less than 1 byte per sample when the average super-

cube density is greater than 6, an approaches 0.5 bytes per vertex as the average density

approaches 12. Compared to the average of 3 Bytes of overhead per vertex in [66], our

method is 3-6 times more space efficient. Furthermore, the stack-based method of [66]

does not provide random access to its vertices and requires up to O(√np) extra storage in

memory.

7.5.1.2 Modeling volume data

Next, we consider the problem of modeling three-dimensional volume datasets. We gen-

erated lossless (ε = 0%) and lossy (ε = 1%) partial DMSFs from a testbed of volumetric

datasets of resolution up to 5123 from the Volume Visualization repository [189].

Table 7.4 lists the number of elements, and storage costs in a zero-error partial

133

Table 7.4: DMSFs generated based on uniform field error with ε = 0 from volumetric datasets
with maximum level of resolution N, containing (2N + 1)3 samples. File sizes for the full DMSF
(∆ f), the diamond-based partial DMSF (∆d) and the supercube-based partial DMSF (∆s) are listed
in MB (1 MB = 10242 B). The density (D = np/n f) values are in the range [0, 1] and concentration
(C = np/ns) values are in the range [1, 56]. All datasets are plotted on Figure 7.4 (red circles).

Dataset N n f np ns D C ∆ f ∆d ∆s ∆ f /∆s ∆s/∆p

Fuel 6 275 K 19.9 K 620 .07 32.2 1.05 .19 .09 12.2 x 1.10 x
Neghip 6 275 K 129 K 3.46 K .47 37.2 1.05 1.23 .55 1.91 x 1.09 x
Plasma 6 275 K 265 K 4.98 K .97 53.2 1.05 2.53 1.09 .96 x 1.06 x
Hydrogen 7 2.15 M 545 K 16.0 K .25 34.0 8.19 5.19 2.34 3.50 x 1.10 x
Buckyball 7 2.15 M 1.65 M 38.3 K .77 43.0 8.19 15.7 6.90 1.19 x 1.08 x
Aneurysm 8 17.0 M 791 K 44.6 K .05 17.7 64.8 7.54 3.74 17.3 x 1.18 x
Tooth 8 17.0 M 5.23 M 104 K .31 50.1 64.8 49.9 21.7 2.99 x 1.06 x
Engine 8 17.0 M 5.34 M 112 K .31 47.6 64.8 50.9 22.2 2.92 x 1.07 x
Head 8 17.0 M 5.47 M 139 K .32 39.4 64.8 52.1 23,1 2.80 x 1.08 x
Bonsai 8 17.0 M 5.00 M 147 K .29 34.1 64.8 47.7 21.5 3.02 x 1.10 x
Foot 8 17.0 M 5.90 M 151 K .35 39.2 64.8 56.3 25.0 2.59 x 1.08 x

DMSF ∆p for the various datasets as well as their density D and concentration C. These

datasets are plotted on Figure 7.4 for ε = 0% (red) and ε = 1% (orange). We observe

that some datasets, such as Fuel and Aneurysm are extremely sparse, and achieve a 12.2

times and 17.3 times reduction in storage requirements, respectively, compared to the full

DMSF dataset ∆ f . In contrast, other datasets such as Plasma and Buckyball are quite

dense, and thus, a partial representation does not yield a significant savings compared to

∆ f . However, even for these datasets, the size of ∆s is close to that of ∆ f (requiring 4%

more and 19% less space, respectively), whereas ∆d is much larger (requiring 2.4 times

and 1.9 times more space, respectively). Most of the remaining datasets achieve around

three times savings for ∆s compared to ∆ f (see penultimate column in Table 7.4).

Since bv (6 bytes) is 1.5 times as large as bδ (4 bytes), the overhead associated with

∆d compared to the ideal representation ∆p is 150%. In contrast, the overhead of ∆s (i.e.

∆s/∆p) is related to the concentration of the supercube clustering, and averages around

12% across all datasets. Thus, the 2.25 times savings achieved by ∆s compared to ∆d is

entirely due to the difference in geometric overhead.

134

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 6 11 16 21 26 31 36 41 46 51 56

D
en

si
ty

Concentration

> 1% Error
> 0 % Error

1.5 x

1 x

2 x

3 x
4 x
5 x

10 x
20 x

100 x

Figure 7.4: Density and concentration of partial DMSF datasets of Table 7.4 extracted from a
complete DMSF with uniform error greater than 0% (red) and 1% (orange). Gray curves indicate
the factor by which a supercube-based partial DMSF ∆s is more compact than a full DMSF ∆ f .

7.5.2 Range-based generation

Partial DMSFs can also be used to reduce the storage requirements and mesh extraction

times required for isosurface extraction when the (set of) isovalue(s) can be determined

in advance. In isosurfacing applications, the active cells, i.e. those that intersect the

isosurface, typically occupy a sparse but spatially widespread subset of the domain. Since

isosurfaces are continuous, there is a great deal of spatial and hierarchical coherence

among the active cells.

We can thus generate an isovalue-based partial DMSF ∆p from ∆ f , where all dia-

monds whose range intersects the predetermined isovalue(s) are retained, while those not

intersecting the isovalue(s) are only retained if they are ancestors of the required diamonds.

∆p can then be queried using selective refinement to extract adaptive simplicial complexes.

This model thus trades fidelity in regions away from the desired isosurface for storage

and extraction efficiency of the desired isosurface(s). We present results on volumetric

datasets, but since contour plots are a common metaphor in GIS, a range-based DMSF

consisting of samples pertaining to a series of significant isocontours can be a useful

135

representation as well.

Table 7.5 lists the number of elements and the storage requirements for the three

DMSF representations for each isovalue-based volumetric dataset (the values of N and n f

can be found in Table 7.4). The density and concentration of these datasets are plotted in

Figure 7.5. We observe that these extracted partial DMSFs are indeed sparse with respect

to ∆ f , averaging around 5% of the samples and often much less. They are also quite

concentrated with respect to the supercube clustering, with an average concentration of

26 out of a possible 56 diamonds per supercube. Thus, supercube-based partial DMSFs

of these datasets require an average of 25 times less storage than their corresponding full

DMSFs. In fact, the largest dataset Xmas{868} (orange square in Figure 7.5) requires only

1.3% of the samples of ∆ f and is over 65 times more compact.

As in the error-based partial DMSFs, the supercube-based encodings are approxi-

mately 2.3 times smaller than a corresponding diamond-based DMSF, and have very low

overhead (around 13%) compared to the ideal representation ∆p.

We note that, when more than one isovalue is desired (as in the set of Engine datasets

on the bottom of Table 7.5, and the corresponding colored rhombuses in Figure 7.5), there

is also a significant amount of coherence among the active cells of distant isovalues

(e.g. κ = 58 and κ = 170). Thus, the supercube-based representation for the Engine

dataset with two isovalues, Engine{58,100}, requires only 15% more storage space than

either of the individual datasets Engine{58} or Engine{100}, and has a higher concentration

than either of them. This advantage is increased in Engine{58,100,170} as the samples from

a third isovalue are added, where the density only increases by 3% and the supercube

concentration increases by 0.8.

7.5.3 Region Of Interest-based generation

Partial DMSFs are suitable for representing datasets extracted from a full DMSF using

arbitrary selective refinement criteria. These include polygonal regions such as squares and

136

0%

5%

10%

15%

20%

1 6 11 16 21 26 31 36 41 46 51 56

D
en

si
ty

Concentration

5 x

10 x

20 x

100 x

Figure 7.5: Density and concentration of partial DMSF datasets of Table 7.5 containing all dia-
monds intersected by the specified isovalue(s).

Table 7.5: DMSFs generated based on specific isovalue(s) for three dimensional datasets. File
sizes for the full DMSF (∆ f), the diamond-based partial DMSF (∆d) and the supercube-based
partial DMSF (∆s) are listed in MB (1 MB = 10242 B). All datasets are plotted on Figure 7.5.

Dataset{Isovalue(s)} np ns D C ∆ f ∆d ∆s ∆ f /∆s ∆s/∆p

Fuel{7.2} 15.7 K 608 .057 25.8 1.05 .15 .07 15.1 x 1.13 x
Neghip{868} 39.5 K 1.57 K .144 25.2 1.05 .38 .18 5.95 x 1.13 x
Hydrogen{24} 63.1 K 2.42 K .029 26.1 8.19 .60 .028 29.3 x 1.12 x
Bucky{128} 2.59 K 9.94 K .121 26.1 8.19 2.47 1.15 7.12 x 1.12 x
Aneurysm{128} 255 K 12.3 K .015 20.8 64.8 2.43 1.17 55.3 x 1.16 x
Tooth{650} 1.87 K 7.27 K .011 25.7 64.8 1.78 .83 78.1 x 1.13 x
Bonsai{35} 1.35 M 48.8 K .008 27.7 64.8 12.9 5.94 10.9 x 1.12 x
Foot{23.5} 3.14 M 92.3 K .185 34.0 64.8 30.0 13.5 4.80 x 1.10 x
Head{58} 749 K 29.7 K .044 25.2 64.8 7.14 3.34 19.4 x 1.13 x
Xmas{868} 1.74 M 69.3 K .013 25.1 515 16.6 7.76 66.4 x 1.13 x

Engine{58} 937 K 33.7 K .055 27.8 64.8 8.94 3.12 15.7 x 1.12 x
Engine{100} 937 K 33.7 K .055 27.8 64.8 8.94 4.12 15.7 x 1.12 x
Engine{58,100} 1.08 M 35.8 K .064 30.2 64.8 10.3 4.70 13.8 x 1.11 x
Engine{58,100,170} 1.13 M 36.5 K .067 31.0 64.8 10.8 4.90 13.2 x 1.10 x

137

circles (see Figure 7.6) as well as polylines. Additional error functions include distance

or view dependent criteria as well as samples relevant to specific contour lines or ranges

of contour lines within the datasets.

Figure 7.6: Circular region of interest (ROI) from Puget Sound 1k dataset. Values inside the ROI
have 0 error while those outside the ROI have an approximation error less than 10%. This partial
DMSF has 3600 supercubes with an average concentration of 10.3 diamonds per supercube.

7.5.4 Merging corresponding partial DMSFs

Another interesting means of generating partial DMSFs is to merge two existing partial

DMSFs, covering portions of the same domain and possibly at different resolutions. In

the latter case, corresponding samples do not necessarily map to the same coordinates, but

we assume that they correspond to the same regions of the domain.

We observe that the resolution of a dataset is a bottom-up distinction, that is, it is

determined by the minimum distance between samples. However, corresponding datasets

are aligned in a top-down rather than a bottom-up manner, i.e. their root diamonds cover

the same hypercubic domain. Thus, a reinterpretation of our supercube-based representa-

tion in a top-down manner would enable the alignment of datasets of different resolutions.

138

Since a diamond’s scale is a bottom-up characteristic and its level is a top-down charac-

teristic, this requires a method to represent supercubes by their level rather than by their

scale.

Recall that the supercube structure clusters together those diamonds whose coordi-

nates agree on all but two bits, i.e. the bits corresponding to their diamond type τ, and that

all the bits to the right of these bits are zero. Consequently, the origin of a supercube s at

scale γ has at least γ + 2 trailing zeros in each of its coordinates, and s can be unscaled by

shifting its coordinates to the right by γ+2 bits. Unscaled supercube origins at a particular

level are thus a subset of the points of a regular grid.

Since the scale of a supercube is a function of the level of its diamonds as well as

the resolution of the dataset, i.e. LevelMax, a supercube based partial DMSF can store the

unscaled coordinates of the origins of its supercubes and rescale them at runtime. Let p

be the scaled coordinates of a supercube at scale γ whose unscaled origin is located at

unscaled point s. Then the central vertex vc of a diamond with type τ can be calculated

as: vc = s · 2γ+2 + τ · 2γ. Note that since we are scaling by a multiple of 2, this operation

can be efficiently executed using hardware bitshift operations. Supercubes can then be

partitioned by either their level or their scale, corresponding to top-down or bottom-up

representations, respectively.

Thus, aligning two top-down supercube based DMSFs is accomplished by simply

setting the maximum level of the lower resolution dataset to that of the higher resolution

dataset. Specifically, let A and B be two DMSFs where dataset A has a resolution of

(2 + 1)d and dataset B has a resolution of (2k + 1)d, such that < k. Then LevelMax(A) is

 and LevelMax(B) is k. A top-down supercube based DMSF of dataset A can be aligned

with dataset B by simply increasing LevelMax(A) to k.

An advantage of this unscaled representation is that the dataset is no longer depen-

dent on the resolution of the original grid and can be dynamically rescaled. Furthermore,

this unscaled representation requires the same amount of storage as the scaled supercube

139

based DMSF representation. However, since this requires rescaling the supercubes at

runtime, the unscaled representation has a slight (but constant) computational overhead to

the scaled representation.

Example. As an example, consider a diamond in 2D with central vertex vc = (44, 108)

from a dataset of resolution (28 + 1)2 = 2572. Using the encoding of Section 6.1, we

find that its scale is 2, its type τ is (3, 3) and its scaled supercube origin is at (32, 96). To

unscale the supercube, we divide it by 2Scale(δ)+2 = 24 and obtain the point (2, 6). Since

the resolution of the grid is 28, the LevelMax is 8, and thus the supercube is at level

LevelMax − Scale(δ) = 8 − 4 = 4. To convert this to a diamond or supercube in a dataset

of resolution (210 + 1)2 = 10252, we observe that the scale of the supercube in the higher

resolution is 10 − 4 = 6. Consequently, the rescaled supercube needs to be scaled by a

factor of 26 and will be at location (2, 6) ∗ 26 = (128, 384).

After adding the scaled diamond type, the central vertex of δ is located at (176, 432),

and the scale of δ is 4. Notice that although the resolution of the dataset increased (by

a factor of 22 = 4), the level of the diamond as well as that of the supercube remained

constant, and the only change was in the value of LevelMax, which changed from 8 to 10.

Transitive closure of the dependency relation. When merging two corresponding

DMSFs, we typically need to insert additional vertices to maintain the transitive clo-

sure of the resultant DMSF. Each of these new vertices requires a scalar value as well as

an error value. For the scalar values, we can recursively interpolate the value from the two

vertices of its associated diamond’s spine. This is guaranteed to terminate at the domain

corners (i.e. the vertices of the root diamond), but will typically terminate much earlier.

Since we want to ensure that the diamonds from the new dataset are reached, we set the

error of the new points to the maximum possible error.

Due to the large number of shared ancestors within the DMSF, the number of

points necessary to ensure transitive closure is often quite small relative to the number of

140

diamonds being inserted, but depends on the location to which it is inserted. For example,

let ∆p be an empty two-dimensional DMSF with LevelMax = 30, e.g. its equivalent full

DMSF would have a resolution of (230 +1)2. Adding a 2x2 block of samples to ∆p requires

only a few hundred samples to maintain transitive closure, while adding a 10252 block

of highest resolution samples to ∆p has an overhead of less than 1%, e.g. whereas the

10252 block contains 1,050,625 samples, an empty partial DMSF of size (230 + 1)2 with

this block added has fewer than 1,060,000 diamonds. Furthermore, adding a 40972 block

from the same DMSF requires fewer than 0.1% additional samples to maintain transitive

closure.

We simulate a situation where a higher resolution component is available by using

two corresponding DEMs from the Puget Sound dataset, whose resolutions are 10252

and 40972, respectively. First, we extract a partial DMSF of uniform error less than 1%

from the Puget Sound 1k dataset (see Figure 7.7a). This DMSF has 82 K supercubes and

761 K diamonds (C = 9.3). Next, we merge it with a partial DMSF generated from the

Puget Sound 4K dataset using a square ROI of side length 580 samples (see Figure 7.7b).

This DMSF has 29 K supercubes and 341 K diamonds (C = 11.6). The combined partial

DMSF contains 108 K supercubes and 1.08 M diamonds (C = 9.95). The number of

shared samples between the two datasets is only 21 K or around 2% of the samples in the

resultant dataset. Figure 7.7 illustrates a terrain extracted from this DMSF.

7.6 Runtime performance

We can compare the runtime performance of the three DMSF representations, the full

DMSF ∆ f , the diamond-based partial DMSF ∆d and the supercube-based partial DMSF

∆s, by comparing the rates at which they can process diamonds during selective refinement

queries. Since an active front facilitates selective refinement, we evaluate the performance

of the two active front representations introduced in Section 6.3. Recall that the active

front of a selective refinement query corresponds to a simplicial complex current mesh Σ.

141

(a) Puget Sound 1k at 1% error. (b) Puget Sound 4k with square ROI.

(c) Combination of Puget datasets (shaded) (d) Combination of Puget datasets (wire)

Figure 7.7: Planar projection of (a) the Puget sound 1k dataset with 1% error and (b) the Puget
sound 4k dataset with square ROI. (c,d) Merged datasets after upscaling the lower resolution
dataset. Shown without (c) and with (d) wireframe to highlight the size of the mesh elements.

142

On a DMSF, Σ is a conforming RSB mesh. This mesh can be represented using a diamond-

based representation, which we denote as Σd, or through a supercube-based representation

which we denote as Σs.

Since selective refinement queries depend on the specific selection criterion used, we

evaluate the performance of each structure in terms of the number of diamonds visited by

the selective refinement query per second. In Table 7.6, we present the aggregate results

over our testbed of volumetric datasets for an error-based isosurface extraction query

and note that we observed the same trends when using different queries, such as region

of interest and approximation error queries. The LOD criterion for this query selects

all diamonds with approximation error greater than some threshold ε and containing a

particular isovalue κ. As a partial DMSF for this query, we use the datasets generated in

Table 7.5.

For these experiments, we implemented ∆d using a hash table from the central

vertex of each diamond in ∆d to the data associated with it. This incurs a storage overhead

inversely proportional to the load factor of the hash table, i.e., the ratio of diamonds in ∆d

to buckets in the hash table. Across all datasets tested, we found the load factor to average

73.5% (with a standard deviation of 16%). Thus, the hash-indexed ∆d requires an average

memory overhead of 36% compared to the values listed in Table 7.5. Similarly, for ∆s, we

used a separate hash table for each level of supercubes, and indexed the data associated

with each supercube by its origin (as described in Section 6.2.1). We found the load factor

to average 75% (with a standard deviation of 11%) across the datasets, thus, requiring an

average memory overhead of 33% compared to the values listed in Table 7.5.

We evaluate the performance of the DMSF representations (i.e. the rows of Ta-

ble 7.6) by comparing the average number of diamonds processed per second. Recall that

due to the query type and the transitive closure of ∆d and ∆s, all three representations

process the same set of diamonds and yield the same result. We first observe that all three

representations yield similar performance results of about 300,000 diamonds per second.

143

Table 7.6: Selective refinement performance of the three DMSF representations using a diamond-
based active front representation Σd and a supercube-based active front representation Σs, in terms
of the minimum, maximum and average number of diamonds (in thousands) visited per second.

Diamond-Based (Σd) Supercube-Based (Σs) Σs/Σd

Min Max Average Min Max Average Average

∆ f 252 K/s 343 K/s 317 K/s 298 K/s 354 K/s 324 K/s 1.019 x
∆d 223 K/s 333 K/s 301 K/s 263 K/s 340 K/s 306 K/s 1.019 x
∆s 237 K/s 327 K/s 296 K/s 276 K/s 331 K/s 300 K/s 1.014 x

∆ f is the fastest DMSF representation, since it can directly access its diamonds using the

array location of their central vertices. ∆d is approximately 5-6% slower than ∆ f , due to its

use of indirect hashing, while ∆s is around 7.5% slower than ∆ f . Thus, despite its required

extra processing, such as extracting the supercube origin and diamond type and the prefix

sum calculation, supercube-based ∆s’s performance is within 2% that of diamond-based

∆d.

Next, we evaluate the relative performance of the two active front representations Σs

and Σd by comparing columns 4 and 7 (Average) of Table 7.6. Thus, the supercube-based

active front representation Σs is, on average, 1-2% more efficient than the diamond-based

active front representation Σd. Although this is not a significant difference, we note that the

addition (removal) of any diamond to (from) Σd incurs a memory allocation (deallocation),

whereas, due to the supercube clustering, such allocations (deallocations) are rarer for Σs.

Finally, we evaluate the sizes of the two active front representations. Recall that the

supercube-based active front representation Σs requires 27 bytes overhead per supercube.

Over the entire test, Σs averaged 26.5 tetrahedra per supercube (with a standard deviation

of 3.1). Thus, the supercube-based active front Σs incurs an overhead of around 1 byte per

tetrahedron in the active front. In contrast, the diamond-based active front representation

Σd requires 7 bytes overhead per diamond. Over the entire test, Σd averaged 3.3 tetrahedra

per diamond (with a standard deviation of .55). Thus, the diamond-based active front

incurs an overhead of around 2.16 bytes per tetrahedron in the active front.

We implemented both Σs and Σd using hash tables, (analogously to our indexing

144

of the partial DMSFs above). Across all datasets, we achieved an average load factor

of 74% for Σd (with a standard deviation of 15%), and thus the hash-indexed Σd incured

a memory overhead of around 36%. The average load factor for Σs was 72% (with a

standard deviation of 11%), requiring an average overhead of 39%. Thus, a supercube-

based active front representation Σs can be used to extract an equivalent mesh from a

DMSF as a diamond-based representation Σd in slightly less time and using less than half

the storage.

Figure 7.8 illustrates the clustering of tetrahedra in a supercube-based active front

by the color of their isosurface triangles.

(a) Tooth, ε > 10% (b) Fuel, ε > .03%

Figure 7.8: Isosurfaces extracted from DMSF models. Triangles are colored by their embedding
supercube. (a) Tooth dataset with uniform error ε > 10%. A supercube-based active front represen-
tation Σs has an average of 26.9 tetrahedra per supercube yielding an average overhead of 1 byte
per tetrahedron. The diamond-based active front Σd has an average of 2.9 tetrahedra per diamond
yielding an overhead of 2.4 bytes per tetrahedron. (b) Fuel dataset with uniform error ε > .03%.
Σs has an average of 25.6 tetrahedra per supercube yielding an average overhead of 1.05 bytes per
tetrahedron. Σd has an average of 3.3 tetrahedra per diamond yielding an overhead of 2.12 bytes
per tetrahedron.

145

7.7 Discussion

We have introduced a dimension-independent compact representation for diamond-based

multiresolution scalar fields. Our encoding of diamonds allows the recovery of all local

mesh geometry and topology from the coordinates of the central vertex of each diamond.

Supercube clustering provides an efficient means of associating information with a

subset of the diamonds within an RSB hierarchy by exploiting the spatial and hierarchical

coherence within the dataset.

Our supercube clustering of the retained samples reduces the geometric overhead by

compactly indexing up to 4d − 2d samples. Supercubes also enable an efficient encoding

of an active front of a selective refinement query. We demonstrated the effectiveness of

this clustering over a wide range of two and three-dimensional datasets and error criteria

and discussed situations where a full DMSF would be more appropriate.

As such, supercube-based representations are most effective when encoding data on

a subset of the diamonds of an RSB hierarchy that is sparse compared to an encoding for

all diamonds in the hierarchy and coherent with respect to the supercube clustering.

Compared to the sparse representation of Gerstner [66] (in 2D), our representation

supports random access as well as general selective refinement queries and does not require

keeping track of an automaton or stacks of scalar values. The overhead of our supercube

based representation is less than 1 byte per sample in 2D, compared to 3 bytes per sample

in [66].

We have demonstrated that several common volumetric datasets (in 3D) are over-

sampled by a factor of three or more while at the same time the retained elements have a

high degree of coherence with respect to supercube clustering. Thus, a supercube-based

partial DMSF is an effective multiresolution representation that efficiently supports selec-

tive refinement queries with very little geometric or computational overhead. We have also

demonstrated that a supercube-based active front representation can accelerate selective

refinement while requiring less than half the storage of a diamond-based active front data

146

structure.

Here, we have focused on the implementation of the internal map between super-

cubes and their associated data. However, since our indexing structure for the supercubes

at each level utilizes a hash table, our partial DMSF representations can be inflated by as

much as 40%. This can reduce the benefits of a supercube-based DMSF ∆s to a full DMSF

∆ f , when their relative differences are less pronounced. However, when the relatives sizes

are more significant, a hash-indexed ∆s still provides a significant advantage over ∆ f .

Additionally, we have demonstrated that hash-indexed DMSFs and active front representa-

tions based on diamonds suffer from similar or worse overhead than their supercube-based

counterparts. Alternatively, since ∆d and ∆s contain static spatial data, a perfect spatial

hash [105] can yield significantly lower overhead than a standard hash table.

Our discussion of supercubes has focused only on the storage requirements of a

nested RSB’s spatial decomposition. An interesting extension would be to utilize a

supercube-based DMSF for analyzing the dataset’s range. For example, we could add

a base value or error value to a supercube to enable compression of the associated dia-

mond’s scalar and error values. Another compression method for the errors might be to

quantize them on a level by level basis as in [76], where error components are quantized

to 6 bits. Alternatively, downsampling the data, rather than subsampling can improve the

quality of approximated meshes [84, 115].

Another interesting direction relates to the connection between the resolution of an

extracted mesh and the distortion (a higher-dimensional generalization of curvature) that

the retained field values induce on its domain [127]. Our preliminary results [37, 204]

indicate that a distortion-guided extraction directs the mesh resolution towards the salient

features of the field. This enables accurate analysis of complex datasets using significantly

fewer resources.

147

Chapter 8

Topological navigation on diamond meshes

In shape modeling and analysis applications, we are often interested in computing local

properties about elements within a mesh. Such queries are typically posed in terms

of local neighborhoods surrounding a region of the mesh and require efficient support

for navigating its topological connectivity. Examples in 2D include visibility queries,

such as computing the viewshed or the horizon of a point [40]; generating compressed

representations of shapes [52, 162]; computing the local curvature within a region of the

mesh [63]; and extraction of morphological representations in terms of critical points and

integral lines [8, 49]. When modeling volumetric datasets, efficient topological queries

are necessary for applications such as ray casting [24, 51]; morphological analysis [48];

and and computing the local mesh distortion (three dimensional analogue of discrete

curvature) [127]. Additionally, in geometry processing applications, the 1-ring of a vertex

(i.e. its adjacent vertices) is often required for computing properties such as the mesh

Laplacian [44]. Ideally, we would like to extract such entities in an output sensitive

manner, i.e. in time that is linear in the size of the affected neighborhood.

Due to the increasing sizes of datasets, it is important to reduce the storage require-

ments associated with the mesh’s topological connectivity. Not only does this require

additional storage space, but it must also be maintained when modifying the mesh, for ex-

ample, during mesh simplification or refinement. Thus, many topological data structures

have been developed for encoding cell and simplicial meshes (see [36] for a recent sur-

vey). Such data structures differ in their representation domain, in their support for mesh

navigation, and in the subset of the incidence and adjacency relations that they encode.

Interestingly, when dealing with structured families of meshes, we can often exploit

148

the unique properties induced by the mesh generation process to yield more efficient data

structures. For example, when modeling multiresolution tetrahedral meshes using the

half-edge collapse operator, the entire multiresolution structure can be encoded using less

space than the mesh at full resolution, while also providing efficient support for selective

refinement queries [28]. Compared to the general case, the loss in representational power

can often be made up for by the gains in encoding and processing efficiency obtained by

exploiting the structure of the mesh.

Diamond meshes are a compact representation for conforming RSB meshes and

exploit the fact that they are generated through the RSB scheme to achieve a compact and

efficient encoding. They do not, however, explicitly encode any topological connectivity

information such as the incidence or adjacency among neighboring mesh elements.

In this chapter, we introduce optimal querying algorithms for adjacency-based and

incidence-based topological relations on two- and three-dimensional diamond meshes us-

ing only information about the existence of vertices and diamonds in the mesh. In contrast,

previous approaches have only considered the boundary and hierarchical relationships of

diamonds [76], or navigation on simplex-based RSB meshes [6, 54, 102], which require

significantly more storage than diamond-based representations.

Since diamond meshes are typically extracted from a multiresolution model of

the domain, these algorithms enable topological navigation to be performed directly on

these extracted diamond meshes without requiring an auxiliary step to compute and store

topological information for the entire mesh. As we demonstrate in our experiments, this

can inflate the mesh by an order of magnitude (see Table 8.2a).

The remainder of this chapter is organized as follows. We first review relevant

background notions in Sections 8.1. In Section 8.2, we analyze properties of diamond

hierarchies and diamond meshes, which forms the basis of our navigation algorithms. We

provide a general overview of our approach in Section 8.3. We then develop algorithms for

extracting the topological relations on two-dimensional diamond meshes in Section 8.4,

149

and generalize these to three-dimensional diamond meshes in Section 8.5. In Section 8.6,

we compare the storage and computational complexity against other approaches.

8.1 Topological relations

Let us consider a simplicial d-complex Σ and a p-simplex σ ∈ Σ, with 0 ≤ p ≤ d. The

topological relations, which we denote as Rp,q, are defined over Σ in terms of the incidence

and adjacency among its simplices:

Boundary relation Rp,q(σ), with 0 ≤ q < p, consists of the set of q-simplices that are

faces of σ.

Co-boundary relation Rp,q(σ), with p < q ≤ d, consists of the set of q-simplices incident

to σ.

Adjacency relation Rp,p(σ) consists of the set of p-simplices in Σ that are (p−1)-adjacent

to σ (when p>0), or the set of 0-simplices that are adjacent to σ through an edge

(when p=0).

Occasionally, we are interested in a subset of the relation, i.e. a partial relation, as a way

of initializing a query. We denote this as R∗p,q.

We refer to any relation which involves a constant number of entities as constant, and

to relations involving a variable number of entities as variable. In general, the co-boundary

and adjacency relations in a simplicial complex are variable, while the boundary relations

are constant. A constant relation should be retrieved by a data structure representing Σ in

constant time, while variable relations for a simplex σ should be retrieved by examining

a local neighborhood of σ. A query is said to support optimal retrieval of a topological

relation if the required time is linear in the relation’s cardinality. If the retrieval of a relation

requires examining all the simplices of a specific dimension, then the data structure does

not support efficient retrieval of that relation.

150

(a) Vertices of a diamond mesh (b) Top simplices of a diamond mesh

Figure 8.1: A diamond mesh is a conforming RSB mesh extracted from a hierarchy of diamonds
and is in correspondence with a closed set of vertices from the hierarchy (a). Each top simplex
(light pink in (b)) belongs to a single diamond (filled pink circle at midpoint of red edges in (b)).

(a) 2D diamonds (b) 3D diamonds

Figure 8.2: The two classes of diamonds in 2D (a) and the three classes of diamonds in 3D (b).
A diamond’s central vertex is at the midpoint of its spine (red edge). The blue and green circles
coincide with the central vertices of a diamond’s parents and children, respectively.

8.2 Properties of diamond meshes

A diamond mesh Σ is a conforming RSB mesh extracted from a hierarchy of diamonds. It

consists of a collection of diamonds each with at least one duet containing top simplices

in Σ (see Figure 8.1 for an example in 2D).

Recall from Section 4.6 that a diamond is complete if all of its duets belong to

the diamond mesh Σ, and that incomplete diamonds may not subdivide. Since the top

simplices in a diamond are generated during the refinement of its parents, a diamond

can only be subdivided after all of its parents have been subdivided. As a consequence,

diamond meshes are balanced, in the sense that facet-adjacent top simplices can differ by

151

at most one refinement depth.

Since vertices are only introduced into a mesh during the subdivision of a diamond

and each such vertex coincides with a subdividing diamond’s central vertex, the following

property holds for diamond meshes:

Property 1. The existence of vertex v in diamond mesh Σ implies that the diamond δ

whose central vertex is v has been subdivided.

Thus, as observed in [112, 142, 154], the diamond dependency relation induces a

dependency relation on the vertices of the hierarchy. Also, there is a unique correspon-

dence between a closed set of vertices from the hierarchy and a diamond mesh Σ defined

on those vertices, where the set is closed with respect to the transitive closure of the direct

dependency relation (see Figure 4.17).

This provides a framework for analyzing the longevity of certain elements of an

RSB mesh as it is refined, i.e. the number of depths in the hierarchy in which it can exist in

a mesh. Consider a diamond mesh generated through a top-down refinement of a diamond

hierarchy of infinite depth (where diamonds are refined, but never coarsened).

Lifespan of a vertex. Vertices are introduced into a diamond mesh at the central vertices

of subdividing diamonds. Thus, we can associate a level and a depth to a vertex in

correspondence to the level and depth of its associated diamond. After a vertex is

inserted into a diamond mesh, it is never removed.

Lifespan of an edge. Each edge in a diamond hierarchy uniquely corresponds to the

spine of a single diamond, which can be determined by considering the midpoint of

the edge. Edges are introduced into a diamond mesh as a subdivision edge during

the subdivision of a diamond δ between the central vertex of δ and the remaining

vertices of δ (see Section 4.4.1). An edge e is removed from the mesh during the

subdivision of the diamond whose spine is e. It is replaced by two edges bisecting

it at its midpoint (i.e. the one-dimensional RSB operation). Thus, the lifespan of an

152

(a) Edge creation (b) Edge destruction

Figure 8.3: Edges in a d-dimensional diamond mesh survive for approximately d refinement
depths. An edge e (thick orange line on the right of (a)) is created during the subdivision of a
diamond δ, and connects a vertex of δ to its central vertex. It survives during the refinement of any
diamonds whose external boundary contains e (left of (b)) and is destroyed during the subdivision
of the diamond whose spine is e (right of (b)).

edge is approximately one level of refinement (i.e. around d refinement depths in the

hierarchy). In 2D, edges always survive for two refinements (see Figure 8.3). In 3D,

edges aligned with cube diagonals survive for three refinements, while edges aligned

with face diagonals and cube edges can survive for two, three or four refinements.

Lifespan of a top simplex. Simplices in a diamond mesh survive for exactly one refine-

ment. They are created during the refinement of a diamond δp, and are uniquely

associated with a single child diamond δc of δp. Upon the subdivision of δc, they

are removed from the mesh.

8.3 Retrieving topological relations on diamond meshes

In this section, we provide an overview of our approach to querying the topological

connectivity of a diamond mesh. We assume a simple interface to the diamond mesh Σ

requiring only two predicates ContainsVertex(·) and ContainsDiamond(·) which query

a randomly accessible collection of vertices and diamonds in the mesh based on the

coordinates of a vertex, or of the central vertex of a diamond, respectively. In contrast

to the encoding provided in Section 6.3, we do not assume that a diamond tracks which

of its duets are present in the mesh. Since a duet d in a diamond δ in diamond mesh Σ

153

corresponds to a subdivided parent δp of δ, Property 1 implies that δp’s central vertex vδp

will be in Σ (i.e. ContainsVertex(Σ, vδp) will be true) when d is in Σ.

Our topological queries are modeled after the incidence- and adjacency-based topo-

logical relations and incorporate diamonds into the query. Thus, in addition to the (d + 1)2

topological relations Rp,q involving p- and q- simplices, where 0 ≤ p, q ≤ d, we introduce

2d+3 topological relations that operate on diamonds. The d+1 diamond co-boundary re-

lations for a p-simplex σ in Σ, which we denote as Rp,�(σ), consist of the set of diamonds

in the mesh that are incident to σ. For example, the Vertex-Diamond relation of a given

vertex v, denoted as R0,�(v), is the set of diamonds incident to v (e.g. the pink diamonds

surrounding the blue vertex in Figure 8.4c).

Similarly, the d+1 diamond boundary relations, which we denote as R�,q, consist

of the set of q-simplices within Σ that are incident to a given diamond. Note that we

always include the spine of a diamond as a member of the Diamond-Edge relation R�,1

even though it is not on the external boundary of complete diamonds (see Figure 8.2).

Finally, the Diamond-Diamond relation, which we denote as R�,�, consists of the

set of diamonds that are adjacent to a given diamond in the mesh, i.e. the diamonds that

contain a top-simplex that is adjacent to a top-simplex in the given diamond.

We also consider constrained boundary and adjacency relations on diamonds, which

we denote as R�,q|σ and R�,�|σ, respectively. These relations are a subset of the full relation

subject to also being incident to a given simplex σ in its boundary. For example, when

querying the mesh we might be interested in the Diamond-Diamond relation subject to

incidence on a common vertex v, which we denote as R�,�|v. This is useful since it can help

find the diamonds containing simplices in the star of the vertex (see Section 8.4.3).

In general, to retrieve relation Rp,q(σ) of a given p-simplexσ in diamond mesh Σ, we

first find a subset of σ’s incident diamonds, i.e. R∗p,�(σ). If applicable, this is followed by

iterating through the constrained diamond adjacency relations R�,�|σ subject to incidence

with σ. This completes the Simplex-Diamond relation Rp,�(σ). Finally, we apply the

154

(a) Diamond mesh Σ (b) R∗0,�(v) (c) R0,�(v) (d) R0,1(v)

Figure 8.4: Extraction of Vertex-Edge relation R0,1(v) for the blue vertex v in (a). First, we
extract the partial Vertex-Diamond co-boundary relation R∗0,�(v) by finding a diamond in the co-
boundary of v (b). Next, we iterate through the constrained Diamond-Diamond adjacency relation
R�,�|v to obtain the full Vertex-Diamond relation R0,�(v) (c). Finally, we extract the constrained
Diamond-Edge boundary relation R�,1|v to obtain the desired result R0,1(v) (blue edges in (d)).

constrained diamond boundary relation R�,q|σ to each element in Rp,�(σ), achieving our

desired result Rp,q(σ) (see Figure 8.4). All such queries are optimal: The first step is

constant, as is each iteration of the second and third step. Since the latter two steps must

be applied a number of times that depends linearly on the relation’s cardinality, the query

is optimal.

8.4 Retrieving topological relations on 2D diamond meshes

8.4.1 Boundary relations involving 2D diamonds

All boundary relations involving diamonds are based on the duet construct (see Fig-

ure 4.13a). A two-dimensional duet d has three fields: d.spineA, d.spineB and d.parent,

representing the location of the two spine vertices and the corresponding parent’s central

vertex. Thus, given a diamond δ, with central vertex vc, we can query its boundary rela-

tions by processing each of its two duets in constant time. Note that, for any diamond in

Σ, its spine is always in Σ, and at least one of its duets are in Σ. The status of a duet d of

diamond δ in mesh Σ is checked via the predicate ContainsVertex(Σ, d.parent). Recall

from Section 6.1 that the coordinates of a diamond’s vertices can be found using scaled

offsets from its central vertex. Figure 8.2a highlights the spine (red edge) and the central

155

vertices of the parents (blue filled circle) for the two classes of diamonds in 2D.

The Diamond-Vertex relation R�,0 of a diamond δ in Σ always includes both spine

vertices of δ, and, for each duet d of δ that is in Σ, its associated parent’s vertex is also in

R�,0 (see Figure 4.13a). The result of a Diamond-Vertex query can be expressed as a set

of vertices (of cardinality at most four).

Similarly, the Diamond-Edge relation R�,1 of a diamond δ in Σ always contains the

spine of δ, and for each duet d of δ in Σ, the edges from d.parent to each spine vertex of δ

belong to R�,1 as well. The result of a Diamond-Edge query can be expressed as a set of

vertex pairs or as a set of edge midpoints (of cardinality at most five).

The Diamond-Triangle relation R�,2 contains the triangle associated with each duet

of δ that is in the mesh Σ. We can express R�,2 in terms of a simplex bit flag, consisting of

two bits, where each bit correspond to one of the triangles in δ, or as a set of vertex triples,

e.g. for rendering applications.

The diamond boundary relations can be easily specialized to the incidence of a given

vertex. For example, if σ is a spine vertex of δ, then the constrained Diamond-Triangle

relation R�,2|σ is unaffected, but the constrained Diamond-Edge relation R�,1|σ will omit

the edges between the duet’s parent vertices and its opposite spine vertex. Similarly, if σ

is a parent vertex, then R�,2|σ will omit the triangle from the other duet, regardless of its

presence in Σ, and R�,1|σ will omit the spine as well as both edges from the other duet.

The remaining boundary relations R2,1, R2,0 and R1,0 can be obtained directly if the

given edge or triangle is expressed as a tuple of vertices, or it can be queried in linear time

by finding the incidence relations R2,�(σ) or R1,�(σ), where σ is a 2-simplex or 1-simplex,

respectively (see Section 8.4.3), and then applying the appropriate diamond boundary

query (subject to incidence with σ) as defined above.

8.4.2 Adjacency relations involving 2D diamonds

As noted in Section 8.2, one of the key properties of diamond meshes is that their edge-

156

Algorithm 8.1 Diamond-DiamondRelation(δ)

Require: Σ is a valid diamond mesh, i.e. a conforming RSB mesh
Require: δ is a diamond in Σ

Require: Colors reference Figures 8.5 and 8.9.
Ensure: dSet is the set of diamonds in Σ that are adjacent to δ

1: dSet ← ∅
2: for all Duets d in δ do
3: if ContainsVertex(Σ, d.parent) then
4: for all childPt ∈ ChildPointS et do
5: if ContainsDiamond(Σ, childPt) then
6: Insert childPt into dSet
7: else
8: if ContainsDiamond(Σ, neighborPt) then
9: Insert neighborPt into dSet

10: else
11: Insert d.Parent into dSet
12:
13: return dSet

adjacent triangles are guaranteed to be within one subdivision of each other. Consider

the duet d belonging to diamond δ, whose triangle is defined by the spine edge e :=

(d.spineA, d.spineB), and whose third vertex is d.parent (for example, the red triangle

in Figure 8.5d). Then a triangle t adjacent to d along the spine e of δ is either at the

same depth or it is one refinement closer to the root. In the former case, t is the triangle

belonging to the other duet in δ, and δ is a complete diamond. In the latter case, t belongs

to diamond δp, the parent diamond of δ corresponding to the other duet of δ (e.g. the blue

triangle in Figure 8.5d).

On the other hand, if t is adjacent to d along a non-spine edge, then t is either one

subdivision depth further from the root than δ, in which case, t is a triangle of a child

diamond of δ (e.g. the green triangle in Figure 8.5d), or t is at the same subdivision depth

as δ, in which case, its associated diamond is a neighboring diamond of δ (e.g. the purple

triangle in Figure 8.5d).

Since diamonds uniquely correspond to grid points within the hierarchy that are not

vertices in the mesh (via their central vertices), we can satisfy adjacency queries using the

157

(a) (b) (c) (d)

Figure 8.5: Tests for the diamonds adjacent to a given diamond (with red spine) in the general
case (a), and subject to an incident spine vertex (b) or an incident parent vertex (c). An example
R�,� relation for this diamond is shown in (d).

ContainsVertex and ContainsDiamond predicates on a few easily calculated grid point

near δ. These relationships are derived entirely from the position of the duet’s vertices, as

shown in Figure 8.5a and in Algorithm 8.1. Given a duet d, our first test involves d.parent.

If the vertex is present (i.e. its associated diamond has subdivided), we check the two

childPt vertices, coinciding with the midpoints of the edges between the d.parent and the

spine vertices, i.e.

ChildPointS et =

1
2 (d.parent + d.spineA)

1
2 (d.parent + d.spineB).

In either case, if the corresponding diamond is not present, we check

neighborPt = vc + 2 (childPt − vc) .

Note that the set of neighbor points is a subset of the parents of the children of δ and also

of the children of the parents of δ. That is, if δn is the diamond whose central vertex is

neighborPt, then δn ∈ Children(Parents(δ)) and also δn ∈ Parents(Children(δ)).

As with the boundary relations, this algorithm can be constrained to accommodate

an incident vertex or edge σ, which we denote as R�,�|σ. Figures 8.5(b) and (c) illustrate

the required changes to Algorithm 8.1 when the incident vertex is a spine vertex of δ, or if

it is a parent vertex of a duet of δ.

158

8.4.3 Co-boundary relations involving 2D diamonds

The co-boundary relations are defined in terms of their diamond counterparts Rp,�. We

first consider the Triangle-Diamond relation R2,�, then the Edge-Diamond relation R1,�

and, finally, the Vertex-Diamond relation R0,�.

Recall that each triangle in Σ is uniquely contained by a single diamond δ in Σ.

Given a triangle t defined by three bounding vertices, its corresponding diamond δ is

found by checking the midpoints vm of its edges such that ContainsDiamond(Σ, vm) is

true and also that the third vertex v′ of t is a vertex of this diamond (i.e. it belongs to

R�,0(δ)). The complexity of R2,� is constant (with cardinality one).

As an example, consider the three vertices of the red triangle tred in Figure 8.5d. If

we test the midpoint of the upper right edge of tred, we find that it is a diamond δgreen in Σ

(i.e. the one containing the green triangle). However, since the third vertex of tred is not a

vertex of δgreen, it is not the diamond containing t. In contrast the left edge is a diamond

δred in Σ, whose vertices include the third vertex of tred. so R2,�(tred) = {δred}.

We use a similar approach to extract the Edge-Diamond relation R1,� for the dia-

mond(s) incident to a given edge e. Let ve be the midpoint of e, and δe the diamond whose

spine is e. Then e is either: (a) a spine of a complete diamond δe, containing both of its

duets (Figure 8.6a), (b) a spine of an incomplete diamond δe, containing one of its duets

(Figure 8.6b) or (c) not a spine of a diamond in Σ (Figure 8.6c). In the second case, the

parent diamond associated with the other duet of δe is the second diamond in R1,�(e). In

the final case, R1,�(e) consists of both parents of δe. The complexity of this operation is

constant.

Extraction of the Vertex-Diamond relation R0,�(v) for a vertex v in diamond mesh Σ

involves three steps (as illustrated in Figure 8.7 for the center point of the diamond mesh

from Figure 8.1).

Step 1: First, we find a single edge e incident to v, i.e. e is in the partial relation R∗0,1(v),

through a series of edge bisections. Let δ be the diamond whose central vertex is v.

159

(a) (b) (c)

Figure 8.6: The three possible Edge-Diamond cases in 2D. (a) Both parents refined. (b) One
parent refined. (c) Neither parent refined.

Then, based on Property 1, we know that δ is a subdivided diamond, and, thus, an

edge was created from v to the two spine vertices of δ at some previous refinement

step. Let us denote these vertices as vδa and vδb .

As a first approximation to R∗0,1(v), consider the edge e := (v, vδb), with midpoint ve.

If ve is not a vertex in Σ, then e is an edge in Σ. Otherwise, e is not an edge in Σ, so it

must have been bisected at some point. Therefore, we can replace the second vertex

in e with ve and repeat until we find an edge without a midpoint in Σ (Figure 8.7a).

Step 2: Next, we find the diamonds incident to edge e. This is accomplished via the

constant relation R1,�(e) as described above(see Figure 8.7b).

Step 3: Finally, we iterate around the star of v by finding all unique diamonds in R�,�|σ(v)

(see Figure 8.7c).

Together, R0,� is found through a combination of relations R∗0,1(σ), R1,� and R�,�|σ.

To analyze its complexity, let the level of v, denoted as Level(v), be the refinement level

of diamond δ whose central vertex is v. Then the algorithm for R∗0,1(σ) checks at most

N − Level(v) vertices, where N is the maximum level of resolution. Since we consider N

to be constant for all practical applications, R∗0,1 is a constant operation. The second step

is constant, since R1,� is a constant relation. Finally, R�,�|σ is run once per diamond in R0,�,

so R0,� is optimally supported.

160

(a) Step 1 (b) Step 2 (c) Step 3

Figure 8.7: The Vertex-Diamond relation R0,� for the midpoint v (green vertex) of a diamond mesh:
(a) First an edge (red) in R∗0,1 is found. (b) Then, the diamonds (red triangles) in its co-boundary
are found using R1,�. (c) Finally, its adjacent diamonds (green) are found by iterating on R�,�|v.

8.4.4 Deriving the remaining topological relations

By combining the above relations, we can easily define the vertex adjacency and co-

boundary relations R0,{0,1,2}(v) of a vertex v in terms of the R0,� relation and the R�,{0,1,2}|v

relations. Since all steps are optimally supported, relations R0,{0,1,2} are as well.

The only remaining relation is the Edge-Edge adjacency relation R1,1, which consists

of all edges in Σ that are incident to a given edge e := (v1, v2) along one of its vertices.

This operation can be easily satisfied by merging the results of R0,1(v1) and R0,1(v2), and

is therefore optimal as well.

8.5 Retrieving topological relations on 3D diamond meshes

Many of the techniques developed for 2D diamond meshes in Section 8.4 can be gener-

alized to 3D diamond meshes after restructuring them to handle three-dimensional duets.

In this section, we focus on these differences and on the new techniques required for

topological navigation on three-dimensional diamond meshes.

Recall from Section 4.5, that 3D duets are defined by two face-adjacent tetrahedra

of δ that are generated concurrently during the subdivision of a single parent δp of δ.

Their common face is defined by the spine of their associated diamond δ, as well as the

161

d.parent d.spineB

d.v1

d.v2

d.spineA

Figure 8.8: Elements of a three-dimensional duet. A 3D duet has
five vertices: the two spine vertices d.spineA and d.SpineB (red),
the parent vertex d.parent (blue) and the two wing vertices d.v1
and d.v2 (gray). It has nine edges: the spine (red), four edges from
a spine vertex to a wing vertex (gray), two edges from a spine
vertex to the parent vertex (green) and two edges from the parent
vertex to the wing vertices (blue). Finally, it has seven triangular
faces: the face between the two tetrahedra, four faces incident
to the parent vertex and one of the spine vertices and two faces
incident to the spine.

central vertex of δp (see Figure 8.8). We first observe that neighboring tetrahedra within a

diamond have three vertices in common. By connecting the adjacent edges of a diamond’s

tetrahedra that are not incident to its spine, we obtain a loop, which we refer to as the

diamond’s belt, which provides a linear ordering on the simplices within a diamond (see

blue edges in Figure 4.9b).

In particular, when traversing around the belt vertices, every other vertex corre-

sponds to the central vertex of a parent of δ (see Figure 8.2b), and, thus, to a 3D duet.

The intermediary vertices, which we refer to as the wing vertices of the duets are shared

between two adjacent duets within δ.

8.5.1 Boundary relations involving 3D diamonds

As in 2D, the boundary relations are defined in terms of their atomic building blocks, the

duets. A duet d belongs to a diamond δ ∈ Σ, if its associated parent vertex d.parent is

in the mesh. Thus, processing a diamond requires 3, 2 or 4 tests on the vertices in Σ for

0-, 1- and 2-diamonds, respectively. One caveat is that, for 2-diamonds on the domain

boundary, some of the duets contain only a single tetrahedron, so additional checks on the

wing vertex might be necessary.

The Diamond-Vertex relation R�,0(δ) of a diamond δ in Σ always contains the spine

vertices of δ. Additionally, for each duet in Σ, the parent vertex and both wing vertices

belong to R�,0. The result of a R�,0 query is a set of vertices of cardinality at most 8, 6 or

10 (depending on the diamond class). Similarly, the Diamond-Edge relation R�,1 and the

162

Diamond-Triangle relation R�,2 are satisfied by adding all edges and triangles, respectively,

from the duets of δ that are in the mesh, and can be answered in terms of vertex tuples.

R�,1 has a constant cardinality of at most 19, 13 or 25 elements (i.e the spine plus three

edges per tetrahedron in δ), while R�,2 has a constant cardinality of at most 18, 12 or 24

elements (three unique faces per tetrahedra in δ).

As in the 2D case, the Diamond-Tetrahedron relation R�,3 can either be answered as

a set of vertex tuples, or as a simplex bit flag, where each bit corresponds to a tetrahedron

in δ, and the tetrahedra are ordered according to the traversal of the diamond’s belt vertices.

Since there are at most eight tetrahedra in a diamond, a single byte is sufficient to satisfy

this query.

To analyze the constrained diamond boundary relations R�,q|σ(δ) subject to incidence

with a q-simplex σ in δ’s boundary, we need to consider the types of vertices, edges and

faces that exist in a duet d of a diamond δ (see Figure 8.8). A duet d has: (a) two spine

vertices (d.spineA and d.spineB); (b) two wing vertices (d.v1 and d.v2); and (c) one parent

vertex (d.parent). Spine vertices are common to all duets in δ, while wing vertices are

common to a pair of adjacent duets in δ. The parent vertex belongs to only one duet in δ.

The four categories of edges within a duet are: (a) the spine edge; (b) the four edges

containing a spine vertex and a wing vertex; (c) the two edges containing a spine vertex

and the parent vertex; and (d) the two edges containing the parent vertex and a wing vertex.

The first category is common to all duets in δ, while the second category is shared between

an adjacent pair of duets in δ. The final two categories belong to only a single duet in δ.

Note that an edge can never be bounded by both wing vertices of a duet.

Similarly, the three categories of faces in a duet are: (a) one face containing both

spine vertices and the parent vertex; (b) four faces containing a spine vertex, a wing vertex

and the parent vertex; and (c) two faces containing both spine vertices and a wing vertex.

The first and second categories belongs to only one duet in δ, while the third category is

shared by two duets in δ.

163

(a) (b) (c)

Figure 8.9: Tests to find the diamonds adjacent to a given 3D diamond. (a) 0-diamond (b)
1-diamond (c) 2-diamond. Vertex colors indicate spine (red), parent (blue), child (green) and
neighbor (purple).

Thus, if the incident simplex σ includes at least one of the spine vertices, all duets

are involved in the query, although, some boundary relations involving its other spine

vertex can be safely omitted. Otherwise, the simplex σ can be incident to only one or two

duets in δ.

8.5.2 Adjacency relations involving 3D diamonds

As was the case in 2D, the neighbors of a duet in Σ along the spine of δ either belong to δ

or to a parent of δ, while those along the exterior faces can belong to a child of δ or to a

parent of the child that is at the same refinement depth as δ.

Our Diamond-Diamond adjacency query R�,� utilizes the general algorithm pro-

vided in Algorithm 8.1. However, we must redefine appropriate childPt and neighborPt

locations depending on the class of the diamond δ (see Figure 8.9).

For 0-diamonds, each duet d has three childPt vertices, which are located at the

164

midpoint of the three cube faces incident to d.parent. Their locations are:∗

ChildPointS et =

1
2 (d.spineB + d.parent)

1
2 (d.spineA + d.v1)

1
2 (d.spineA + d.v2).

Each childPt has a corresponding

neighborPt = vc + 2(childPt − vc).

A duet d of a 1- or 2-diamond, has four childPt vertices

ChildPointS et =

1
2 (d.spineA + d.v1)

1
2 (d.spineA + d.v2)

1
2 (d.spineB + d.v1)

1
2 (d.spineB + d.v2).

Each childPt of a 1-diamond has a corresponding

neighborPt = childPt + (d.parent − vc),

while, the two childPts of a 2-diamond corresponding to each spine vertex share the same

neighborPt. Thus, these duets have only two unique neighborPts:

neighborPt ∈

d.spineA + (d.parent − vc)

d.spineB + (d.parent − vc).

∗This formulation assumes the d.spineA is a corner vertex of its associated supercube’s domain, while
d.spineB is at the midpoint of its domain (see Section 6.1.4).

165

The implementation of the constrained diamond-adjacency relations R�,�|σ follows a

similar analysis as the constrained diamond-boundary relations R�,i|σ (see Section 8.5.1).

8.5.3 Co-boundary relations involving 3D diamonds

The Tetrahedron-Diamond co-boundary relation R3,� is similar to the 2D case as well.

Each tetrahedron T ∈ Σ uniquely maps to a single diamond whose spine coincides with

an edge of T . However, in the 3D case, both non-spine vertices of T must belong to the

diamond for the correct results.

The analysis of the Triangle-Diamond relation R2,� in 3D is similar to that of the

Edge-Diamond relation in 2D, and its cardinality is either one or two. Each triangle t

either contains the spine of its incident diamond(s) or it is incident to two diamonds whose

common child’s spine belongs to t, thus, we can satisfy the R2,� relation in constant time

by checking t’s three edges.

The Edge-Diamond relation R1,� in 3D is more complicated than its 2D analogue

(but is still constant). Recall from Section 8.2 that edges can exist in a mesh Σ for

approximately d subdivision steps. Thus, we satisfy this query in two steps. We first

find one diamond in R∗1,� of an edge e, and then iterate on the R�,�|e to find all remaining

diamonds. The second step is implemented in the same way as the 2D Vertex-Diamond

relation R�,�|v for a vertex v (see Section 8.4.3).

Let δe be the diamond whose spine is e (which is not necessarily in Σ). A diamond

incident to e can be found by considering the ancestors of δe that are at most four sub-

divisions higher, and returning the first such ancestor in Σ that contains e. Despite the

hierarchical traversal, this step is still constant due to the structure of the hierarchy. In

practice, we found that about 66% of the cases require only one or two tests, and approxi-

mately 30% require three to six tests. We have not observed any cases where an R∗1,� query

required more than seven tests.

The final relation to consider is the Vertex-Diamond relation R0,�. Although the

166

cardinality of this relation is higher in 3D, the query is identical to that of the 2D case. We

first find an edge e in the partial relation R∗0,1(v). We then find a diamond δ in the partial

relation R∗1,�(e) as described above. Finally, we iterate through the R�,�|v relation until all

diamonds in the co-boundary are found. This is accomplished through a graph traversal

that marks visited diamonds as we traverse the adjacent diamonds. Since the first two

steps are constant, and the final step is optimal in the cardinality of R0,�(v), this operation

is optimally supported.

The remaining topological operations are also optimally supported, and can be

defined in terms of the co-boundary Rp,� relations coupled with the constrained diamond-

boundary relations R�,q | σ. For example, the Face-Face relation R2,2 finds all triangles

adjacent to a given triangle along its edges. This can be satisfied for a triangle t by first

finding a diamond δt incident to t, i.e. using a constant query on R2,�. Next, we find the

three edges in the boundary of t using the optimal R�,1 | t (δt) relation. Finally, using δt to

initialize R∗1,�, we find the R1,2 relation for each of the three edges by combining R1,� and

R�,2 and merge the results.

8.6 Results

In this section, we discuss representations for encoding diamond meshes, and compare the

storage costs to a simplex-based representation of RSB meshes [102] and to the extended

IA data structure [144] defined for general simplicial complexes over a manifold domain.

As discussed in Section 8.3, the primary requirements for our encoding is that we

have a valid diamond mesh defined over a closed set of vertices from a regular grid of

resolution (2N + 1) along each axis and that we can efficiently detect the presence or

absence of vertices and diamonds in the mesh. Furthermore, many applications of these

meshes encode scalar values at the vertices of the grid.

Thus, we can store the vertices and diamonds in the mesh using a diamond-based

approach or using a supercube-based approach, which we can generate from the active

167

front representation of Section 6.3 by iterating through the Diamond-Vertex relationships.

That is, for each diamond δ in the active-front based representation, (a) add the vertices

in R�,0(δ) to VertexSet by iterating through its duets; (b) add the central vertex of δ to

DiamondSet.

Assuming that each coordinate can be encoded using two bytes of memory, the cost

of this data structure for a diamond meshes with |V | vertices (each with an associated

scalar value) and |δ| diamonds is: 6 · |V | + 4 · |δ| bytes for a 2D mesh and 8 · |V | + 6 · |δ|

bytes for a 3D mesh.

Since we only require support for testing the presence or absence of the encoded

grid points bitflag-based supercube representations for the vertices and diamonds can

provide efficient support for topological navigation on diamond meshes. In 2D, the cost

of representing each supercube in the vertex set is 10 bytes: (a) 4 bytes to encode the

spatial coordinates; (b) 2 bytes to encode the 12 bit flags; and (c) 4 bytes to encode the

start index of the scalar values in a global vertex array. Similarly, since diamonds do not

have any attached values, each diamond supercube would require only 6 bytes: (a) 4 bytes

to encode the spatial coordinates; and (b) 2 bytes to encode the 12 bit flags. Additionally,

the cost of encoding the scalar values is 2 · |V |. Thus, in 2D the cost of a supercube-based

representation is 2 · |V | + 10 · |S v| + 6 · |S δ| bytes.

In 3D, the spatial coordinates require an additional two bytes and the bitflags require

and additional five bytes (i.e. seven bytes are required to encode the 56 bits rather than

two bytes in 2D), so the cost of a supercube representation is: 2 · |V | + 17 · |S v| + 13 · |S δ|

bytes.

The simplex-based encoding of [102] utilizes bintree-based location codes (see

Section 6.3.1) for simplices stored in a forest of binary trees. The vertices can be encoded

through a hash table as in the diamond-based approach above, and simplices require six

bytes to index their location code. Thus, the difference in storage requirements between

this representation and the diamond-based representation is proportional to the average

168

number of triangles or tetrahedra per diamond in the mesh. The cost of this data structure

is: 6 · |V | + 6 · |t| bytes for a 2D mesh with |t| triangles and 8 · |V | + 6 · |T | bytes for a 3D

mesh with |T | tetrahedra.

As a final comparison, we consider the storage cost incurred by the extended Indexed

data structure with Adjacency (IA) data structure in 2D and 3D [144]. This data structure

is among the most compact topological data structures for general manifold simplicial

complexes [36]. It encodes an array of |V | vertices as well as |t| triangles or |T | tetrahedra,

in 2D and 3D, respectively. Each vertex requires 10 bytes: six bytes for the spatial

coordinates and four bytes to encode the index of a single tetrahedron in its star. Each

triangle requires 24 bytes: twelve bytes to encode the indices of its three vertices and

twelve byte to encode the indices of its adjacent triangles. The cost of the IA in 2D is

therefore 10 · |V | + 24 · |T | bytes. In 3D, each vertex requires two additional bytes for

the extra coordinate, and eight additional bytes per tetrahedron to encode the extra vertex

index and adjacent tetrahedron, for a total storage cost of 12 · |V | + 32 · |T | bytes.

Table 8.1 summarizes the storage costs for the 2D and 3D representations.

Table 8.2a provides representative experimental results on the number of vertices,

tetrahedra, diamonds, in some adaptive 3D diamond meshes extracted from a hierarchy

of diamonds at uniform approximation error (column 2) from several volume datasets, as

well as the number of supercubes for the vertices and diamonds of the mesh. The average

ratios of simplices to diamonds (|σ|/|δ|) tends to increases with the resolution from around

3 to 4 while the number of diamonds per supercube (|δ|/S δ|) oscillates between 8 to 10,

and the number of tetrahedra per supercube increases from around 22 to 39. The number

of vertices per supercube increases as the error decreases, since the vertices of the mesh

correspond to the refined ancestors of the diamonds in the mesh. From Table 8.2b, we see

that the simplex-based RSB representation requires around 2-3 times as much space as

the diamond-based representation, and the diamond-based representation requires around

3.5 times as much space as the supercube representation. Compared to the general IA

169

Table 8.1: Storage costs (in bytes) of 2D data structures (a) and 3D data structures (b) based on
the extended Indexed data structure with Adjacencies (IA), as well as the simplex-based, diamond-
based and supercube-based representations for conforming RSB meshes consisting of |V | vertices,
|σ| top simplices and |δ| diamonds. For the supercube-based representation, |S V | is the number
of supercubes required to encode the vertices (i.e. a partial DMSF) and |S δ| is the number of
supercubes required to encode the diamonds.

(a) Storage costs of 2D data structures

2D Data Structure Cost of vertices Cost of cells

Extended IA 10 · |V | + 24 · |σ|
Simplex-based RSB 6 · |V | + 6 · |σ|
Diamond-based RSB 6 · |V | + 4 · |δ|
Supercube-based RSB 2 · |V | + 10 · |S V | + 6 · |S δ|

(b) Storage costs of 3D data structures

3D Data Structure Cost of vertices Cost of cells

Extended IA 12 · |V | + 32 · |T |
Simplex-based RSB 8 · |V | + 6 · |δ|
Diamond-based RSB 8 · |V | + 6 · |δ|
Supercube-based RSB 2 · |V | + 17 · |S V | + 13 · |S δ|

data structures, the RSB representations are an order of magnitude more compact. The IA

requires around ten times the storage space as the diamond-based representation, and 30-45

times as much space as the supercube-based representation. In the lossless approximations

(0% error), the IA data structure requires more than 1 GB, while the supercube-based

representation requires only 25 MB. Besides the storage space, the adjacency and partial

vertex co-boundary relations must also be generated for the IA data structure.

Another interesting property of these meshes is the average cardinality of the vertex

star and edge star operations which are among the most useful operations for navigation

on these meshes. In fact, the primary objective of the neighbor-finding scheme of [102]

relates to finding the star of each bisection edge for efficient conforming updates to a

simplex-based RSB mesh. Due to properties of the decomposition scheme, the maximum

possible cardinality of R0,3 on 3D diamond meshes is 48, while that of R1,3 is 8 [202]. As

we can see from Table 8.3, the average cardinality of the Vertex-Tetrahedra co-boundary

170

Table 8.2: (a) Number of vertices (|V |), tetrahedra (|σ|), diamonds (|δ|), and supercubes for vertices
(|S V |) and diamonds (|S δ|) in some adaptive diamond meshes extracted at uniform approximation
error from several volumetric datasets. Also listed are the average number of vertices per super-
cube in the VertexSet (|V |/|S V |), tetrahedra per diamond (|σ|/|δ|), diamonds per supercube in the
DiamondSet (|δ|/|S δ|) and tetrahedra per supercube in the DiamondSet (|σ|/|S δ|). (b) A comparison
of the storage requirements for extended IA, Simplex-based, Diamond-based and Supercube-based
representations using the statistics from (a) and the calculations from Table 8.1b. Also listed are
some relative storage sizes of the Simplex, Diamond, Supercube and IA data structures. Volumetric
datasets courtesy of [189].

(a) Statistics for topological data structures in 3D

Dataset Error |V | |S V | |σ| |δ| |S δ| |V |/|S V | |σ|/|δ| |δ|/|S δ| |σ|/|S δ|

Visible Human Head
(128 × 256 × 256)

50% 1.6 K 139 8.6 K 3.3 K 397 11.9 2.6 8.3 21.7
30% 12.5 K 1.03 K 68 K 24.7 K 2.84 K 12.1 2.8 8.7 24.0
10% 254 K 18.9 K 1.40 M 515 K 49.9 K 13.5 2.7 10.3 28.1
5% 620 K 38.4 K 3.40 M 1.22 M 128 K 16.1 2.8 9.6 26.7
2% 1.21 M 53.5 K 6.66 M 2.29 M 267 K 22.7 2.9 8.6 24.9
1% 1.71 M 69.4 K 9.46 M 3.06 M 350 K 24.6 3.1 8.7 27.0

0.5% 2.55 M 94.2 K 14.2 M 4.37 M 504 K 27.0 3.1 8.7 28.3
0% 5.47 M 139 K 31.3 M 7.79 M 963 K 39.4 4.0 8.1 32.5

Foot
(256 × 256 × 256)

50% 19 K 1.54 K 103 K 37.7 K 4.24 K 12.3 2.7 8.9 24.3
30% 82.4 K 6.72 K 453 K 161 K 17.3 K 12.3 2.8 9.3 26.2
10% 1.14 M 73.1 K 6.33 M 2.17 M 237 K 15.6 2.9 9.1 26.7
5% 2.80 M 102 K 15.1 M 4.59 M 625 K 27.5 3.3 7.3 24.2
2% 4.48 M 125 K 25.0 M 6.31 M 810 K 35.8 4.0 7.8 30.9
1% 5.17 M 138 K 30.0 M 6.79 M 873 K 37.3 4.4 7.8 33.9
0% 5.90 M 151 K 34.7 M 7.03 M 898 K 39.2 4.9 7.8 38.7

(b) Storage costs for topological data structures in 3D

Dataset Error IA Simplex Diamond Supercube Simplex
Diamond

Diamond
Supercube

IA
Diamond

IA
Supercube

Visible Human Head
(128 × 256 × 256)

50% 0.28 MB 0.06 MB 0.03 MB 0.01 MB 2.0 x 3.0 x 8.9 x 27.2 x
30% 2.2 MB 0.48 MB 0.24 MB 0.08 MB 2.0 x 3.2 x 9.4 x 29.3 x
10% 45.7 MB 9.97 MB 4.89 MB 1.41 MB 2.0 x 3.5 x 9.4 x 32.4 x
5% 111 MB 24.2 MB 11.7 MB 3.39 MB 2.1 x 3.5 x 9.5 x 32.8 x
2% 217 MB 47.4 MB 22.3 MB 6.50 MB 2.1 x 3.4 x 9.7 x 33.5 x
1% 308 MB 67.2 MB 30.6 MB 8.73 MB 2.2 x 3.5 x 10.1 x 35.3 x

0.5% 308 MB 67.2 MB 30.6 MB 12.6 MB 2.3 x 3.5 x 10.4 x 36.7 x
0% 0.99 GB 221 MB 86.3 MB 24.6 MB 2.6 x 3.5 x 11.8 x 41.3 x

Foot
(256 × 256 × 256)

50% 3.37 MB 0.74 MB 0.36 MB 0.36 MB 2.0 x 3.2 x 9.3 x 29.6 x
30% 14.8 MB 3.2 MB 1.55 MB 0.48 MB 2.1 x 3.2 x 9.5 x 30.7 x
10% 206 MB 45.0 MB 21.1 MB 6.31 MB 2.1 x 3.3 x 9.8 x 32.7 x
5% 494 MB 108 MB 47.7 MB 14.7 MB 2.3 x 3.2 x 10.4 x 33.5 x
2% 815 MB 177 MB 70.3 MB 20.6 MB 2.5 x 3.4 x 11.6 x 39.5 x
1% 962 MB 209 MB 78.3 MB 22.9 MB 2.7 x 3.4 x 12.3 x 42.0 x
0% 1.1 GB 244 MB 85.3 MB 24.8 MB 2.9 x 3.4 x 13.2 x 45.4 x

171

Table 8.3: Number of vertices (|V |), tetrahedra (|σ|) and diamonds (|δ|) and the average cardinality
of the Vertex-Tetrahedra R0,3, Vertex-Diamond R0,�, Edge-Tetrahedra R1,3 and Edge-Diamond R1,�
relations for three-dimensional diamond meshes.

Dataset resolution |V | |σ| |δ| |R0,3| |R0,�| |R1,3| |R1,�|

30% 506 2.3 K 970 18.2 10.3 4.66 3.29
Fuel 10% 2.4 K 12.5 K 4.2 K 21.1 10.5 4.96 2.99

0% 19.9 K 115 K 27.8 K 23.0 9.36 5.09 2.99

10% 450 2.28 K 926 20.28 11.2 4.9 3.31
Hydrogen 1% 5.92 K 31.4 K 11.2 K 21.2 10.08 4.98 3.31

0% 545 K 3.06 M 885 K 22.45 10.27 5.06 3.4

relation R0,3 is about twice that of the Vertex-Diamond co-boundary relation R0,�. While

the cardinality Edge-Tetrahedra co-boundary relation R1,3 is about 50% greater than that

of the Edge-Diamond co-boundary relation R1,�. Due to the great deal of adaptivity of

these meshes, the numbers most likely reflect the fact that pairs of tetrahedra in the star

are grouped to the same diamond via the 3D duet construct.

8.7 Discussion

In this chapter, we introduced optimal algorithms for topological navigation on two- and

three-dimensional diamond-based RSB meshes. These algorithms exploit the structure

of the mesh to query the topological connectivity of the mesh without requiring explicit

generation or storage of any topological relations. Compared to a general adjacency-

based data structure, our diamond-based and supercube-based representations for diamond

meshes require an order of magnitude less space while still supporting optimal queries on

the local topological connectivity of the mesh.

Since the template that we use for extracting the co-boundary relations depends

only on the R∗0,1 relation, which is dimension independent, and the R∗1,� relation, whose

complexity depends only on the mesh dimension, but not the dataset complexity, we

anticipate extending these relations to higher dimensional diamond meshes. This can

be useful, for example, in analyzing time-dependent volumetric datasets. In this case,

172

we must analyze the properties of the 4D (and higher dimensional) duets, which can be

defined by a variable number of top-simplices (see Table 4.5). On the other hand, traversal

of a diamond’s duets should be even more efficient than a simplex-based approach since

the number of top simplices within a diamond is O(d!), while the number of parents (i.e.

the number of duets) is O(d).

173

Chapter 9

Isodiamond hierarchies

Due to the size of isosurfaces or interval volumes extracted from volume data sets, simpli-

fied representations for such structures can greatly aid in their analysis and visualization.

These simplified representations are usually obtained by applying a local mesh coarsening

operator, such as an edge collapse, to the full resolution mesh describing the isosurface or

interval volume.

However in scientific and medical applications, details at the highest available reso-

lution are required on demand, and thus, simplified approximations of these datasets are

not sufficient. Therefore, it is often desirable to have a multiresolution representation of a

specific isosurface or interval volume from which simplified adaptive representations can

be efficiently extracted on demand.

When a multiresolution isosurface or interval volume is extracted from a multireso-

lution model of the underlying scalar field, its structure should be coherent with the model

of the scalar field. In other words, a natural multiresolution representation for an isosurface

or an interval volume is defined by the intersection of the former with the atomic modi-

fications in the multiresolution model of the field. The resulting multiresolution model

clearly inherits the dependency relation from the dependency graph of the multiresolution

field model.

We consider here the problem of defining multiresolution models of isosurfaces, and

interval volumes, when the underlying multiresolution field model is defined by a hierarchy

of diamonds. As shown in Chapter 6, the regularity of the vertex distribution of a hierarchy

of diamonds enables a very compact encoding which we exploit to produce effective and

compact multiresolution models for isosurfaces and interval volumes. Specifically, each

174

local modification to the isosurface or interval volume intersecting a specific diamond δ

has a one-to-one correspondence with the modification associated with δ. Since diamonds

are defined on a regular grid, they are much simpler to encode than the modifications to

the general triangle or tetrahedral mesh representing the isosurface or interval volume.

Note that, although our descriptions and experiments in this chapter focus on the

three dimensional case, the isodiamond hierarchy framework can be generalized in a

dimension-independent manner.

9.1 Isodiamonds

The basic idea in defining a multiresolution model for an isosurface S , or interval volume

I, extracted from a hierarchy of diamonds ∆ consists of considering only a subset of

the diamonds in ∆ and possibly the intersection of S or I with such diamonds. We

call the diamonds in this multiresolution model isodiamonds, and the intersection of an

isodiamond with S or I an isosurface or interval volume patch, respectively. Each patch

is triangulated based on the values of the sign field associated with the corresponding

diamond in ∆ (see Section 2.3.1). We call the ordered set of such sign values the bit

pattern of the diamond.

Since we are interested in the ability to reconstruct the isosurface S , or interval

volume I, at intermediate uniform or variable-resolutions, we need to include in the model

all isodiamonds with non-empty patches, that we call active isodiamonds. However,

since S or I depends on the range of the scalar field rather than its domain, we require a

spatial index on the active isodiamonds. The latter is obtained by considering the relevant

isodiamonds, which are the ancestors of active isodiamonds that have empty patches. An

important subset of the relevant isodiamonds are the creation isodiamonds, which create

a new topological component of S or I upon subdivision. The remaining isodiamonds are

inactive with respect to S or I.

More formally,

175

• an active isodiamond δ is an isodiamond such that both δ and the associated subdi-

vided isodiamond δs contain at least one active tetrahedron; thus, both δ and δs are

intersected by the isosurface or interval volume (see Figure 9.2b).

• a creation isodiamond is an isodiamond δ which does not intersect the isosurface S

or the interval volume I, but the tetrahedra of the associated subdivided isodiamond

δs are all active (see Figure 9.3).

• a relevant isodiamond is an isodiamond δ which does not intersect the isosurface S

or interval volume I but at least one of its descendants intersects either S or I.

Figure 9.1a illustrates the various isodiamond types on a small isodiamond hierar-

chy whose underlying hierarchy of diamonds ∆ covers a square 2D domain and has the

dependency graph depicted in Figure 9.1b. For simplicity, we only show the unsubdivided

diamonds. The central vertices of active, relevant, creation and inactive isodiamonds are

indicated by green, blue and red and white vertices at their spine centers, respectively. The

top row describes the single (unsubdivided) isodiamond corresponding to the root of ∆.

Since it intersects the isosurface, it is an active isodiamond (indicated with a green central

vertex). The next row describes the four children of the root diamond in ∆. Two of these

are active isodiamonds (green), and the other two are relevant isodiamonds (blue). The

third row shows the four children of those at level two, of which, two are active isodia-

monds, one is a relevant isodiamond and one is a creation isodiamond. As illustrated in

the final row, the patches generated by subdividing the creation isodiamond form a new

isosurface component. Figure 9.4 illustrates the isodiamond types of the 2D Bonsai tree

dataset (with isovalue κ = 58), by coloring the central vertices as above.

We have developed two multiresolution models for isosurfaces and interval volumes

extracted from a diamond hierarchy. The Relevant Isodiamond (RI) hierarchy (described

in Section 9.3) closely follows the hierarchy of diamonds encoding the underlying field

since it represents both the active isodiamonds and the relevant isodiamonds. Thus, a

176

(a) Isodiamonds (b) HD dependency graph (c) RI dependency graph (d) MI dependency graph

Figure 9.1: Isodiamonds (a) and associated dependency graphs (b-d) for a small 2D isodiamond
hierarchy. Active isodiamonds (green central vertices) intersect the isosurface (orange lines). Rele-
vant isodiamonds (blue central vertices) are empty ancestors of the active isodiamonds. Creation
isodiamonds (red central vertices) are relevant isodiamonds that create a new topological compo-
nent after subdivision. All other isodiamonds are inactive (white central vertices). The dependency
graph of the MI hierarchy (d) is a subgraph of the RI hierarchy’s dependency graph (c), which, in
turn, is a subgraph of the HD’s dependency graph (b).

modification in an RI hierarchy corresponds to a diamond δ in the associated diamond

hierarchy ∆ such that the range of the field values within δ contains the isovalue κ defining

the isosurface, or the isorange K defining the interval volume.

In contrast, the Minimal Isodiamond (MI) hierarchy (described in Section 9.4) just

contains the modifications that intersect the isosurface S or interval volume I. Since the

relevant isodiamonds do not intersect S or I, and mainly serve as a spatial access structure

for the active and creation isodiamonds, they are not strictly necessary to reconstruct S or

(a) Diamond modification (b) Isodiamond modification

Figure 9.2: Modifications associated with an isodiamonds in an isodiamond hierarchy (b) corre-
sponds to modifications of diamonds in the diamond hierarchy (a).

177

(a) (b) (c)

Figure 9.3: All possible creation isodiamond modifications. The unsubdivided isodiamond δ (a)
and the subdivided isodiamond δs for an isosurface (b) or for an interval volume (c, two cases).

Figure 9.4: Isodiamond types for 2D bonsai tree dataset (κ = 58). The color of the central vertex
of a diamond indicates its corresponding isodiamond type. Of the 2572 diamonds, there are 5,242
active isodiamonds (green), 123 creation isodiamonds (red) and 2,877 relevant isodiamonds (blue).

178

I. The key novelty in the MI model is its ability to extract simplified conforming meshes

describing the isosurface, or interval volume, without storing the relevant isodiamonds.

9.2 Encoding isodiamonds

Due to the one-to-one correspondence between isodiamonds and diamonds in the hierarchy

of diamonds, each patch in the RI or MI hierarchy is encoded (using a marching cells rule)

through:

• the bit pattern of the corresponding diamond and

• the intersection vertices of the corresponding patch, which we call isovertices.

Each patch can then be triangulated via a lookup table on the bit pattern, by using the

isovertices.

Since diamond modifications are local and only affect the interior vertices and edges

of the diamond, (see Section 4.4.1), we may assume that the bit pattern and isovertices

on the boundary of an isodiamond have already been encoded in ancestor isodiamonds.

Thus, the patch corresponding to a subdivided isodiamond δs can be reconstructed from

the patch corresponding to δ using only

• the sign value of the central vertex of δs and

• the isovertices for each active subdivision edge of δs.

Figure 9.2 illustrates a modification to an interval volume patch (in 2D) corresponding

to the subdivision of an active isodiamond δ. Observe that the modification removes the

isovertices on the spine of δ (red vertices in Figure 9.2b) and inserts new isovertices along

its active subdivision edges (blue vertices in Figure 9.2b). The patch is then retriangulated

using the new isovertices. Patch vertices and edges intersecting the diamond’s boundary

(black squares in in Figure 9.2b) are unaffected by the modification.

179

Recall that, under linear interpolation, all patch isovertices lie along edges of tetra-

hedra. Thus, rather than encoding each isovertex using its (x, y, z) position, we use an

interpolation coefficient along the unique subdivision edge containing the vertex. For com-

pactness, we quantize each isovertex to a single byte. This is an appropriate compromise

between storage space and accuracy, since the lengths of the diamond edges shrink as their

level increases.

Based on the bit pattern associated with the isodiamond, a lookup table can be

used to determine the number of isovertices introduced by the modification as well as

an (ordered) list of indices for the active subdivision edges. To maintain constant-sized

modifications, the isovertices are stored in a global isovertex array and only the index of

the first isovertex is encoded with each modification.

Note that the encoding of an isodiamond does not include the scalar values of the

original volume data set, but only the sign field of the vertices of the data set. The efficiency

of the resulting data structure derives from exploiting the regular spatial decomposition

and the implicit dependency relation induced by the hierarchy of diamonds representation,

while only encoding the modifications that relate to the specific isosurface or interval

volume.

9.3 Relevant isodiamonds

In this section, we present the Relevant Isodiamond (RI) hierarchy for an isosurface S

or an interval volume I. We describe first the data structure encoding it (Section 9.3.2).

Next, we review the algorithm for generating an RI hierarchy from a hierarchy of diamonds

(Section 9.3.3). Finally, we discuss how variable-resolution isosurfaces or interval volumes

can be extracted from an RI hierarchy through selective refinement (Section 9.3.4).

180

9.3.1 Definition

A Relevant Isodiamond (RI) hierarchy, that we denote as ∆R, is defined by the subset of

modifications of the corresponding hierarchy of diamonds ∆ that are active or relevant with

respect to the isosurface S or interval volume I. The dependency relation in ∆R is defined

as the restriction of ∆’s dependency relation to the active and relevant isodiamonds. Thus,

every relevant and active isodiamond will have in ∆R the same parents as the corresponding

diamond in ∆ but some of the children isodiamonds might be missing in ∆R (as compared

to ∆), if they are neither active nor relevant. Figure 9.1c shows the dependency graph

of the RI hierarchy ∆R associated with the multiresolution isosurface representation of

Figure 9.1a. The graph describing ∆R contains a subset of the arcs of ∆’s dependency

graph (see Figure 9.1b), where the missing arcs have endpoints corresponding to inactive

isodiamonds (white central vertices).

It can be easily seen that the dependency graph describing ∆R is a connected sub-

graph of the one describing ∆ and has the same root, which can be an active or a relevant

isodiamond. Although the relevant isodiamonds do not intersect S or I, and thus their

associated patches are empty, they are used here to guarantee the transitive closure of the

dependency relation (as discussed in Section 2.4).

9.3.2 Data structure

The patch of S or I corresponding to the base mesh is encoded through the sign field of

the eight corner vertices of the cubic field domain and through interpolation coefficients

for all the isovertices along the active edges of the root diamond.

All isovertices introduced during a modification are located along the active subdivi-

sion edges of its associated subdivided isodiamond δs, and are stored in the isovertex array

as interpolation coefficients. For interval volumes, each subdivision edge can be active

with respect to the lower surface and/or the upper surface, and thus can generate at most

two isovertices. Since isovertices between the two surfaces of I coincide with the vertex of

181

a diamond they are implicitly encoded. Thus, only the isovertices of an interval volume’s

upper and lower surfaces need explicit encoding. Since the dependency relation in ∆R

is inherited from the dependency relation of ∆, we can compute all parents and children

from the coordinates of the central vertex of the isodiamonds.

With each modification u = (δ, δs) in an RI hierarchy, we encode the following

information, thus using 12 bytes per modification:

• central vertex vc of the isodiamond δ (encoded using six bytes as three unsigned

shorts);

• sign value of vc (encoded using one bit for isosurfaces or two bits for interval

volumes);

• index of the first isovertex associated with the modification in the isovertex array

(encoded as a four-byte unsigned int);

• approximation error associated with the isodiamond to accelerate selective refine-

ment queries (quantized to fourteen bits in the range [0, 1]).

Assuming that the vertices of the base mesh of the hierarchy of diamonds ∆ are

located at offset zero in the vertex array, the cost of encoding the base mesh is just that

of encoding its sign field. Since the root diamond is a 0-diamond with eight vertices, its

sign field requires a single byte for isosurfaces or two bytes for interval volumes. Since

each isovertex is encoded as an interpolation coefficient using eight bits, storing the |v|

isovertices requires |v| bytes. Finally, since the dependency relation is implicitly derived,

the cost of the data structure for encoding a three dimensional RI hierarchy is

2︸︷︷︸
base mesh

+ 12 ∗ (|ma| + |mr|)︸ ︷︷ ︸
modifications

+ |v|︸︷︷︸
vertices

bytes,

where |ma| is the number of active isodiamonds and |mr| is the number of relevant isodia-

monds.

182

9.3.3 Generating an RI hierarchy

Given a hierarchy of diamonds ∆ and an isovalue κ for isosurfaces (or an isorange K for

interval volumes), an RI hierarchy ∆R is generated from ∆ by performing a top-down

traversal of the dependency graph describing ∆. At each node, the algorithm checks

whether the min/max field values associated with the corresponding modification contain

the isovalue (or the isorange). Modifications that do not contain the isovalue (or isorange)

are irrelevant and neither they nor their descendants are stored in the RI hierarchy. All

modifications that contain the isovalue (or isorange) will be copied in ∆R as pointed out

before, but only some of them (i.e. the active ones) intersect the isosurface (or interval

volume). A closure operation must then be applied to ensure that all relevant ancestors are

retained.

For all diamonds δ which intersect the isosurface or interval volume, the field values

associated with the vertices of δ are used to compute the interpolation coefficients of each

new isovertex along the active subdivision edges. Specifically, for each active subdivision

edge e := {v, vc} of δ, where vc is the central vertex of δ, the interpolation coefficient γ

is computed as γ = (κ − F(vc))/(F(v) − F(vc)). It is then quantized to eight bits as the

integer value bγ ∗ 28 + 0.5c.

9.3.4 Querying an RI hierarchy

Simplified isosurfaces or interval volumes can be extracted from the relevant isodiamond

hierarchy through selective refinement. The selective refinement query is defined through

a selection criterion based on the approximation error, which can vary in different parts of

the isosurface (or interval volume).

The selective refinement algorithm operates as a top-down traversal of the depen-

dency graph describing the RI hierarchy ∆R. It is initialized with the modification corre-

sponding to the root of ∆R and at each step extracts a closed set of modifications defining

a cut in the dependency graph of ∆R, called the active front.

183

Since each modification in an RI hierarchy ∆R is a modification in the correspond-

ing hierarchy of diamonds ∆ there are two meshes associated with a cut C defining an

active front. The current diamond mesh Σδ is formed by tetrahedra of ∆ belonging to

the base mesh or generated by the modifications in C or in their ancestors. The current

extracted mesh Σ is formed by triangles of the isosurface (or tetrahedra of the interval

volume) intersecting the tetrahedra in the current diamond mesh. The latter contains the

triangles (or tetrahedra) intersecting the base mesh or generated by the active or creation

modifications in C or in their ancestors. In our implementation, we keep track of the active

front and encode Σ’s patches by storing the bit patterns and isovertices of the unsubdivided

isodiamonds corresponding to diamonds in Σδ.

The selective refinement process extracts the current extracted mesh satisfying the

specified selection criterion by moving the active front down from the root of the depen-

dency graph. Modifications are performed if an isodiamond does not satisfy the selection

criterion, or they are forced in order to satisfy the transitive closure of the dependency

relation (thus, they may be applied even to isodiamonds which satisfy the error criterion).

In either case, a modification cannot be applied until all of its ancestor modifications have

been applied. Since relevant isodiamonds are also stored in an RI hierarchy, all ancestors

of a given isodiamond are guaranteed to be available.

All meshes extracted from an RI hierarchy are conforming since the patch within

each diamond is conforming, and a careful generation rule for the intersection cases en-

sures that adjacent patches are conforming (e.g. edges of neighboring patches are aligned).

This is not an issue for isosurfaces, but for interval volumes this is guaranteed through the

use of a unique lexicographic ordering on the vertices [137].

Figure 9.6a illustrates the result of a selective refinement query on the RI hierarchy

defined by isovalue κ = 58 on the 2D Bonsai tree dataset (see Figure 9.4). The current

diamond mesh (gray, blue and green triangles) covers the entire domain, and the current

extracted mesh (blue line segments) approximates the isosurface at full resolution.

184

9.4 Minimal isodiamonds

In this section, we introduce the Minimal Isodiamond (MI) hierarchy for an isosurface

S or an interval volume I. A Minimal Isodiamond (MI) hierarchy, that we denote as

∆M, is defined by the subset of modifications of a relevant isodiamond hierarchy ∆R that

increase the number of simplices in the extracted isosurface, or interval volume. Thus,

only creation and active isodiamonds are included. The remaining relevant isodiamonds

are excluded from ∆M, and their absence must be accounted for in the model as well as

during selective refinement.

9.4.1 Definition

The base mesh of ∆M is formed by the (unsubdivided) creation isodiamonds as well as

the unsubdivided diamond associated with the root of ∆R, if the latter corresponds to an

active isodiamond. The modifications in ∆M correspond to the subdivision of active and

creation isodiamonds. Finally, ∆M’s dependency relation is a subset of ∆R’s dependency

relation restricted to the active and creation isodiamonds. Clearly, it can also be viewed

as the restriction of the dependency relation of ∆ to the modifications in ∆M. Thus, the

dependency graph of ∆M is a (possibly disconnected) subgraph of the dependency graph

describing ∆R, whose roots are the creation isodiamonds as well as the root of ∆R, if it is

an active isodiamond. Figure 9.1d shows the dependency graph for the MI hierarchy ∆M

associated with the multiresolution isosurface representation of Figure 9.1a. The single

creation isodiamond on the third row is a root of ∆M’s dependency graph. Additionally,

since the root of ∆R is an active isodiamond, it is also a root of ∆M’s dependency graph.

Compared to the dependency graph of ∆R in Figure 9.1c, we observe that all arcs lead-

ing from active or creation isodiamonds to active isodiamonds are retained, while those

containing a relevant isodiamond or leading to a creation isodiamond are not retained by

∆M.

We can get a better understanding of the structure of the dependency graph by

185

analyzing the arcs between its modifications. Recall that the parent-child duets have a

one-to-one correspondence with the arcs of the dependency graph of ∆ (see Section 4.4.3).

We consider a parent-child duet to be active if at least one of its tetrahedra are active,

i.e. intersected by the isosurface or interval volume. We now show that the arcs of the

dependency graph of ∆M correspond to the active parent-child duets of the dependency

graph of ∆R.

Theorem 9.4.1. Let dpc be an active parent-child duet between a parent diamond δp and

its child diamond δc. Then, δp is either an active isodiamond or a creation isodiamond.

Proof. Since dpc is active, it has at least one vertex v with a different sign value than

some other vertices in dpc. If v is not the central vertex of δp, then through the duet

correspondence between vertices of the parent and child diamond, δp has two vertices

with different bit values and is therefore an active isodiamond. Otherwise, assume that

v is the central vertex of δp and that δp is not an active isodiamond. Then, since v has a

distinct bit value from the other vertices of δp, it is a creation isodiamond. �

Since non-active duets do not carry information related to the isosurface S or interval

volume I, the arcs of the dependency graph of ∆M retained from the ones of ∆R are exactly

those between parents and children corresponding to active parent-child duets. However,

recall that the dependency graph is not explicitly represented in the model.

9.4.2 Properties

We report here some properties of creation isodiamonds δc and active isodiamonds δa in

the MI hierarchy and in the corresponding RI hierarchy. These properties are important

for extracting conforming representations from an MI hierarchy.

The parents of a creation isodiamond in ∆R can be either active or relevant isodia-

monds, as depicted in Figure 9.5, where the parents of a creation isodiamond (red) are an

active isodiamond (green) and a relevant isodiamond (blue), respectively. Since creation

186

isodiamonds are roots of ∆M, none of these arcs are retained in the dependency graph of

∆M.

The children of a creation isodiamond in ∆R are all active isodiamonds. Since the

duet dca between a creation isodiamond δc and a child δa is active, the corresponding arcs

are all retained in the dependency graph of ∆M.

(a) (b) (c)

Figure 9.5: (a) A parent of a creation isodiamond in the hierarchy of diamonds (red diamond in
(b)) can be either an active isodiamond (green) or a relevant isodiamond (blue). (b) Since a creation
isodiamond (red) is a local root in the dependency graph of ∆M, its ancestors in the hierarchy of
diamonds are not retained. (c) All children of the creation isodiamond (red triangles) are active.

An active isodiamond δa, by definition, has at least one active duet such that δa is

the parent (unless δa is a leaf in the dependency graph), and at least one active duet such

that δa is the child (unless δa is the root of ∆R). The parents of an active isodiamond δa in

∆R can be either active, creation or relevant isodiamonds:

• All creation isodiamond parents corresponds to active duets and the corresponding

arcs are retained in the dependency graph of ∆M.

• An active isodiamond parent is retained in the dependency graph of ∆M only if the

corresponding duet is active.

• The relevant isodiamond parents in ∆R do not correspond to active duets and are not

retained in ∆M.

Similarly, the children of an active isodiamond δa in ∆R can be either active, creation,

relevant or inactive isodiamonds. The only arcs retained in the dependency graph of ∆M

are those corresponding to an active child diamond δ and to an active duet between δa and

δ.

187

Recall that, by definition, the spine of an active diamond δa is part of all duets

containing δa as child. If the sign values of the spine differ, all duets containing δa as

child are active, and their corresponding arcs are retained in ∆M. This corresponds to a

diamond whose spine intersects the isosurface or one (or both) of the bounding surfaces

of the interval volume. In addition, when representing interval volumes, all duets are

active if the signs of the spine vertices are both zero, corresponding to a diamond whose

spine is located between the two bounding surfaces. Otherwise, some of the duets could

be inactive. Only the arcs between δa and a parent δ corresponding to active duets are

retained by ∆M. Table 9.1 summarizes the status of ∆M’s dependency graph arcs based on

the isodiamond types of the parent δp and the child δc of a duet dpc.

Table 9.1: Status of arc in dependency graph of ∆M based on isodiamond types of parent δp (rows)
and child δc (columns) of a parent-child duet dpc. Types {R,C, A, I} denote, respectively, Relevant,
Creation, Active, Inactive.

δp \ δc R C A I

R x x x x

C – – X –

A x x ∗ x

I – – – x

X Always retained
∗ Retained if active duet
x Never retained
– Not possible

9.4.3 Data structure

The MI hierarchy is represented in the same way as the RI hierarchy (see Section 9.3.2),

where each modification is encoded using 12 bytes, and each vertex requires a single byte.

Consequently, a model with |mc| creation isodiamonds, |ma| active isodiamonds and |v|

isovertices requires

2︸︷︷︸
base mesh

+ 12 ∗ (|ma| + |mc|)︸ ︷︷ ︸
modifications

+ |v|︸︷︷︸
vertices

bytes.

188

Since the creation isodiamonds are required to initialize the base mesh, for efficiency, we

store the creation isodiamonds separately from the active isodiamonds.

Note that, since active and creation isodiamonds are the only modifications that

contain patches of the output isosurface or interval volume, the MI hierarchy represents

exactly the same set of isovertices (and thus patches) as the RI hierarchy, despite encoding

significantly fewer modifications.

9.4.4 Generating an MI hierarchy

The Minimal Isodiamond hierarchy is generated from a hierarchy of diamonds in a similar

manner as the RI hierarchy (as detailed in Section 9.3.3). The only difference is that when

adding isodiamonds to the model, we must additionally test for the type of isodiamond.

These tests are efficiently carried out by applying bitmasks to the bit pattern of each

diamond. If the bit pattern of a diamond δ is not homogeneous, then δ is an active

isodiamond. If only the sign of the central vertex differs from those of the other vertices,

then δ is a creation isodiamond. Otherwise, the diamond is discarded. In all cases, if the

min/max range of a diamond contains the isovalue or isorange, we recursively test all of

its descendants.

9.4.5 Querying an MI hierarchy

Uniform– and variable-resolution isosurfaces or interval volumes can be extracted from

an MI hierarchy through a similar selective refinement process as the RI hierarchy (as

discussed in Section 9.3.4).

There are, however, two key differences due to the fact that the relevant isodiamonds

are not encoded and due to the changes to the dependency relation in the MI hierarchy.

The first difference concerns the bit pattern of a diamond. Recall that selective

refinement requires a closure operation, that is, all parent modifications of a diamond δ

must be applied before δ can be applied. Moreover, our isodiamond encoding scheme (see

189

(a) Extracted from RI (b) Extracted from MI

Figure 9.6: Diamond mesh Σδ (gray, green and blue triangles) and current mesh Σ (dark blue line
segments) of the 2D bonsai tree dataset (κ = 58) extracted from (a) an RI hierarchy ∆R and (b) an
MI hierarchy ∆M. Observe that the mesh extracted from ∆R covers the entire domain while the
mesh extracted from ∆M only covers the isosurface patches.

Section 9.2) assumes that the entire bit pattern of a diamond can be recovered from its

ancestors. But, in an MI hierarchy ∆M, the parents of an active isodiamond δ are a subset

of the parents of its corresponding isodiamond in the RI hierarchy ∆R. As a consequence,

the sign values of the vertices from an RI parent δr, that is not an MI parent of δ, will not

be available to complete the bit pattern associated with δ. This situation, however, only

occurs in those active isodiamonds in which the two spine vertices have the same sign

value. Since the duet corresponding to the RI parent δr is not active, all of its vertices,

including the two spine vertices of δ, must have the same sign value. Thus, the missing

vertices can be safely assigned the same sign value as the spine vertices.

The other issue is related to the active front when extracting a mesh from an MI

hierarchy ∆M. As in selective refinement from an RI hierarchy (see Section 9.3.4), we

consider an active front C on the dependency graph of ∆M and two meshes: the current

diamond mesh Σδ, i.e., the tetrahedral mesh associated with front C and extracted from

190

(a) Before closure operator

(b) After closure operator

Figure 9.7: Subdivision of a creation isodiamond δc can cause the new patches to intersect other
patches of the current mesh as in the overlap between red and blue triangles in (a). However,
applying the closure operator to all children of δc forces the active front to include δc (red and
green triangles in b). The extracted isosurface in (b) is conforming even though its diamond-based
LEB mesh is not (interface between the red and purple triangles in (b)).

191

diamonds in ∆, and the current extracted mesh Σ, formed by the triangles (or tetrahedra)

of the currently extracted isosurface (or interval volume) and defined by the patches

intersected by the diamonds in Σδ. Since the relevant isodiamonds are not encoded in ∆M,

the domain Ω of the dataset is no longer covered by the tetrahedra in Σδ (see Figure 9.6b,

where Σδ consists of blue triangles and Σ consists of dark blue line segments). Further,

since ∆M is not necessarily described by a connected dependency graph, C does not need

to be connected. Consequently, the current diamond mesh can be disconnected and is no

longer guaranteed to be conforming (see the interface between the red and purple triangles

in Figure 9.7b).

Nevertheless, since isosurface or interval volume patches are only embedded within

active isodiamonds, the current extracted mesh Σ is guaranteed to be conforming as long

as

(a) the interiors of active tetrahedra do not overlap and

(b) face-adjacent tetrahedra are conforming along their shared face if that face intersects

the isosurface or interval volume.

Property (b) is ensured by the patch triangulation cases for each isodiamond as well as by

the closure operation in selective refinement (as long as property (a) is not violated).

Since (unsubdivided) creation isodiamonds do not contain active tetrahedra, property

(a) is not violated if their tetrahedra overlap other tetrahedra in Σδ. However, creation

isodiamonds require a modified subdivision rule to ensure that the above two properties

remain satisfied after their subdivision. Applying the modification associated with a

creation isodiamond δ adds a new disconnected node to the active front C. Since δ is a

root in the dependency graph of ∆M, it has no ancestors and thus, applying the closure

operator to δ does not connect it to its ancestors in the DAG describing the hierarchy of

diamonds ∆. As a consequence, the diamonds in Σδ overlapping the domain of δ will not

subdivide. If any of these diamonds are active (in violation of property (a)), their patches

192

can overlap (see the red and blue regions of Figure 9.7a).

We solve this by applying the closure operator to each child of δ, i.e. applying all

modifications on which the children depend. The closure operator cascades up on the

dependency graph until (a) the existing front is reached (b) an arc corresponding to a non-

active duet is reached or (c) another creation node (i.e. a local root of the DAG) is reached.

This joins the fronts of δ and the diamonds overlapping its domain (see Figure 9.7b),

and thus Σ satisfies both the above properties, guaranteeing that the extracted meshes

(isosurfaces or interval volumes) are conforming.

9.5 Results

We demonstrate the compactness and efficiency of the two multiresolution isodiamond

models introduced here on We have run experiments on a testbed of over 20 medical,

scientific and synthetic regular volume data sets (in 3D) of dimensions up to 5123 and

summarize the aggregate information and trends. All experiments were performed on a 2

GHz Pentium Core 2 Duo laptop with 4 GB RAM.

Recall that our isodiamond encoding requires twelve bytes per isodiamond and a

single byte for each isovertex. Also, both the RI and the MI hierarchy encode all active

isodiamonds, but the RI hierarchy encodes in addition all relevant isodiamonds, while the

MI hierarchy stores only those relevant isodiamonds that are creation isodiamonds. The

number of creation isodiamonds is typically less than 0.5% of the number of relevant iso-

diamonds (and often significantly less, as shown in columns 5 and 6 in Table 9.2). Further,

since isovertices are only encoded in creation or in active isodiamonds, and both models

encode these diamonds, the MI hierarchy encodes the same number of isovertices as the

RI hierarchy. Our experiments on more than 20 datasets indicate that, when encoding

isosurfaces, the MI hierarchy requires about 65% of the space of a corresponding RI hier-

archy (with a standard deviation of less than 5%). For interval volumes, an MI hierarchy

requires approximately 78% the space of the corresponding RI hierarchy (with a standard

193

Table 9.2: Comparison between the size and number of elements in the isodiamond hierarchies
(isovertices vi; relevant mr, creation mc and active ma isodiamonds) and those of the mesh at full
resolution (vertices v and triangles or tetrahedra t). Data structures sizes are listed in megabytes (1
MB = 10242 B).

Isodiamond Hierarchies Indexed Data Structure Sizes (MB) Comparison

Dataset |vi| |mr| |mc| |ma| |v| |t| MI RI Indexed RI / MI

Is
os

ur
fa

ce

Bucky.32{128} 20.2 k 4.74 k 84 7.96 k 16.4 k 32.6 k 0.11 0.16 0.56 1.48 x
Fuel.64{7.2} 23.5 k 5.72 k 5 9.93 k 18.2 k 36.3 k 0.14 0.20 0.62 1.48 x

Neghip.64{59.1} 56.3 k 14.9 k 17 24.5 k 43.1 k 86.1 k 0.33 0.51 1.48 1.51 x
Armadillo.12{0} 62.3 k 19.4 k 5 27.5 k 47.0 k 93.9 k 0.37 0.60 1.61 1.59 x

Hydrogen.128{24} 75.8 k 29.5 k 1 33.6 k 56.9 k 114 k 0.46 0.79 1.95 1.74 x
Tooth.256{650} 11.5 k 73.7 k 21 113 k 195 k 390 k 1.31 2.15 6.70 1.65 x

Armadillo.256{0} 267 k 80.5 k 7 118 k 201 k 401 k 1.60 2.52 6.89 1.57 x
Aneurism.256{128} 271 k 139 k 1.25 k 116 k 216 k 430 k 1.60 3.17 7.39 1.99 x

Bucky128{128} 368 k 97.8 k 97 161 k 279 k 600 k 2.20 3.32 10.1 1.51 x
Bunny 201{0} 671 k 190 k 10 296 k 505 k 1.01 m 4.03 6.21 17.3 1.54 x

Heptoroid.256{0} 844 k 194 k 215 364 k 642 k 1.29 m 4.97 7.20 22.1 1.45 x
Head.256{58} 1.17 m 258 k 623 490 k 884 k 1.77 m 6.73 9.68 30.4 1.44 x

Engine.256{100} 1.39 m 336 k 219 601 k 1.06 m 2.11 m 8.21 12.1 36.2 1.47 x
Bonsai.256{35} 2.06 m 491 k 1.89 k 860 k 1.60 m 3.19 m 11.8 17.4 54.9 1.47 x

Aneurism.512{650} 2.26 m 758 k 3.75 k 971 k 1.74 m 3.48 m 13.3 21.9 59.7 1.65 x
Armadillo.512{0} 1.16 m 343 k 8 513 k 870 k 1.74 m 6.97 10.9 29.9 1.56 x

XMasTree.512{868} 2.55 m 760 k 15.6 k 984 k 2.09 m 4.17 m 13.9 22.4 71.7 1.61 x

In
te

rv
al

Vo
lu

m
e

Bucky32{(118,138)} 40.5 k 4.55 k 65 8.75 k 32.8 k 99.0 k 0.14 0.19 1.88 1.37 x
Fuel.64{(7.2,11.4)} 45.8 k 5.45 k 2 10.8 k 35.3 k 109 k 0.17 0.23 2.07 1.37 x

Neghip.64{(59.1,124.1)} 90.0 k 12.9 k 14 31.7 k 69.0 k 262 k 0.45 0.60 4.79 1.33 x
Armadillo.128{(−10,10)} 179 k 32.4 k 58 101 k 135 k 705 k 1.32 1.69 12.3 1.28 x
Hydrogen.128{(24,48)} 101 k 18.3 k 1 56.9 k 75.9 k 400 k 0.75 0.96 6.97 1.28 x
Tooth.256{(440,1290)} 350 k 68.2 k 1.27 k 182 k 277 k 1.32 m 4.41 5.41 23.3 1.31 x

Armadillo.256{(−10,10)} 585 k 95.0 k 39 335 k 439 k 2.35 m 2.43 3.20 41.0 1.25 x
Aneurism.256{(118,128)} 557 k 144 k 1.34 k 123 k 444 k 1.33 m 4.39 5.48 25.3 1.84 x

Bucky128{(128,188)} 595 k 70.2 k 75 246 k 456 k 2.01 m 1.95 3.58 35.8 1.24 x
Bunny 201{(0,30)} 850 k 127 k 10 488 k 639 k 3.45 m 3.38 4.19 59.9 1.23 x

Heptoroid.256{(−10,10)} 1.40 m 209 k 1.06 k 788 k 1.06 m 5.59 m 6.40 7.85 97.5 1.23 x
Head.256{(42,72)} 2.48 m 199 k 429 1.20 m 1.89 m 9.28 m 10.4 12.7 163 1.14 x

Engine.256{(55,175)} 1.70 m 196 k 130 809 k 1.29 m 6.17 m 16.1 18.3 109 1.21 x
Bonsai.256{(45.5,86.5)} 2.58 m 438 k 3.52 k 864 k 2.03 m 7.08 m 10.9 13.1 131 1.40 x

deviation of 8%).

Although the principle goal of multiresolution hierarchies is not compression, we

demonstrate the compactness of the two isodiamond hierarchies by comparing them to

a simple indexed representation of the mesh describing the isosurface S or the interval

volume I at full resolution (see Table 9.2).∗ This representation encodes vertices as three

floating-point coordinates, and triangles, or tetrahedra, through the indices of their three,

or four vertices, respectively. Thus, encoding an isosurface S with |v| vertices and |t|

∗This is a simplified version of the extended IA data structure from Section 8.6 that only supports the
boundary operation for top simplices (triangles and tetrahedra, in 2D and 3D, respectively) and is efficient
for rendering applications.

194

triangles requires (12 |v| + 12 |t|) bytes, and encoding an interval volume I with |v| vertices

and |T | tetrahedra requires (12 |v| + 16 |T |) bytes.

Compared to an indexed representation of the isosurface at full resolution, the RI

hierarchy is approximately three times more compact and the MI hierarchy is about five

times more compact. For interval volumes, the RI hierarchy is approximately eight times

more compact (as reported in [195]), while the MI hierarchy is more than ten times more

compact than the mesh at full resolution. In addition to the space savings, a mesh ex-

tracted from both isodiamond hierarchies also implicitly encodes the adjacencies between

its triangles, or tetrahedra. This is typically required in downstream mesh processing

applications and would require an extra 12 bytes per triangle, or 16 bytes per tetrahedron,

since we would need to use for the output mesh an indexed representation enhanced with

adjacency information among triangles or tetrahedra.

9.5.1 Front-size and extraction times

One of the key motivations for the isodiamond hierarchies is performing selective refine-

ment queries efficiently on a multiresolution representation of a specific predetermined

isosurface or interval volume. These models enable a quicker extraction of uniform or

variable-resolution output meshes with respect to extracting them from a hierarchy of

diamonds. Moreover, the active front resulting from the MI hierarchy (i.e. the current

diamond mesh Σδ) requires only a fraction of the diamonds to reconstruct an equivalent

output mesh as either the original hierarchy of diamonds or the corresponding RI hierarchy.

Thus, queries on an MI hierarchy require less memory at runtime and the resultant output

meshes can be post-processed more efficiently.

Isosurfaces extracted from an MI hierarchy have associated active fronts containing

approximately 25% of the diamonds as in the active fronts extracted from a hierarchy of

diamonds or from an RI hierarchy (see Figure 9.8a). Similarly, interval volumes extracted

from an MI hierarchy have associated active fronts containing approximately 50% of the

195

0%

20%

40%

60%

80%

100%

120%

3% 1% 0.3% 0.1% 0.03% 0.01% 0%

Hierarchy of Diamonds RI Hierarchy MI Hierarchy

(a) Front Diamonds - Isosurface

0%

20%

40%

60%

80%

100%

120%

140%

3% 1% 0.3% 0.1% 0.03% 0.01% 0%

(b) Extraction Times - Isosurface

0%

20%

40%

60%

80%

100%

120%

3% 1% 0.3% 0.1% 0.03% 0.01% 0%

(c) Front Diamonds - Interval Volume

0%

20%

40%

60%

80%

100%

120%

3% 1% 0.3% 0.1% 0.03% 0.01% 0%

(d) Extraction Times - Interval Volume

Figure 9.8: Comparison of relative number of diamonds in the active front (a,c) and extraction
times (b,d) for isosurfaces and interval volumes extracted from the hierarchy of diamonds (blue), RI
hierarchy (red) and MI hierarchy (green). The extraction has been performed at uniform resolution
with a maximum error of ε ∈ {3%, 1%, .3%, .1%, .03%, .01%, 0%} (horizontal axis). All values are
relative to the hierarchy of diamonds (vertical axis). Values are averages across over 20 datasets of
varying sizes and complexity.

diamonds as the other two models (see Figure 9.8c). Note that in these queries, the selec-

tion criterion for the original hierarchy of diamonds ∆ depends on the range of field values

as well as the approximation error, while the selection criterion for the RI hierarchy ∆R and

the MI hierarchy ∆M only depends on the approximation error. Since many isodiamonds

near the root of the dependency graph of ∆R are relevant, but their corresponding diamonds

in ∆ might not intersect the isovalue (or isorange), their modifications will be applied in

∆R but not in ∆. Thus, when allowing a higher error tolerance, ∆R can have a time and

space overhead of around 10-20% compared to ∆. However, this effect is reduced as the

error tolerance decreases, and the active front descends to lower levels of the dependency

graph (e.g. compare the relative values of ∆R and ∆ on the horizontal axes of Figure 9.8

as the error tolerance decreases).

196

Both isodiamond hierarchies achieve significant reduction in extraction times during

selective refinement, compared to the diamond hierarchy, as the maximum allowed error

decreases (see Figure 9.8 (b) and (d)). Specifically, as ε approaches zero, the RI hierarchy

can extract an equivalent isosurface or interval volume in about 3/4 the time with respect

to the hierarchy of diamonds, while the MI hierarchy can extract an equivalent mesh in

about half the time with respect to the hierarchy of diamonds. Note that, when the error is

high (e.g. the values toward the left side of each graph in Figure 9.8), the extracted meshes

and times are relatively small, and, thus, relative differences are less significant, while for

lower errors (e.g. toward the right side of each graph), the times and active front sizes

increase. This suggests that the hierarchy of diamonds is ideally suited for extracting low

resolution isosurfaces and interval volumes from the model during the exploratory phases

of the analysis of a dataset. Isodiamond hierarchies are better suited for in-depth analysis

once the desired isosurface or interval volume has been determined and higher resolution

approximations are required for inspection and processing.

The left side of Figure 9.9a depicts a zero-error isosurface (κ = 868) containing

approximately two million vertices and four million triangles extracted from the 5123

Christmas Tree dataset. On the right half, the blue points depict the central vertices of

active isodiamonds, and the purple squares coincide with the central vertices of creation

isodiamonds. Figure 9.9c depicts an interval volume (K = [42, 72]) containing 879 K

vertices and 3.3 million tetrahedra extracted from the 128×2562 Visible Male Head dataset

with uniform error less than 1%. The mesh has been clipped along the median plane to

illustrate the sizes of tetrahedra.

The adaptability of the isodiamond models enables location dependent queries in

addition to those defined by approximation errors. Figure 9.9b illustrates a variable-

resolution isosurface (κ = 0) extracted from the Armadillo dataset and focuses the resolu-

tion in a region of interest around the head. The error of any triangle within the box is zero,

and the error outside the box can be arbitrarily large. Colors indicate the resolution of

197

the diamonds framing the triangles. The blue points coincide with the central vertices of

active isodiamonds. Figure 9.9d illustrates a variable-resolution interval volume extracted

from the 2013 Bunny data set (K = [0, 20]), again with a region of interest around the

head. The tetrahedra are shrunken slightly and the model is clipped along a plane in order

to illustrate the cells of the interval volume.

9.6 Discussion

We have developed two efficient mesh-based multiresolution models for individual iso-

surfaces and interval volumes which are extracted from a volume data set described as

a hierarchy of diamonds. Both models exploit the one-to-one correspondence between

diamonds in the hierarchical representation of the field and modifications in the multireso-

lution representation of the extracted isosurface or interval volume.

The Relevant Isodiamond (RI) hierarchy encodes the set of active isodiamonds as

well as their relevant ancestors. Extracted isosurfaces and interval volumes are guaranteed

to be conforming due to the one-to-one correspondence between isodiamonds in the RI

hierarchy and the diamonds of the diamond hierarchy. As demonstrated in Figure 9.8,

current diamond meshes extracted from the RI hierarchy are generated by approximately

the same number of diamonds as those extracted from the diamond hierarchy, in less time.

The faster extraction times are likely due to the pre-calculation of interpolation coefficients

for the patch isovertices during the generation of the RI hierarchy. Since the scalar values

of each diamond’s vertices do not need to be retrieved, the modification corresponding to

an isodiamond can be applied via a single lookup into the isovertex array.

The Minimal Isodiamond (MI) hierarchy encodes all active isodiamonds and only

the subset of relevant isodiamonds that are creation isodiamonds. The dependency rela-

tion R of its modifications forms a forest of DAGs. An MI hierarchy is described by a

dependency graph which is a subgraph of the dependency describing ∆. Since inactive

isodiamonds are not created during mesh extraction, current diamond meshes that result

198

(a) Xmas Tree Isosurface (b) Armadillo Isosurface

(c) Head Interval Volume (d) Bunny Interval Volume

Figure 9.9: (a) Full resolution isosurface extracted from 5123 Christmas tree (κ = 868). Purple
squares on right half indicate creation isodiamonds while blue points indicate active isodiamonds.
(b) Isosurface extracted from 5123 Armadillo (κ = 0) using a cubic ROI. Triangle colors indicate
the DAG level of the isodiamonds and the blue points indicate active isodiamonds in the model.
(c) Interval volume (K = [42, 72]) extracted from the Head dataset. The mesh is clipped along the
median plane to show the internal tetrahedra. (d) Region-based LOD on the bunny model (around
the head) with isorange K = [0, 20].

199

from selective refinement applied to MI hierarchies are significantly smaller than those

arising from a selective refinement applied to the RI hierarchy.

As indicated in Table 9.2, both models can be encoded quite compactly compared to

an indexed representation of the extracted isosurface or interval volume at full resolution.

However, the primary benefit of these models is that they efficiently support selective

refinement queries, and thus enable the extraction of meshes satisfying an application-

defined error criterion.

Since isodiamond hierarchies only encode the sign field and vertex interpolation

coefficients, and not the higher dimensional simplices, this relative advantage increases

significantly with the dimension of the encoded mesh. Thus, as long as an appropriate

set of lookup tables is defined (as in [17]), the isodiamond representation should lead

to significant savings for higher dimensional simplicial meshes. Furthermore, since an

interval volume encodes the subvolume enclosed between two isosurfaces, and the storage

requirements are related to the number of isovertices on its lower and upper surfaces, an

interval volume with only one boundary surface can be used as an efficient multiresolution

volumetric representation of an object.

Here, we have applied isosurface and interval volume cases to the tetrahedra within

each extracted diamond. Given a consistent set of lookup tables defined on the vertex

categories, our framework should work equally well for multiresolution non-manifold

meshes [87], multi-material interface reconstruction [20, 94] or dual contouring on the

tetrahedra or duets within each diamond [136]. We intend to explore these possibilities in

our future work.

The two concepts of supercubes and isodiamonds provide benefits that are mutually

orthogonal to each other. Isodiamonds reduce the cost of irregular updates to a multires-

olution isosurface or interval volume defined on a DMSF. However, the set of active and

relevant modifications (isodiamonds) are defined on a sparse, coherent subset of the nodes

of a full DMSF. Thus, supercubes seem ideal to reduce the geometric overhead of such a

200

representation. Additionally, since subdivision edges of a diamond can be uniquely identi-

fied with the diamond whose subdivision introduces them, their associated isovertices can

be clustered together to locally. Rather than having a pointer into a global isovertex array,

each supercube can contain a pointer into a global isovertex array, and each isodiamond

can point into a local isovertex array using a smaller offset, thereby significantly reducing

the cost of isodiamond modifications as well.

201

Chapter 10

Hierarchies of balanced hypercubes

Although the focus of this thesis has been on nested simplicial decompositions, there are

many applications of nested hypercubic grids including those based on quadtrees, octrees

and their higher dimensional extensions [165]. Downstream applications typically require

mesh elements to satisfy certain quality constraints related to the shapes of the elements

as well as the rate of adaptivity within the mesh.

Geometric quality constraints can be enforced by using refinement rules that only

generate mesh elements from a small set of acceptable modeling primitives [15]. A com-

mon adaptivity constraint is to ensure that neighboring elements differ in resolution by at

most one refinement level, i.e. the ratio of edge lengths between neighboring elements can

be at most 2:1. This constraint has been considered in many different application domains,

including computational geometry [13,23], scientific visualization [54,205] and computer

graphics [190] under various terms such as restricted [156, 176, 190], smooth [131] and

balanced [129, 178]. However, different definitions of the term neighbor lead to different

balancing restrictions e.g. two hypercubes can be adjacent along a common vertex, edge,

. . . , facet.

In this chapter, we introduce hierarchies of balanced hypercubes defining families

of nested hypercubic meshes with balancing restrictions. Although they do not generate

conforming meshes (as discussed in Section 2.1.1), these hierarchies satisfy the MultiTes-

sellation (MT) model [39, 43] as described in Section 2.4. Specifically, the modifications

are defined by the regular refinement of a hypercube into 2d hypercubes, and we define

the direct dependency relation among such modifications to yield balanced hypercubic

meshes.

202

We provide a formal treatment of the dependency relation among hypercubes in

a nested hypercubic mesh that is necessary to generate balanced hypercubic meshes.

Whereas previous attempts have placed an upper bound on the number of such depen-

dencies [129, 193], we identify the exact number and location of all such dependencies.

This framework is general enough to encompass traditional quadtrees and octrees, which

we refer to as unbalanced.

Our analysis stems from a novel reinterpretation of nested hypercubic meshes

through the lens of diamond hierarchies, whereby hypercubes are seen as a special class

of diamonds. In particular, we observe that 0-diamonds have a hypercubic domain, and

thus hypercubic meshes can be seen as non-conforming diamond meshes composed en-

tirely of complete 0-diamonds. Thus, we propose a diamond-based approach to modeling,

encoding and processing balanced hypercubic meshes.

This yields a compact pointerless encoding for balanced hierarchies of hypercubes,

which provides random access to the hierarchical ancestors of each hypercube, and for

their extracted hypercubic meshes. The connection to diamonds also suggests a supercube-

based representation for encoding the vertices and cells of a balanced 2d-tree mesh. The

coherence among neighboring cubes is exploited through the use of an implicit clustering

scheme based on supercubes (Chapter 5).

Although the cells of a 2d-tree are all cubic, the vertices of a nested hypercubic

mesh cover the entire domain, and thus, the supercube-based DMSF model of Chapter 7

is applicable when associating information with the vertices of a 2d-tree.

Finally, we introduce a dimension–independent algorithm for triangulating nested

hypercubic meshes. Our algorithm is based on a local diamond-based triangulation of each

hypercube (see Section 10.3). As this algorithm is based on regular simplex bisection, the

triangulation has guaranteed geometric and adaptivity constraints. Compatibility between

adjacent hypercube triangulations is implicitly enforced and the complexity of the mesh

is bounded by a multiplicative constant (assuming a fixed dimension).

203

(a) Facet-balanced (b) Edge-balanced

Figure 10.1: In a balanced hypercubic mesh, the neighbors of a node at refinement level ` (red)
can be at level ` − 1 (blue), ` (red or green) or ` + 1 (orange). A facet-balanced mesh (a) is not
necessarily edge-balanced, but an edge-balanced mesh (b) is always facet-balanced.

10.1 Hypercube hierarchies

Recall from Section 3.1.2 that applying regular refinement to a hypercubic domain gener-

ates nested hypercubic meshes. The containment relation of hypercubes can be modeled

as a 2d-tree, in which the 2d sibling hypercubes generated by refining a parent node are

the children of that node. The leaves of this tree (the hypercubes without children) define

the cells of the hypercubic mesh.

10.1.1 Balanced refinement

As was the case for simplex hierarchies, the unrestricted refinement of a hypercube can

lead to meshes with undesirable qualities. A common compromise is to restrict the degree

of refinement in such a way that adjacent hypercubes are at most one refinement apart.

The characteristics of such meshes depend on the type of adjacency relationships that we

wish to restrict.

Recall from Section 2.1 that two d-cubes h1 and h2 in a nested hypercubic mesh are

k-adjacent, 0 ≤ k < d, if their intersection (h1 ∩ h2) defines a k-cube on the boundary

of h1 or h2. They are k-neighbors if they are k-adjacent, but not (k + 1)-adjacent. A

nested hypercubic mesh C is said to be j-balanced if all k-neighbors, j ≤ k ≤ d differ

in refinement level by at most one [129]. Observe that for 0 ≤ j < k ≤ d, any j-balanced

204

hypercubic mesh is also k-balanced [129] (see Figure 10.1). Since the only d-neighbor

of a d-cube is itself, all nested hypercubic meshes are d-balanced. Given a k-balanced

hypercubic mesh, its j-balanced counterpart, j ≤ k, is uniquely defined, and can be

generated by using a simple greedy algorithm [129].

For simplicity, we will refer to 0-balanced as vertex-balanced; to 1-balanced as edge-

balanced; to (d−1)-balanced as facet-balanced; and, finally, to d-balanced as unbalanced.

10.1.2 Balanced hypercube hierarchies

Consider the collection� of all hypercubes at level ` ≤ N, generated by applying reg-

ular refinement to a hypercubic domain Ω. The k-balancing restriction induces a direct

dependency relation among the cells of� , where the refinement of a d-cube hc at level

` depends on that of a d-cube hp at level (` − 1) if hc and hp are k-neighbors in some

hypercubic mesh. Recall that for 2d-trees, the hypercube hp whose refinement generates a

hypercube hc is referred to as its parent, which we denote as Parent(hc), while the 2d cubes

generated during the refinement of hp are referred to as its children, which we denote

as Children(hp) and refer to as siblings in the 2d-tree. The direct dependency relation

in a hierarchy of k-balanced hypercubes, for a node h at level ` is defined by a set of

immediate predecessors at level `− 1 in� , which include Parent(h), on which h depends

for k-balanced refinement, as well as a set of immediate successors at level ` + 1 in� ,

which include Children(h), whose k-balanced refinement depend on h. The collection�

of hypercubes, along with the dependency relation induced by the k-balancing restriction

defines a multiresolution model that we refer to as a hierarchy of k-balanced hypercubes.

We now use properties of regular hypercubic refinement to analyze the various types

of neighbor-balancing dependencies in a hierarchy of balanced hypercubes. For example,

since all 2d sibling cubes are generated at the same time, neighbors along these faces can

never be at a lower resolution (see Figures 2.4).

Let us consider Neighbors(hp), the 3d neighbors of a cube hp at the same level of

205

(a) Unbalanced dependencies (b) Edge-balanced dependencies

(c) Vertex-balanced dependencies (d) All dependencies among the siblings

Figure 10.2: A hypercube (gray) depends on its immediate predecessors, a subset of the same-
sized neighbors of its parent (red), for k-balanced refinement. A hypercube in an unbalanced
hierarchy depends only on its parent (a), while those in a j-balanced hierarchy also depend on
the same-sized k-neighbors of its parent, where j ≤ k ≤ d. 1-balanced dependencies include
the edge-neighbors (blue, in (b)), while 0-balanced dependencies include the vertex neighbors as
well (green in (c)). The set of dependencies for all sibling hypercubes (gray) is a subset of the 3d

same-sized neighbors (d) surrounding their common parent hypercube (red). Note the one-to-one
correspondence between vertices of the sibling nodes and neighbors of the parent.

(a) Starting Mesh (b) Unbalanced (c) Edge-balanced (d) Vertex-balanced

Figure 10.3: Balanced refinement of a hypercube (gray square in (a)) following the k-balanced
dependency relation (see Figure 10.2). (a) Original mesh. (b) Unbalanced refinement. (c) Edge-
balanced refinement. (d) Vertex-balanced refinement in 2D.

206

resolution as well as Children(hp), the 2d cubes generated by the refinement of hp (see

Figure 10.2, where hp is the red square, Neighbors(hp) contains hp and its adjacent blue

and green squares, and Children(hp) are the four squares below hp at the next level of

resolution). Observe that each cube in Neighbors(hp) is offset from hp along one of the

axis-aligned directions in Rd. That is, if ~f is the offset from the midpoint of hp to the

midpoint of a cube in Neighbors(hp), then ~f = sp · ~g, where gi ∈ {−1, 0, 1}, and sp is the

side length of hp. Of the 3d elements in Neighbors(hp),
(

d
k

)
· 2d−k are k-neighbors of hp.

Furthermore, the midpoints of the edges connecting each neighbor to hp coincide with

the vertices of Children(hp) (see Figure 10.2). Thus, there is a one-to-one correspondence

between cubes in Neighbors(hp) and vertices in Children(hp).

Although the cubes in Neighbors(hp) define the set of all possible balancing neigh-

bors of a cube h ∈ Children(hp), it is not necessary to refine all of these cubes to maintain a

k-balanced hypercubic mesh upon the refinement of h. In fact, since h only has 2d vertices,

and each element of Neighbors(hp) is associated with a single vertex of Children(hp), the

number of immediate predecessors of h is at most 2d. Due to the regular refinement, only

the
(

d
k

)
elements of Neighbors(hp) which share a vertex with h are possible k-neighbors of h.

Thus, each cube h ∈� has
∑d

i=k

(
d
i

)
immediate predecessors in a k-balanced hypercube

hierarchy. In particular, the number of immediate predecessors is

• 2d for vertex-balanced hierarchies;

• (2d − 1) for edge-balanced hierarchies;

• (d + 1) for facet-balanced hierarchies; and

• 1 for unbalanced hierarchies.

Note that only the unbalanced hierarchy defines a containment relation.

Figure 10.2 illustrates the dependency relations of a hypercube in unbalanced (Fig-

ure 10.2a), edge-balanced (Figure 10.2b), and vertex-balanced (Figure 10.2c) hypercubic

207

hierarchies (in 2D). Figure 10.3 illustrates the portion of a nested hypercubic mesh (i.e.

quadtree) obtained by refining a square (gray square in Figure 10.3a) according to unbal-

anced (Figure 10.3b), edge-balanced (Figure 10.3c) and vertex-balanced (Figure 10.3d)

refinement.

10.2 Encoding hypercube hierarchies and their extracted meshes

In this section, we propose a compact pointerless encoding for hypercube hierarchies and

for their extracted nested hypercubic meshes that is inspired from the diamond hierarchy

encoding of Chapter 6. We consider a regularly sampled d-dimensional hypercubic domain

Ω covering an integer grid of (2N + 1)d samples, where N is the maximum level of

resolution, and the samples have integer coordinates in the range [0, 2N].

Our encoding for k-balanced hypercubic hierarchies (which can also be d-balanced

and thus unbalanced) and their extracted meshes is based on the observation that the hyper-

cubes in a hypercubic hierarchy are in one-to-one correspondence with the 0-diamonds in

a hierarchy of diamonds (see Section 4.4). This is also true for nested hypercubic meshes,

where the correspondence is with the 0-diamonds in a diamond mesh. Due to the coher-

ence among cells of the hypercubic mesh, we utilize supercube clustering to reduce the

storage requirements. We first briefly review the encoding from Chapter 6 and highlight

differences for hypercube hierarchies and their extracted meshes.

10.2.1 Encoding hypercubes

Our encoding for hypercubes depends on three quantities: the scale γ, the type τ and the

supercube origin s. These can be efficiently extracted from the binary representation of

the unique midpoint of a hypercube through bit shifting operations.

208

00
00

01

10

11

01 10 11

(a) Supercube encoding

00

11

11

(b) Hypercube as offset

Figure 10.4: A supercube s indexes 2d sibling hypercubes that are generated concurrently (circles
in (a)). Each hypercube type τ can be interpreted as an offset from the origin (square in lower left
corner) of a supercube (b).

Let

vc =

x1 = x1
1 x2

1 . . . xm−1
1 xm

1 τ1
1 1 00 . . . 0

x2 = x1
2 x2

2 . . . xm−1
2 xm

2 τ1
2 1 00 . . . 0

...

xd = x1
d x2

d . . . xm−1
d xm

d︸ ︷︷ ︸
s

τ1
d 1︸︷︷︸
τ

00 . . . 0︸ ︷︷ ︸
γ

T

(10.1)

be the binary representation of the midpoint vc of a hypercube h ∈� .

The scale γ of h is encoded by the number of trailing zeros among the coordinates xi

of vc (see γ in Equation 10.1). In contrast with the level ` of h, which encodes the length

of a path from the root hypercube of � to h, the scale γ of h encodes the length of a

path from h to the leaf nodes of� . The level and scale are therefore related through the

predetermined maximum resolution N as ` = N − γ.

The two bits at position γ + 1 and γ + 2 of each coordinate xi of vc uniquely encode

the type τ of h. Since h corresponds to a 0-diamond in a hierarchy of diamonds, the

rightmost bits of τ (i.e. the bits in position γ + 1 of each coordinate) will all be 1.

Finally, the remaining m bits in each coordinate correspond to the origin (i.e. the

lower left corner) of the supercube indexing h as well as its siblings (see Figure 10.4).

209

Observe that the supercubes at each scale γ define a regular grid of resolution 2γ+2. If we

consider the coordinates of the midpoints of all 2d siblings of h, the only difference will

be in the leftmost bits of τ (i.e. the bits in position γ + 2 of each coordinate). Thus, the d

bits τ1
i provide an implicit index on the 2d siblings within a supercube.

Offsets to the midpoints of a cube’s faces can be determined as scaled offsets from

its midpoint. Let hi be an i-face of a cube h. Then, the offset ~g = 2γ · ~f from the midpoint

vc of h to the midpoint vi of hi will contain (d − i) non-zero components. I.e.

vi = vc + 2γ · ~f , (10.2)

where the components f j ∈ {−1, 0, 1}, and
∑ ∣∣∣ f j

∣∣∣ = (d − i). In particular, the offsets to the

0-faces (vertices) of a cube can be obtained by adding the 2d scaled vectors whose compo-

nents f j are all nonzero, i.e. ~fvertex = (±1,±1, . . . ,±1). These offsets can be precomputed

and stored in a lookup table, or can be generated on demand at runtime.

10.2.2 Encoding dependency relations

The dependency relation of a hypercube h in a hierarchy of hypercubes can also be implic-

itly encoded in terms of scaled offsets from the midpoint of h. Since all nodes in� are

hypercubes, their midpoints will have the same form as Equation 6.1.

Parent. Since the parent hp of a hypercube h is at one level of resolution lower in the

hierarchy, its scale is γ + 1. Thus, the rightmost bit of the supercube origin (i.e.,

position xm in Equation 6.1) of h becomes the leftmost bit of the type τ of hp. The

coordinates of the midpoint of hp can be obtained from those of h by clearing the

rightmost bits of τ in vc (i.e. those at position γ + 1 from the right), and setting the

leftmost bits of τ in vc to 1.

Children. In contrast, the midpoints of the 2d children of h share the leftmost m + 1 bits

as well as the final γ − 1 bits of each coordinate of h. The bits corresponding to the

210

Table 10.1: Number and position of bits in the midpoint coordinates of a cube’s hierarchical
relationships. Compare to Equation 10.1.

Relationship Supercube (left) Type (middle) Scale (right)

Hypercube m 2 γ

Children m + 1 2 γ-1
Parent m − 1 2 γ+1
Predecessor m − 1 2 γ+1

type τ of a child hc of h will be at positions γ and γ + 1 (from the right). The 2d

children are distinguished by the bits at position γ + 1 of each coordinate, which

take on all 2d possibilities, while the bits at position γ are all set to 1.

Immediate predecessors. Since the immediate predecessors of h are all neighbors of its

parent hp, their scale is γ + 1. They can differ from hp in their supercube origin and

in the leftmost bit of τ.

Recall that the midpoint of each such k-neighbor of hp is located at an offset ~f from

the midpoint vp of hp, and this offset is twice the distance from vp to a vertex of its

child h. Thus, the immediate predecessors of h for k-balancing can be determined

from the k-neighbors of its parent hp. For a k-balanced dependency relation, all such

offsets to the midpoint v′ of an immediate predecessor h′ have the form

v′ = vp + 2γ+1 ~f

where ~f encodes the difference in offsets from vp to a vertex of h, and
∑ ∣∣∣ f j

∣∣∣ ≤ k.

Table 10.1 summarizes the number of bits in each component of the midpoints of a

hypercubes parents, children and immediate predecessors. In all cases, the type τ is

defined by two bits, of which, the right bit is set to 1. Note that the coordinates of the

midpoint of the parent and the immediate predecessors can differ in supercube origin (s)

as well as in (the left bits of) the type (τ).

211

10.2.3 Encoding k-balanced hypercubic meshes

We propose a supercube-based encoding for the leaf nodes of a nested hypercubic mesh

extracted from a hierarchy of k-balanced hypercubes. Our encoding will only consider

the presence or absence of a hypercube within a mesh (as in Chapter 8), but associating

information with each node is straightforward.

Let Bc be the number of bytes required to encode each coordinate. Using the

encoding from Section 10.2.1, each d-dimensional hypercube can be identified entirely

from the coordinates of its midpoint using (d ·Bc) bytes, so a hypercubic mesh C containing

|h| hypercubes requires |h| · (d · Bc) bytes to encode.

Since all 2d children of a hypercube are generated concurrently during its refinement,

a supercube-based representation for nested hypercubic meshes is able to exploit the

spatial and hierarchical coherence of the regular refinement operation. Furthermore, since

k-neighbors in a j-balanced hypercubic mesh, (0 ≤ j ≤ k < d) are required to be within

one level of refinement, we expect more coherence among the nodes for lower values of j.

A supercube-based representation requires d · Bc bytes to encode the origin coordinates of

all supercubes with at least one hypercube in the mesh C, as well as some bookkeeping to

encode which of its 2d children are actually present in the mesh. For simplicity in encoding

and updating, we assume that we require one bit for each of the sibling hypercubes, for

a total of 2d bits (i.e. 2d−3 bytes) of bookkeeping per supercube. Thus, the cost for

encoding the cells of a supercube-based nested hypercubic mesh defined by |s| supercubes

is: |s| ∗ (d · Bc + 2d−3) bytes. In practice, we store the set of supercubes at each level of

resolution as a separate hash table, and there is some storage overhead related to the load

factor of the hash table (as discussed in Section 7.6).

To evaluate the cost of this representation, we consider three categories of nodes in

a 2d-tree.

I. Leaf nodes of the tree. Each leaf corresponds to a hypercube in the mesh.

212

II. Internal nodes of the tree with at least one child that is a leaf node.

III. Internal nodes of the tree whose children are all internal nodes.

Given a complete 2d-tree of maximum level or resolution N, the number of leaf nodes (i.e.

type I) is (2d)N , and the number of internal nodes (i.e. types II and III) is (2d)N−1
2d−1 [33]. The

number of internal nodes with leaf children (i.e. type II) is therefore (2d)N−1, while the

number of internal nodes without children (type III) is (2d)N−1−1
2d−1 .

In the classic pointer-based 2d-trees encoding all nodes are represented [165]. Linear

quadtrees [59] do not encode the internal nodes, and thus only encode nodes of type I,

corresponding to hypercubes in the mesh. Our cube-based encoding above is similar to

this approach. In contrast, autumnal quadtrees [55] encode nodes of type II and III, that is,

each node is encoded in terms of its parent.∗ The proposed supercube-based representation

requires storage for nodes of type II, each of which corresponds to a supercube in the mesh.

Table 10.2 lists the number of hypercubes |h| (nodes of type I) and supercubes |s|

(nodes of type II) as well as the concentration of the supercube clustering (C = |h|/|s|)

in k-balanced cubic meshes, 0 ≤ k ≤ 3 extracted from volumetric scalar fields using a

range-based query based on a given isovalue as well as a uniform error criterion of 0.

Interestingly, even unbalanced meshes (k = 3) have a very high concentration averaging

more than 7 out of the possible 8 cubes per supercube. As expected, the concentration

increases as the degree of balancing increases (i.e. as k decreases).

We observed (not listed in Table 10.2) that nodes of type III (internal nodes without

children in the mesh) comprise only 2-4% of the internal nodes, and less than 0.5%

of the total nodes. Thus, they do not add a significant overhead to the representation.

However, since we only require the presence or absence of a hypercube for our application,

the pointer-based autumnal representation would incur an overhead of 2d pointers per

supercube instead of 2d bits in our application.

∗The name is due to the fact that the leaf nodes are ‘dropped’ in this representation [209].

213

Since our hypercube-based data structure requires 6 bytes per hypercube, and our

supercube-based data structure requires 7 bytes per supercube, and the concentration of

the supercube-based representation is between 7 and 7.5, our proposed supercube-based

pointerless representation requires about 1/6 the storage space as the hypercube-based

pointerless representation for these datasets.

In applications where we need to encode information about the vertices of the

mesh. Such information could be limited to the presence of a vertex, or we could be

encoding scalar values or other information. In general, an 2d-tree mesh will correspond

to a coherent subset of the vertices of a full DMSF. Thus, the partial DMSF model of

Section 7.3 will be a useful representation for our vertices. As was the case with diamond

meshes, for top-down traversals of the hierarchy, vertices are only inserted into the mesh

and are never removed.

Table 10.2: Comparison between nested cubic meshes extracted from k-balanced hypercube hi-
erarchies (0 ≤ k ≤ 3) over volumetric scalar fields, where the selection criterion is based on a
uniform approximation error of 0% error as well as an isovalue κ. For each mesh, we list the
number of hypercubes |h| and supercubes |s| as well as the concentration C.

Dataset Unbalanced Facet-balanced Edge-balanced Vertex-balanced

|h| |s| C |h| |s| C |h| |s| C |h| |s| C

Bunny0 381 K 54.3 K 7.01 439 K 61.5 K 7.14 467 K 64.9 K 7.19 477 K 66.2 K 7.21
Fuel7.2 12.8 K 1.78 K 7.17 14.7 K 2.01 K 7.30 15.3 K 2.08 K 7.34 15.5 K 2.10 K 7.35

Engine100 726 K 103 K 7.07 827 K 115 K 7.21 850 K 117 K 7.24 857 K 118 K 7.25
Buckyball128 215 K 30.3 K 7.08 237 K 33.0 K 7.19 249 K 34.5 K 7.22 252 K 34.9 K 7.23
Armadillo0 155 K 22.1 K 7.01 182 K 25.5 K 7.13 195 K 27.2 7.20 200 K 27.7 K 7.22
Plasma1.2 77.4 K 10.9 K 7.13 82.6 K 11.5 K 7.22 84.4 K 11.7 K 7.24 85.0 K 11.7 K 7.26

Aneurysm128 186 K 26.0 K 7.14 239 K 33.2 K 7.22 268 K 36.8 K 7.28 275 K 37.7 K 7.31
Tooth650 148 K 21.0 K 7.04 170 K 23.8 K 7.16 181 K 25.1 K 7.21 184 K 25.4 K 7.23
Head58 648 K 91.7 K 7.06 748 K 104 K 7.19 784 K 108 K 7.23 791 109 K 7.24

Hydrogen24 50.0 K 7.04 K 7.10 58.5 K 8.14 K 7.19 62.4 K 8.60 K 7.26 63.9 K 8.77 K 7.28
Foot23.5 3.35 M 446 K 7.50 3.47 M 461 K 7.53 3.51 M 466 K 7.54 3.52 M 467 K 7.55
Bonsai35 1.13 M 156 K 7.23 1.26 M 172 K 7.31 1.31M 179 K 7.34 1.32 M 180 K 7.35
Neghip59 32.2 K 4.5 K 7.11 36.4 K 5.05 K 7.21 38.0 K 5.23 K 7.25 38.3 K 5.28 K 7.25

Heptoroid0 475 K 66.6 K 7.14 529 K 73.4 K 7.20 558 K 77.0 K 7.24 567 K 78.2 K 7.25
CT Head650 589 K 82.1 K 7.17 664 K 91.4 K 7.27 691 K 94.6 K 7.30 699 K 95.7 K 7.31

214

10.3 Triangulating nested hypercubic meshes

In this section, we introduce a simple dimension–independent algorithm to triangulate

a nested hypercubic mesh C. Our triangulation algorithm is based on the observation

that 0-diamonds cover a hypercubic domain, and thus, nested hypercubic meshes can

be considered as a special case of (non-conforming) diamond meshes consisting of only

0-diamonds. Our triangulation is based on a local bisection refinement within each hy-

percube of C. This converts C into a conforming RSB mesh Σ covering the domain of C,

i.e. Σ is a simplicial complex defined by a collection of Regular Simplex Bisection (RSB)

simplices. The properties of RSB simplices [123] ensure the quality of the triangulation.

Specifically, the simplices in the mesh belong to at most d similarity classes of well-shaped

simplices, and the valence of a vertex is at most 2dd! = (2d)!!.

Our algorithm consists of three stages. First, we edge-balance the mesh (Sec-

tion 10.3.1). This ensures that each face of a hypercube within C is refined by at most

one internal vertex (see Figure 10.1). Next, we iterate through the vertices of the edge-

balanced mesh and cache them (Section 10.3.2). This replaces potentially expensive

neighbor-finding operations with a single vertex lookup on each edge of the hypercube.

Finally, we triangulate each hypercube locally using a diamond-based bisection refine-

ment (Section 10.3.3). We conclude with a proof that the generated mesh Σ is a simplicial

complex and find bounds on the complexity of Σ with respect to C. Our algorithm is

summarized in Figure 10.5(a)-(c).

10.3.1 Mesh balancing

Let C be a (variable-resolution) nested hypercubic mesh obtained through regular refine-

ment of an initial hypercubic domain Ω.

For our triangulation algorithm, we require C to be an edge-balanced nested hyper-

cubic mesh. This ensures that the faces of each hypercube need to be refined at most once,

as well as the quality of the generated elements. Otherwise, the edges of its cubes might

215

(a) (b) (c) (d)

Figure 10.5: Given an edge-balanced hypercubic mesh (a) we first generate complete 0-diamonds
for each hypercube (b), and then apply our local bisection-based algorithm to each hypercube (c).
Observe that hypercubes that have neighbors at a deeper level of resolution (orange vertices in (b))
need to refine. Compare to a Delaunay-based triangulation (d).

(a) Unrefined (b) Refined edge (c) Refined face (d) All edges refined

Figure 10.6: The bisection-based triangulation of a hypercube (shown in 3D) depends entirely
on the refined edges of neighboring hypercubes. The triangulation ranges from a that of a Kuhn-
subdivided cube (a) to that of a fully-subdivided cube (d).

216

Algorithm 10.1 CacheVertices(C)

Require: C is an edge-balanced nested hypercubic mesh.
Ensure: Vertices(C) is a spatial index on the vertices of cubes in C.

1: Vertices(C)← ∅.
2: for all hypercubes h ∈ C do
3: for all vertices v ∈ h do
4: Insert v into Vertices(C).

require more than one refinement, as can be seen in Figure 10.1a, where the edge of the

blue cube (at level ` − 1) adjacent to the orange cube (at level ` + 1) has more than one

internal vertex.

If the input mesh Cin is not edge-balanced, we can convert it to an edge-balanced

mesh C in a bottom-up manner by following the direct dependency relation of the edge-

balanced hypercube hierarchy (as introduced in Section 10.1.2). Note that this increases

the number of hypercubes in the mesh by at most a constant factor (assuming a fixed

dimension d) [129, 193], and is uniquely defined [129].

10.3.2 Vertex caching

Our local triangulation algorithm only refines hypercube edges that have at least one

smaller edge-neighbor. Since hypercubes can have many edge-neighbors, neighbor-

finding operations can be cost-prohibitive at runtime. However, since C is edge-balanced,

any refined neighbors of a hypercube h along an edge e will contain a vertex located at the

midpoint vm of e (see Figures 10.1b and 10.5a). Once we determine if vm exists in C, we

no longer require these neighbor-finding operations.

We therefore cache the vertices of C in a hash-table, (see Algorithm 10.1). Since

each d-cube contains 2d vertices, the cost of this step on a mesh with |h| hypercubes is

O(2d · |h|), and the average cost of each vertex lookup is O(1).

217

Algorithm 10.2 TriangulateHypercubicMesh(C)

Require: C is an edge-balanced nested hypercubic mesh.
Require: Vertices(C) contains all vertices of hypercubes in C.
Require: Σh is an RSB mesh covering hypercube h ∈ C.
Ensure: Σ =

⋃
h∈C
{Σh} is a conforming RSB mesh covering C.

1: for all hypercubes h ∈ C do
2: Σh ← ∅.
3: Let δh be the 0-diamond corresponding to h.
4: Insert δh into Σh.
5: for all edges e ∈ h do
6: Let vertex v be the midpoint of e.
7: if v ∈ Vertices(C) then
8: Let δe be the (d − 1)-diamond associated with edge e.
9: Insert δe into Σh.

10: LocalRefineDiamond(δe,Σh, h).

Algorithm 10.3 LocalRefineDiamond(δ,Σh, h)

Require: The domain of diamond δ intersects h.
Require: Σh is a conforming RSB mesh restricted to the domain of hypercube h.
Ensure: δ is refined in Σh.

1: for all diamonds δp ∈ Parents(δ) do
2: Let vp be the central vertex of δp.
3: if δp is not refined and vp ∩ h , ∅ then
4: LocalRefineDiamond(δp,Σh, h).
5: // Refine δ by bisecting all of its simplices within Σh

6: RefineDiamond(δ,Σh).

10.3.3 Hypercube triangulation

Our triangulation algorithm (see Algorithm 10.2) generates a globally conforming RSB

mesh Σ through a local triangulation Σh of each hypercube h ∈ C. This triangulation is

entirely determined from a hypercube’s refined edges.

We first convert each hypercube h ∈ C to an RSB mesh Σh defined by the 0-diamond

associated with h (lines 2–4 of Algorithm 10.2). Since this is a Kuhn-subdivision of h (see

Section 4.4), it contributes d! simplices to Σh. See Figure 10.6a for an example in 3D.

For each edge e ∈ h that is refined in a neighboring hypercube, we add the (d − 1)-

diamond δe associated with edge e to Σh, and locally refine δe within Σh. As mentioned

218

in Section 10.3.2, we can determine the refined edges of a hypercube by checking if the

midpoint of each edge is a vertex in C (lines 6–7).

The function LocalRefineDiamond(δe, h) (Algorithm 10.3) ensures that all diamond

ancestors of δe whose central vertex intersects h (up to δh) are added to Σh. This satisfies

the transitive closure of the diamond dependency relation, restricted to the domain of h, of

each refined edge of h (see [197] for more details).

Figure 10.6 shows some possible triangulations Σh of a 3-cube h. In Figure 10.6a,

none of the edges of h are refined, so Σh is defined by the 0-diamond associated with h

and contains d! simplices. This implies that all edge-neighbors of h in C are at the same

level of refinement or one level higher in the hierarchy.

In Figure 10.6b one of the edges (red) of h is refined. The two facets of h adjacent

to this edge are refined in Σh, as is the center of h. This triangulation occurs when a single

edge-neighbor of h that is not a facet-neighbor, is refined.

Figure 10.6c illustrates the triangulation Σh when all four edges along a facet of h

are refined. This corresponds to the case where a facet-neighbor of h is refined.

Figure 10.6d illustrates the triangulation Σh of h when all edge-neighbors of h are

refined. Σh is a fully-subdivided hypercube, and is defined by 2d · d! simplices. Observe

that all faces of h in Σh are refined.

The following Theorem proves that Algorithm 10.2 always produces a simplicial

complex. Furthermore, the complexity of the generated mesh Σ with respect to the input

hypercubic mesh C is bounded by a constant that depends only on the dimension d of the

domain.

Theorem 10.3.1. Given an edge-balanced hypercubic mesh C defined by |h| hypercubes,

Algorithm 10.2 generates a conforming RSB mesh Σ =
⋃
h∈C
{Σh} and is defined by |σ| RSB

simplices, where |h| · d! ≤ |σ| < |h| · 2d · d!

Proof. To show that Σ is conforming, we need to prove that (a) the triangulation Σh of each

hypercube h is locally conforming, and (b) the boundaries Σh ∩ Σh′ between neighboring

219

hypercubes h and h′ are also conforming.

The first constraint is satisfied since diamond refinement always generates a con-

forming RSB mesh. The function LocalRefineDiamond(δe, h) can be viewed as the trian-

gulation of the root diamond in a hierarchy of diamonds after some of its edges have been

refined.

The second constraint relies on the edge-balancing constraint of the input mesh

C, as well as the properties of Kuhn-subdivided and fully-subdivided hypercubes (see

Chapter 4). Note that, vertex-adjacent hypercubes that are not edge-adjacent are always

conforming since their intersection is a vertex.

We first consider the case where the two neighboring hypercubes h and h′ are

at the same level of refinement. Since opposite pairs of lower dimensional faces of a

Kuhn-subdivided hypercube are conforming, unrefined faces of neighboring hypercubes

at the same resolution are conforming. Next, since our refinement rule in Algorithm 10.2

depends on the closed refinement of the edges, the lower dimensional faces in h ∩ h′ are

guaranteed to bisect in Σh and Σh′ , i.e. the parents of a diamond δe associated with edge e,

restricted to h ∩ h′ will be identical for Σh and Σh′ .

Finally, if h and h′ are not the same size, assume, without loss of generality, that the

level of h is ` and that of h′ is (` + 1). Due to the edge-balancing constraint on C, it is not

possible for faces of h′ that belong to h ∩ h′ to be refined. Thus, the only cases we need to

consider are the refinement of faces of h in h ∩ h′. Since the edges in h ∩ h′ are refined by

Algorithm 10.2, all higher dimensional faces are refined as well.

We conclude the proof by discussing the complexity of Σ. Let |h| be the number of

hypercubes in C and |σ| be the number of simplices in Σ. Since Σh minimally contains

the d! simplices obtained through a Kuhn-subdivision of h (i.e. the simplices in its cor-

responding 0-diamond), the lower bound on |σ| is |h| · d! simplices. This lower limit is

obtained when C is a uniform resolution hypercubic mesh.

Similarly, since each edge (i.e. the (d − 1)-faces) of a hypercube in C can be refined

220

at most once, all j-faces, j < (d − 1), can be refined at most once. Thus, each local trian-

gulation Σh, in the worst case, is a fully-subdivided hypercube. Σh therefore contributes at

most 2d · d! simplices. This gives an upper bound on |σ| of |h| · 2d · d!. This upper bound is

not tight since it is not possible for all edges of all hypercubes within a hypercubic mesh

to be refined at the same time. �

10.3.4 Results

As a proof of concept, we demonstrate the bisection-based algorithm of Section 10.3 in

an adaptive 3D isosurfacing application. We compare triangulations extracted from edge-

balanced cubic meshes using bisection-based and Delaunay-based triangulations as well

as triangulations extracted from a corresponding hierarchy of diamonds (see Table 10.3).

In each case, C is a nested hypercubic mesh (in 3D), Σh is its associated bisection-based

triangulation (extracted using Algorithm 10.2), Σp is its associated Delaunay-based trian-

gulation (using the Algorithm of Plantinga and Vegter [151]) and Σd is a diamond-based

RSB mesh extracted from a corresponding hierarchy of diamonds using the same extrac-

tion criteria. In all cases, the error associated with a cube or a diamond is the maximum

interpolation error (computed using barycentric interpolation on its simplicial decomposi-

tion) among the points within its domain.

Recall that in the Delaunay-based triangulation of [151], Steiner vertices are inserted

at the midpoint of every cube, but no additional vertices are added to their faces. In contrast,

our bisection-based triangulation only adds Steiner points to cubes that have a smaller

edge-neighbor, but can also add Steiner points to a hypercube’s faces. As we can see from

Table 10.3, the overhead of our algorithm in the 3D case compared to the Delaunay-based

triangulation (in terms of the number of vertices and tetrahedra) is approximately 10%.

However, since the bisection-based algorithm generates conforming RSB meshes that

satisfy the direct dependency relation of a hierarchy of diamonds, they can be efficiently

encoded as diamond meshes, requiring O(|δ|) space, rather than as irregular simplicial

221

Table 10.3: Number of vertices |v|, primitives (cubes |h| or diamonds |δ|), and tetrahedra |σ| in
variable resolution meshes extracted from scalar fields of maximum resolution N (i.e., datasets
defined by (2N + 1)3 samples). For each dataset, C is an edge-balanced nested hypercubic mesh, Σh

is a conforming diamond mesh generated from C using Algorithm 10.2, Σp is the tetrahedral mesh
extracted from C using the Delaunay-based triangulation algorithm of Plantinga and Vegter [151]
and Σd is a diamond mesh extracted from the corresponding hierarchy of diamonds.

Dataset N Mesh type
Vertices Primitives Tetrahedra
|v| |h| or |δ| |σ|

Fuel 6

C 20.0 K 15.3 K -
Σh 37.5 K 43.7 K 218 K
Σp 35.3 K - 206 K
Σd 26.7 K 23.2 K 87.5 K

Hydrogen 7

C 82.2 K 62.4 K -
Σh 156 K 187 K 928 K
Σp 147 K - 853 K
Σd 108 K 93.0 K 357 K

Bunny 8

C 627 K 467 K -
Σh 1.20 M 1.45 M 7.20 M
Σp 1.09 M - 6.43 M
Σd 848 K 735 K 2.73 M

Engine 8

C 1.11 M 850 K -
Σh 2.06 M 2.52 M 12.7 M
Σp 1.97 M - 11.6 M
Σd 1.60 M 1.40 M 5.29 M

Tooth 8

C 241 K 181 K -
Σh 461 K 556 K 2.76 M
Σp 421 K - 2.48 M
Σd 325 K 281 K 1.05 M

Bonsai 8

C 1.69 M 1.31 M -
Σh 2.97 M 3.54 M 17.9 M
Σp 3.0 M - 17.6 M
Σd 2.20 M 1.94 M 7.57 M

Head 8

C 1.04 M 784 K -
Σh 1.99 M 2.39 M 11.9 M
Σp 1.82 M - 10.7 M
Σd 1.38 M 1.20 M 4.20 M

Armadillo 8

C 262 K 195 K -
Σh 513 K 621 K 3.0 M
Σp 458 K - 2.70 M
Σd 349 K 301 K 1.12 M

222

meshes, requiring O(|σ|) space. Furthermore, while our bisection-based algorithm is

defined in a dimension–independent manner, there would be difficulties in generalizing

the Delaunay-based algorithm to higher dimensions. For example, a four-dimensional

version of the Delaunay-based algorithm would require explicit triangulation cases for the

different edge refinement configurations of the cubic faces of a 4-cube.

From Table 10.3, we see that nested cubic meshes C require approximately 66%

the number of primitives (hypercubes) as their corresponding diamond meshes Σd to

satisfy the same constraints. However, their triangulations Σh generate approximately

2.5 times as many tetrahedra as Σd. We can see this in Figure 10.7, which illustrates a

cubic mesh extracted from the 2013 Bunny dataset (Figure 10.7a) as well as its bisection-

based triangulation (Figure 10.7b), and the diamond mesh extracted from a corresponding

hierarchy of diamonds (Figure 10.7c), for the isosurface depicted in Figure 10.7d.

223

(a) Nested cubical mesh, C (b) Bisection-based triangulation, Σh

(c) Diamond mesh, Σd (d) Extracted isosurface

Figure 10.7: Decompositions of the 2013 bunny dataset (a-c) associated with isovalue κ = 0 (d),
colored by level of resolution. An edge-balanced cubic mesh (a) with error less than 0.3% contains
156K cubes. Its bisection-based triangulation Σh (b) contains 691K diamonds. A diamond-based
mesh Σd (c) contains 166K diamonds.

224

Chapter 11

Conclusions

In this thesis, we have introduced several diamond-based approaches for scientific visual-

ization.

Diamond hierarchies of arbitrary dimension. We have formalized the notion of dia-

monds of arbitrary dimension [197] via a constructive combinatorial decomposition into

a Kuhn-subdivided hypercube and the boundary of a fully subdivided hypercube. Previ-

ously, diamonds were explicitly defined in two [45] and three dimensions [68,76], leading

to efficient data structures. While the definition of diamonds in terms of the simplices shar-

ing a common bisection edge, as well as the diamond decomposition paradigm have been

previously considered in arbitrary dimension [146], neither a data structure nor an anal-

ysis of the combinatorial complexity of these constructs have been previously proposed.

Our definition of diamonds has enabled us to develop the first closed-form equations for

the number of vertices, simplices, parents and children of a diamond, which we use to

define a compact pointerless encoding for hierarchies of diamonds and for their extracted

simplicial complexes.

We have also argued that diamonds are the natural representation for extracting,

representing and processing conforming RSB meshes. Conforming updates to a simplex-

based representations have storage and time complexity that is factorial in the dimension

of the underlying domain, while those to a diamond-based representation have complexity

that is linear in the dimension.

Our combinatorial decomposition also highlights parent-child duets, which are in

one-to-one correspondence with the arcs of the diamond dependency graph, as the fun-

225

damental building block within conforming RSB meshes. We have demonstrated their

utility in defining a compact encoding for adaptive diamond meshes (Chapter 6), in the de-

velopment of efficient navigation queries on diamond meshes (Chapter 8), and in passing

information, such as isovertices, down the hierarchy during refinement (Chapter 9).

Supercubes: A high-level primitive for RSB hierarchies. We have introduced the

supercube as a high-level primitive for RSB hierarchies [196, 198, 203, 211]. In particular,

we have enumerated the number of edges, diamonds and vertices in a d-dimensional

supercube as 4d − 2d. As discussed in Section 5.3, supercubes reinforce our observations

about the factorial nature of simplex-based conforming refinements to RSB meshes and

the linear nature of diamond-based conforming refinements. In particular, the average

number of d-simplices per diamond in a d-dimensional supercube is d!, while the average

number of duets per diamond in a d-dimensional supercube is d.

We have demonstrated the effectiveness of supercube-based representations in ex-

ploiting the spatial and hierarchical coherence associated with sparse closed subsets of a

hierarchy of diamonds. This has enabled us to define compact efficient data structures for

representing a partial diamond-based multiresolution scalar field (DMSF) and for encod-

ing the RSB mesh associated with an active front of a selective refinement query. This

solves a long-standing problem in the GIS community for efficiently representing sparse,

regularly sampled terrain datasets. We have also demonstrated that many common vol-

umetric datasets are oversampled by a factor of three or more. Thus, the partial DMSF

model can significantly reduce the resources required for processing and analyzing today’s

increasingly large scientific datasets.

Isodiamond hierarchies. We have introduced the Isodiamond Hierarchy [195, 200]

framework as a multiresolution model for an isosurface or interval volume embedded

within a DMSF. Isodiamond hierarchies can significantly reduce the storage requirements

and processing times for analyzing and visualizing the features of a multiresolution scalar

226

field once significant isovalues within the dataset have been discovered. Furthermore, the

minimal isodiamond model achieves a significant reduction in storage space and extraction

times by compensating for the relevant, but empty, ancestors of the intersected diamonds.

Hierarchies of balanced hypercubes. We have also analyzed the hierarchical depen-

dency relation required for extracting k-balanced hypercubic meshes from nested hyper-

cubic meshes generated through regular refinement. An examination of the dependency

relation through the lens of diamond hierarchies was invaluable in our definition of a

multiresolution model for k-balanced hypercubic meshes.

Furthermore, we derived a pointerless encoding for nested hypercubic meshes from

our encoding of diamond hierarchies (Chapter 6), leading to a novel representation for 2d-

trees that incorporates the benefits of pointerless representation (i.e. linear quadtrees [59,

60]), with those of leafless representations (i.e. Autumnal quadtrees [55]). Our results on

volumetric datasets indicate that even unbalanced octrees have very high concentration

with respect to the supercube clustering (more than 7 out of a possible 8 cubes were

retained on average), which increases as the degree of balancing within the hypercubic

mesh increases.

Finally, we introduced a diamond-based triangulation for nested hypercubic meshes

[199] and proved bounds on the sizes of these triangulations. Specifically, the RSB trian-

gulation of each hypercube lies somewhere between that of a Kuhn-subdivided hypercube

and a fully-subdivided hypercube. This leads to an overall inflation factor of between d!

and (2d)!! simplices in the corresponding RSB mesh for each d-cube in the original mesh.

Since the triangulation is a conforming RSB mesh, a diamond-based representation of this

mesh is significantly more compact than a simplex-based representation.

227

11.1 Three families of nested RSB meshes

Supercubes highlight the distinction between the three families of RSB meshes discussed

in this thesis.

The simplex-based representation is defined over the containment hierarchy induced

by RSB operations. It encodes all possible nested RSB meshes achievable by recursively

bisecting a simplex in the original Kuhn-subdivision of a hypercubic domain Ω. Let us

call the family of meshes generated by simplex bisection S. Then, every mesh Σσ ∈ S can

be generated by applying an adaptive refinement algorithm to K(Ω) (Algorithm 4.1).

The diamond-based representation for RSB meshes is defined over the dependency

relation induced by conforming RSB operations. It encodes all possible conforming RSB

meshes achievable by subdividing diamonds generated from the 0-diamond defined by

the original Kuhn-subdivision of a hypercubic domain. Let us call the family of meshes

generated by diamond refinement D. Then, every mesh Σδ ∈ D can be generated by

applying a selective refinement algorithm applied to K(Ω) (Algorithm 4.2).

Finally, the hypercube-based representation is defined over the dependency relation

induced by edge-balanced refinement of hypercubes. It encodes the conforming RSB

meshes obtained by triangulating all edge-balanced hypercubic meshes obtained through

regular refinement of a hypercubic domain Ω. Let us call this family of meshes H .

Then, every mesh Σh ∈ H can be generated through a triangulation of an edge-balanced

hypercubic mesh generated from Ω (for example, using Algorithm 10.2).

It has previously been observed in the 2D case thatH ⊂ D [39].

Since each diamond subdivision is defined in terms of a set of simplex bisections,

and since the hypercube triangulation scheme is defined in terms of diamond refinements,

the following relationship holds in arbitrary dimension:

H ⊂ D ⊂ S. (11.1)

228

Note that each relationship defines a proper subset. That is, there exist RSB meshes

that are not conforming (i.e. Σ ∈ S, but Σ < D), as well as conforming RSB meshes that

are not extractable from a triangulated edge-balanced hypercubic mesh. (i.e. Σ′ ∈ D, but

Σ′ < H).

The relative complexities of these three families of RSB meshes is highlighted

through the supercube primitive. Recall that each supercube uniquely indexes:

• 2d · (2d − 1) · d! distinct RSB simplices of order d;

• 2d · (2d − 1) distinct diamond types; and

• 2d distinct hypercube types.

The simplex-based representation is the most powerful, as S contains meshes that

are not conforming in addition to those that are conforming. It is also the most verbose, by

a factor of d!, with respect to the class of conforming RSB meshes. However, a simplex-

based representation can be an ideal representation in applications, such as point location,

that do not require conforming meshes. Alternatively, a lazy refinement evaluation can be

applied to local regions in a non-conforming simplex-based representation when crack-

free representations are required [5].

The diamond-based representation is the basis for all conforming RSB meshes. As

all meshes extracted by a selective refinement query on a hierarchy of diamonds, or on a

hierarchy of RSB simplices belong to D, the diamond-based representation is the most

efficient representation for conforming RSB meshes.

Finally, the hypercube-based representation is the most compact of the three, but

is the least powerful representation. In each level of resolution, a supercube can only

contain 2d elements. Due to the increased granularity, RSB meshes inH are significantly

larger than those inD for the same selection criterion. On the other hand, since there are

many existing implementations of quadtrees, octrees and 2d-trees, the approach outlined

in Section 10.3 can be an easy way of generating high-quality simplicial complexes from

229

(a) Σh ∈ H (b) Σd ∈ D (c) Σs ∈ S

Figure 11.1: Minimal RSB triangulations required to generate a given RSB simplex (blue triangle)
for an edge-balanced hypercube hierarchy (a), a hierarchy of diamonds (b) and a hierarchy of
simplices (c). Note that Σd < H since it does not correspond to an edge-balanced hypercubic mesh,
and Σs < D since it is not conforming.

an existing scientific visualization system based on hypercubes. Figure 11.1 illustrates

the smallest member of each family of RSB meshes (in 2D) that contains a given simplex

(blue triangle).

11.2 Future work

Recently, there has been an increasing trend in scientific visualization toward the genera-

tion and interaction with very large time-varying volume data sets. Such data sets are used

as basic tools for analyzing the dynamics and the evolution of phenomena in a variety of

application domains, including medicine, meteorology, astrophysics and engineering.

Time-varying volume data sets are sets of points in the 3D Euclidean space describ-

ing one or more scalar quantity (e.g. pressure, temperature, strength of an electric or

magnetic field) at different instances of time. Approaches to dealing with time-varying

data differ in their treatment of the temporal dimension [194]. Values in local regions tend

to change slowly over short intervals of time. This temporal coherence can be exploited

in interactive applications by efficiently encoding these small changes, thus minimizing

storage and retrieval costs. A common metaphor for this approach is that of a video, where

users can gain insight into the dataset by ‘playing’ the discrete snapshots of the volume

230

over time. Decoupling the spatial and temporal components can be advantageous when the

spatial and temporal resolutions differ greatly or where there is a higher degree of spatial

coherence in a local region than there is temporal coherence, or vice versa. An alternative

approach is to treat the temporal and spatial dimensions in a homogeneous way. Although

this approach can be more complex to conceptualize, it offers several advantages. Since

time is assumed to be continuous, smoother animations can be performed by interpolating

the field values. Additionally, the correspondence between time steps can be exploited to

track features over time.

The huge size and complexity of available time-varying data sets poses interesting

challenges for inspecting, analyzing and visualizing such data, as the underlying domain

is typically at a much higher resolution than one which could be interactively processed or

meaningfully analyzed. This naturally leads to the investigation of hierarchical methods

to control and adjust the level of detail of a given data set using a multiresolution model.

This enables reducing the geometry in less ‘interesting’ areas and allows users to focus on

a region of interest, thus achieving lower storage costs and better performance.

We believe that a four-dimensional diamond hierarchy would significantly aid in

the analysis and visualization of time-varying volumetric data. This would be a natural

extension of our work. Supercubes could be used to process the hierarchy, to define the

geometric and hierarchical relationships among the elements of the model and to encode

its extracted meshes. Due to the large size of such datasets, an isodiamond hierarchy could

be used to analyze its isosurfaces and interval volumes offline, or on less powerful work-

station, once the interesting cases have been identified. Finally, a duet-based algorithm

could be defined to efficiently navigate the connectivity of its extracted meshes.

231

Appendix A

Double factorial

The factorial of a positive number n ∈ N, denoted n!, is recursively defined as:

n! =

n · (n − 1)! n > 1

1 n = 1.

It is the product of all natural numbers from 1 to n.

n! =

n∏
i=1

i.

The double factorial function [126], denoted n!!, is recursively defined as:

n!! =

n · (n − 2)!! n > 2

1 n ∈ {0, 1}.

For even values, k = 2n, n ∈ N, the double factorial is the product of all even numbers up

to n, i.e.,

k!! = (2n)!! =

n∏
i=1

2i (A.1)

and for odd values, k′ = 2n − 1, n ∈ N, the double factorial is the product of all odd

numbers up to n, i.e,

k′!! = (2n − 1)!! =

n∏
i=1

(2i − 1) (A.2)

From this, we see that

n! = n!!(n − 1)!!

232

so the factorial function is the product of successive entries in the double factorial function.

Another relationship between factorials and double factorials can be obtained by

separating the terms on the right hand side of Equation A.1

(2n)!! =

n∏
i=1

2 ·
n∏

i=1

i = 2n · n! (A.3)

Thus, the complexity of the double factorial function is Ω(n!) for even numbers k = 2n.

The first few values of (2n)!!, for n = 0, 1, 2, . . ., are thus:

1, 2, 8, 48, 384, 3840, . . .

233

Appendix B

Common terms involving binomials, exponents and
factorials

Table B.1: Common terms involving exponents, factorials and binomials.

n 0 1 2 3 4 5 6

2n 1 2 4 8 16 32 64
Exponential 3n 1 3 9 27 81 243 729

4n 1 4 16 64 256 1,024 4,096
5n 1 5 25 125 625 3,125 15,625

3n − 1 0 2 8 26 80 242 728
4n − 2n 0 2 12 56 240 992 4,032
5n − 3n 0 2 16 98 544 2,882 14,896

n! 1 1 2 6 24 120 720
Factorial n!! 1 1 2 3 8 15 48

(2n)!! = 2nn! 1 2 8 48 384 3,840 46,080(
0
n

)
1(

1
n

)
1 1

Binomial
(

2
n

)
1 2 1(

d
n

)
= d!

n!(d−n)!

(
3
n

)
1 3 3 1(

4
n

)
1 4 6 4 1(

5
n

)
1 5 10 10 5 1(

6
n

)
1 6 15 20 15 6 1

2n 2 4 8 16 32 64
Supercubes 2n · (2n − 1) 2 12 56 240 992 4,032

2n · (2n − 1) · n! 2 24 336 5,760 119,040 2,903,040
2n · (2n − 1) · n 2 24 168 960 4,960 24,192

234

Appendix C

Binomial theorem

C.1 Simplified binomial theorem

In this section, we prove a special case of the binomial theorem,

n∑
k=0

(
n
k

)
· xn−k · yk = (x + y)n (C.1)

for the case where x ∈ N and y = 1.

Theorem C.1.1. Let α, d, i ∈ N, then

d∑
i=0

(
d
i

)
· αd−i = (α + 1)d

Proof. We prove this using induction on d. The base case is satisfied by recalling that

(
0
0

)
=

(
d
0

)
=

(
d
d

)
= 1 (C.2)

thus, for d = 0,
∑0

i=0 =
(

0
0

)
· α0 = 1 = (α + 1)0.

For the induction case, we need to show that

d∑
i=0

(
d
i

)
· αd−i = (α + 1)d

implies that
d+1∑
i=0

(
d + 1

i

)
· αd+1−i = (α + 1)d+1.

235

We can separate the first and last terms of the summand to obtain:

d+1∑
i=0

(
d + 1

i

)
· αd+1−i =

(
d + 1

0

)
· αd+1 +

d∑
i=1

(
d + 1

i

)
· αd+1−i +

(
d + 1
d + 1

)
· α0

Next, we utilize Pascal’s identity

(
d + 1

i

)
=

(
d
i

)
+

(
d

i − 1

)
(C.3)

on the middle term, and the identity from Equation C.2 on the outer terms to obtain:

d+1∑
i=0

(
d + 1

i

)
· αd+i−i = αd+1 +

d∑
i=1

([(
d
i

)
+

(
d

i − 1

)]
· αd+1−i

)
+ 1

We can then regroup terms as

d+1∑
i=0

(
d + 1

i

)
· αd+i−i =

αd+1 +

d∑
i=1

(
d
i

)
· αd+1−i

 +

 d∑
i=1

(
d

i − 1

)
· αd+1−i + 1

Finally, by reversing Equation C.2, pulling an α out from the left term, and convert-

ing the index i to j = i − 1 on the right term, we obtain:

d+1∑
i=0

(
d + 1

i

)
· αd+i−i = α ∗

(d0
)
· αd +

d∑
i=1

(
d
i

)
· αd−i

 +

 d−1∑
j=0

(
d
j

)
· αd− j +

(
d
d

)
Which, after applying the induction hypothesis, gives us the desired result:

d+1∑
i=0

(
d + 1

i

)
· αd+i−i = α ∗

d∑
i=0

(
d
i

)
· αd−i +

d∑
j=0

(
d
j

)
· αd− j

= α ∗ (α + 1)d + (α + 1)d

= (α + 1) ∗ (α + 1)d

= (α + 1)d+1

�

236

As a special case, when α = 1, we get the familiar

d∑
i=0

(
d
i

)
= 2d

i.e. that the binomial coefficients of row d of Pascal’s triangle sum to 2d.

Similarly, when α = 2, we obtain the result

d∑
i=0

(
d
i

)
· 2d−i = 3d.

Since a d-cube has 2d−i faces of dimension d − i and there are
(

d
i

)
distinct combinations,

we see that a d-cube has a total of 3d faces.

C.2 Related proof

Here we prove that
∑((

d
i

)
· 2i

)
= 2d · d, which we use in Section 5.2.

Theorem C.2.1. Let d, i ∈ N, then

d∑
i=0

(
d
i

)
· 2i = 2d · d.

Proof. This proof is very similar in structure of Proof C.1.1, and uses induction on d.

The base case (d = 0) is satisfied since 2 · 0 = 20 · 0 = 0.

For the inductive case, we assume

d∑
i=0

(
d
i

)
· 2i = 2d · d (C.4)

to prove
d+1∑
i=0

(
d + 1

i

)
· 2i = 2d+1 · (d + 1). (C.5)

237

Starting with the left side of the above equation, we first separate the first and last

terms from the summand to obtain

d+1∑
i=0

(
d + 1

i

)
· 2i = 0 +

d∑
i=1

(
d + 1

i

)
· 2i + 2(d + 1).

Next, we apply Pascal’s identity (Equation C.3) to separate the binomial coefficient as

d+1∑
i=0

(
d + 1

i

)
· 2i =

d∑
i=1

((
d
i

)
+

(
d

i − 1

))
· 2i + 2(d + 1).

We then separate the two summands involving binomials, change the index in the right

term to j = i − 1, add the initial term (i = 0) of 0 to the first sum and incorporate the final

term (j = d) to the second sum using the 2(d + 1) summand to obtain:

d+1∑
i=0

(
d + 1

i

)
· 2i =

d∑
i=0

(
d
i

)
· 2i +

d∑
j=0

(
d
j

)
· 2(j + 1).

Finally, distributing 2(j + 1) to 2 j + 2 and separating the sums in the second term, we

obtain
d+1∑
i=0

(
d + 1

i

)
· 2i =

d∑
i=0

(
d
i

)
· 2i +

d∑
j=0

(
d
j

)
· 2 j +

d∑
j=0

(
d
j

)
· 2.

After applying the induction hypothesis to the first two terms and the binomial theorem

(Theorem C.1.1) to the third term, we obtain our desired result

d+1∑
i=0

(
d + 1

i

)
· 2i = 2d · d + 2d · d + 2d+1

= 2d+1 · d + 2d+1

= 2d+1 · (d + 1).

(C.6)

�

238

Bibliography

[1] M. Agoston. Computer Graphics and Geometric Modeling. Springer, 2005.

[2] J.W. Alexander. The combinatorial theory of complexes. The Annals of Mathemat-
ics, 31(2):292–320, 1930.

[3] E. Allgower and K. Georg. Generation of triangulations by reflection. Utilitas
Mathematica, 16:123–129, 1979.

[4] D.N. Arnold, A. Mukherjee, and L. Pouly. Locally adapted tetrahedral meshes
using bisection. SIAM Journal on Scientific Computing, 22(2):431–448, 2000.

[5] F.B. Atalay and D.M. Mount. Pointerless implementation of hierarchical simpli-
cial meshes and efficient neighbor finding in arbitrary dimensions. In Proc. 13th
International Meshing Roundtable, pages 15–26, 2004.

[6] F.B. Atalay and D.M. Mount. Pointerless implementation of hierarchical simplicial
meshes and efficient neighbor finding in arbitrary dimensions. International Journal
of Computational Geometry and Applications, 17(6):595–631, 2007.

[7] L. Balmelli, T. Liebling, and M. Vetterli. Computational analysis of mesh sim-
plification using global error. Computational Geometry Theory and Applications,
25(3):171–196, 2003.

[8] T.F. Banchoff. Critical points and curvature for embedded polyhedral surfaces.
American Mathematical Monthly, 77(5):475–485, 1970.

[9] R.E. Bank, A. H. Sherman, and A. Weiser. Refinement algorithms and data struc-
tures for regular local mesh refinement. In R. Stepleman, M. Carver, R. Peskin,
W. F. Ames, and R. Vichnevetsky, editors, Scientific Computing, IMACS, volume 1,
pages 3–17. North-Holland, Amsterdam, 1983.

[10] D.C. Banks, S.A. Linton, and P.K. Stockmeyer. Counting cases in substitope algo-
rithms. IEEE Transactions on Visualization and Computer Graphics, 10(4):371–
384, 2004.

[11] E. Bänsch. Local mesh refinement in 2 and 3 dimensions. IMPACT of Computing
in Science and Engineering, 3(3):181–191, 1991.

[12] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

239

[13] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. Journal of
Computer and System Sciences, 48(3):384 – 409, 1994.

[14] J. Bey. Tetrahedral mesh refinement. Computing, 55:355–378, 1995.

[15] J. Bey. Simplicial grid refinement: On Freudenthal’s algorithm and the optimal
number of congruence classes. Numerische Mathematik, 85(1):1–29, 2000.

[16] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurfacing in higher dimensions. In
Proceedings IEEE Visualization, pages 267–273. IEEE Computer Society, October
2000.

[17] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurface construction in any di-
mension using convex hulls. IEEE Transactions on Visualization and Computer
Graphics, 10(2):130–141, 2004.

[18] P. Bhaniramka, C. Zhang, D. Xue, R. Crawfis, and R. Wenger. Volume interval
segmentation and rendering. In Proceedings Volume Visualization Symposium,
2004.

[19] J. Blow. Terrain rendering at high levels of detail. In Proceedings of the Game
Developers Conference, 2000.

[20] K. Bonnell, M. Duchaineau, D. Schikore, B. Hamann, and K. Joy. Material inter-
face reconstruction. IEEE Transactions on Visualization and Computer Graphics,
9(4):500–511, 2003.

[21] R. Borgo, V. Pascucci, R. Scopigno, and P. Cignoni. A Progressive Subdivision
Paradigm (PSP). Proceedings of SPIE, 5295:223, 2004.

[22] J. Bösch, P. Goswami, and R. Pajarola. Raster: Simple and efficient terrain render-
ing on the GPU. In D. Ebert and J. Krueger, editors, EG 2009 - Areas Papers, pages
35–42. Eurographics Association, 2009.

[23] H. Brönnimann and M. Glisse. Octrees with near optimal cost for ray-shooting.
Computational Geometry, 34(3):182 – 194, 2006.

[24] P. Bunyk, A. Kaufman, and C.T. Silva. Simple, fast, and robust ray casting of
irregular grids. In Proceedings Scientific Visualization, pages 30–36, 1997.

[25] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions.
Computational Geometry Theory and Applcations, 24(2):75–94, 2003.

[26] A. Castelo, L.G. Nonato, M.F. Siqueira, R. Minghim, and G. Tavares. The Ja
1

triangulation: An adaptive triangulation in any dimension. Computers & Graphics,
30(5):737–753, 2006.

[27] Y.S. Chang and H. Qin. A unified subdivision approach for multi-dimensional
non-manifold modeling. Computer Aided Design, 38(7):770–785, 2006.

240

[28] P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Selective
refinement queries for volume visualization of unstructured tetrahedral meshes.
IEEE Transactions on Visualization and Computer Graphics, 10(1):29–45, January-
February 2004.

[29] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno.
BDAM – Batched Dynamic Adaptive Meshes for high performance terrain visual-
ization. Computer Graphics Forum, 22(3):505–514, 2003.

[30] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno.
Planet-sized Batched Dynamic Adaptive Meshes (P-BDAM). In Proceedings IEEE
Visualization, pages 147–154. IEEE Computer Society Washington, DC, USA,
2003.

[31] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno. Adap-
tive tetrapuzzles: Efficient out-of-core construction and visualization of gigantic
multiresolution polygonal models. ACM Transactions on Graphics, 23(3):796–803,
2004.

[32] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speeding up
isosurface extraction using interval trees. IEEE Transactions on Visualization and
Computer Graphics, 3(2):158–170, 1997.

[33] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algorithms.
The MIT press, 2001.

[34] E. Danovaro, L. De Floriani, P. Magillo, E. Puppo, D. Sobrero, and N. Sokolovsky.
The half-edge tree: A compact data structure for level-of-detail tetrahedral meshes.
In Proceeding of the International Conference on Shape Modeling, June, 15-17
2005.

[35] M. de Berg, O. Schwarzkopf, M. van Kreveld, and M. Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 1997.

[36] L. De Floriani and A. Hui. Shape representations based on simplicial and cell
complexes. In D. Schmalstieg and J. Bittner, editors, Eurographics 2007 - State of
the Art Reports, pages 63–87, Prague, 2007.

[37] L. De Floriani, F. Iuricich, P. Magillo, M.M. Mesmoudi, and K. Weiss. Discrete
distortion for 3D data analysis. In L. Linsen, H. Hagen, and B. Hamann, editors, Vi-
sualization in Medicine and Life Sciences (VMLS), Mathematics and Visualization.
Springer Berlin Heidelberg, 2011.

[38] L. De Floriani and M. Lee. Selective refinement on nested tetrahedral meshes. In
G. Brunett, B. Hamann, and H. Mueller, editors, Geometric Modeling for Scientific
Visualization. Springer Verlag, 2004.

241

[39] L. De Floriani and P. Magillo. Multiresolution mesh representation: Models and
data structures. In M. Floater, A. Iske, and E. Quak, editors, Principles of Multi-
resolution Geometric Modeling, Lecture Notes in Mathematics, pages 364–418,
Berlin, 2002. Springer Verlag.

[40] L. De Floriani and P. Magillo. Algorithms for visibility computation on terrains: A
survey. Environment and Planning B - Planning and Design, 30(5):709–728, 2003.

[41] L. De Floriani, P. Magillo, and E. Puppo. VARIANT: A system for terrain modeling
at variable resolution. Geoinformatica, 4(3):287–315, 2000.

[42] L. De Floriani and E. Puppo. Hierarchical triangulation for multi-resolution surface
description. ACM Transactions on Graphics, 14(4):363–411, October 1995.

[43] L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multi-resolution
modeling. In W. Strasser, R. Klein, and R. Rau, editors, Geometric Modeling:
Theory and Practice, pages 302–323. Springer-Verlag, 1997.

[44] M. Desbrun, E. Kanso, and Y. Tong. Discrete differential forms for computational
modeling. In ACM SIGGRAPH 2005 Courses. ACM, 2005.

[45] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B.
Mineev-Weinstein. ROAMing terrain: Real-time Optimally Adapting Meshes. In
R. Yagel and H. Hagen, editors, Proceedings IEEE Visualization, pages 81–88,
Phoenix, AZ, October 1997. IEEE Computer Society.

[46] M.J. Durst. Letters: Additional reference to marching cubes. Computer Graphics,
22(2):72–73, 1988.

[47] H. Edelsbrunner. Dynamic data structures for orthogonal intersection queries. Tech-
nical report, Institut für Informationsverarbeitung, Tech. Univ. Graz, 1980.

[48] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale complexes
for piecewise linear 3-manifolds. In Proceedings 19th ACM Symposium on Com-
putational Geometry, pages 361–370, 2003.

[49] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale com-
plexes for piecewise linear 2-manifolds. Discrete and Computational Geometry,
30(1):87–107, 2003.

[50] H. Edelsbrunner and E.P. Mucke. Three-dimensional alpha shapes. Transactions
on Graphics, 13:43–72, 1994.

[51] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf. Real-time
volume graphics. AK Peters Ltd, 2006.

[52] F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for fast rendering.
In Proceedings IEEE Visualization, pages 319–326, 1996.

242

[53] W. Evans, D. Kirkpatrick, and G. Townsend. Right triangular irregular networks.
Technical Report TR97-09, University of Arizona, Tucson, AZ, USA, 1997.

[54] W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular networks.
Algorithmica, 30(2):264–286, 2001.

[55] F. Fabbrini and C. Montani. Autumnal quadtrees. The Computer Journal, 29(5):472–
474, 1986.

[56] H. Freudenthal. Simplizialzerlegungen von beschrankter flachheit. Annals of Math-
ematics, 43(3):580–582, 1942.

[57] I. Fujishiro, Y. Maeda, and H. Sato. Interval volume: A solid fitting technique for
volumetric data display and analysis. In Proceedings IEEE Visualization, pages
151–158, Los Alamitos, CA, USA, 1995. IEEE Computer Society.

[58] I. Fujishiro, Y. Maeda, H. Sato, and Y. Takeshima. Volumetric data exploration
using interval volume. IEEE Transactions on Visualization and Computer Graphics,
2(2):144–155, 1996.

[59] I. Gargantini. An effective way to represent quadtrees. Communications of the
ACM, 25(12):905–910, December 1982.

[60] I. Gargantini. Linear octtrees for fast processing of three-dimensional objects.
Computer Graphics and Image Processing, 20(4):365–374, 1982.

[61] R. Garimella. Conformal refinement of unstructured quadrilateral meshes. In
Proceedings of the 18th International Meshing Roundtable, pages 31–44. Springer,
2009.

[62] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics.
In Proceedings SIGGRAPH, pages 209–216, 1997.

[63] T.D. Gatzke and C.M. Grimm. Estimating curvature on triangular meshes. Interna-
tional Journal on shape Modeling, 12:1–29, 2006.

[64] M. Gavriliu, J. Carranza, D. Breen, and A. Barr. Fast extraction of adaptive multires-
olution meshes with guaranteed properties from volumetric data. In Proceedings of
IEEE Visualization, pages 295–303, Washington, DC, USA, 2001. IEEE Computer
Society.

[65] T. Gerstner. Multiresolution extraction and rendering of transparent isosurfaces.
Computers & Graphics, 26(2):219–228, 2002.

[66] T. Gerstner. Multi-resolution visualization and compression of global topographic
data. GeoInformatica, 7(1):7–32, 2003.

[67] T. Gerstner. Top-down view-dependent terrain triangulation using the octagon
metric. Technical report, Institut für Angewandte Mathematik, University of Bonn,
2003.

243

[68] T. Gerstner and R. Pajarola. Topology-preserving and controlled topology simpli-
fying multi-resolution isosurface extraction. In Proceedings IEEE Visualization,
pages 259–266, 2000.

[69] T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based
on tetrahedral bisection. In Proceedings Symposium on Volume Visualization, pages
267–278. ACM Press, 1999.

[70] T. Gerstner, M. Rumpf, and U. Weikard. Error indicators for multilevel visualization
and computing on nested grids. Computers & Graphics, 24(3):363–373, 2000.

[71] S.F.F. Gibson. Constrained elastic surface nets: Generating smooth surfaces from
binary segmented data. In Medical Image Computing and Computer-Assisted In-
terventation (MICCAI), volume 1496 of Lecture Notes in Computer Science, pages
888–898. Springer, 1998.

[72] E. Gobbetti, F. Marton, P. Cignoni, M. Di Benedetto, and F. Ganovelli. C-BDAM -
Compressed Batched Dynamic Adaptive Meshes for terrain rendering. Computer
Graphics Forum, 25(3):333–342, 2006.

[73] P. Goswami, M. Makhinya, J. Bösch, and R. Pajarola. Scalable parallel out-of-core
terrain rendering. In Proceedings Eurographics Symposium on Parallel Graphics
and Visualization, pages 63–71, 2010.

[74] D. M. Greaves and A. G. L. Borthwick. Hierarchical tree-based finite element mesh
generation. Int’l Journal for Numerical Methods in Engineering, 45(4):447–471,
1999.

[75] D.M. Greaves, Q.W. Ma, A.G.L. Borthwick, and G.X. Wu. Octree-based finite
element analysis for three-dimensional steep waves. In Proceedings International
Workshop on Water Waves and Floating Bodies, 1996.

[76] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. Interactive
view-dependent rendering of large isosurfaces. In Proceedings IEEE Visualization,
pages 475–484. IEEE Computer Society Washington, DC, USA, October 2002.

[77] B. Gregorski, J. Senecal, M. Duchaineau, and K. I. Joy. Compression and occlu-
sion culling for fast isosurface extraction from massive datasets. In Mathematical
Foundations of Scientific Visualization, Computer Graphics, and Massive Data
Exploration, Mathematics and Visualization, pages 303–323. Springer, 2009.

[78] B. Gregorski, J. Senecal, M.A. Duchaineau, and K.I. Joy. Adaptive extraction
of time-varying isosurfaces. IEEE Transactions on Visualization and Computer
Graphics, 10(6):683–694, 2004.

[79] G. Greiner and R. Grosso. Hierarchical tetrahedral-octahedral subdivision for vol-
ume visualization. The Visual Computer, 16(6):357–369, 2000.

244

[80] A. Greß and R. Klein. Efficient representation and extraction of 2-manifold isosur-
faces using kd-trees. Graphical Models, 66(6):370–397, 2003.

[81] R. Gross, C. Luerig, and T. Ertl. The multilevel finite element method for adaptive
mesh optimization and visualization of volume data. In R. Yagel and H. Hagen,
editors, Proceedings IEEE Visualization, pages 387–394, Phoenix, AZ, October
1997. IEEE Computer Society.

[82] R. Grosso and G. Greiner. Hierarchical meshes for volume data. In Proceedings
Computer Graphics International, pages 761–769, 1998.

[83] B. Guo. Interval set: A volume rendering technique generalizing isosurface ex-
traction. In Proceedings IEEE Visualization, pages 3–10. IEEE Computer Society
Washington, DC, USA, 1995.

[84] D. J. Hebert and H. Kim. Image encoding with triangulation wavelets. In SPIE
Conference Series, volume 2569, pages 381–392, 1995.

[85] D.J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Symbolic
Computation, 17(5):457–472, May 1994.

[86] D.J. Hebert. Cyclic interlaced quadtree algorithms for quincunx multiresolution.
Journal of Algorithms, 27(1):97–128, 1998.

[87] H.C. Hege, M. Seeba, D. Stalling, and M. Zckler. A generalized marching cubes
algorithm. Technical report, Konrad-Zuse-Zentrum für Informationstechnik Berlin,
1997.

[88] W.L. Hibbard, J. Anderson, I. Foster, B.E. Paul, R. Jacob, C. Schafer, and M.K.
Tyree. Exploring coupled atmosphere-ocean models using Vis5D. International
Journal of High Performance Computing Applications, 10(2-3):211–222, 1996.

[89] GM Hunter and K. Stieglitz. Operations on images using quadtree. IEEE Transac-
tions on Patern Analysis and Machine Intelligence, 1(2):145–153, April 1979.

[90] L.M. Hwa, M.A. Duchaineau, and K.I. Joy. Adaptive 4-8 texture hierarchies. In Pro-
ceedings IEEE Visualization, pages 219–226. IEEE Computer Society Washington,
DC, USA, 2004.

[91] L.M. Hwa, M.A. Duchaineau, and K.I. Joy. Real-time optimal adaptation for plane-
tary geometry and texture: 4-8 tile hierarchies. IEEE Transactions on Visualization
and Computer Graphics, 11(4):355–368, 2005.

[92] Y. Ito, A.M. Shih, and B.K. Soni. Efficient hexahedral mesh generation for complex
geometries using an improved set of refinement templates. In Proceedings of the
18th International Meshing Roundtable, pages 103–115, 2009.

[93] G. Ji, H. W. Shen, and R. Wenger. Volume tracking using higher dimensional
isosurfacing. In G. Turk, J. van Wijk, and R. Moorhead, editors, Proceedings IEEE
Visualization, pages 209–216. IEEE Computer Society, October 2003.

245

[94] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data.
ACM Trans. Graph., 21(3):339–346, 2002.

[95] T. Ju and T. Udeshi. Intersection-free contouring on an octree grid. In Proceedings
Pacific Graphics, 2006.

[96] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe. Unconstrained isosurface extrac-
tion on arbitrary octrees. In Proceedings Eurographics Symposium on Geometry
Processing, pages 125–133. Eurographics Association Aire-la-Ville, Switzerland,
Switzerland, 2007.

[97] A. Kimura, Y. Takama, Y. Yamazoe, S. Tanaka, and H Tanaka. Parallel volume
segmentation with tetrahedral adaptive grid. International Conference on Pattern
Recognition, 2:281–286, 2004.

[98] A. Knoll. A short survey of octree volume rendering techniques. GI Lecture Notes
in Informatics, June 2006.

[99] I. Kossaczký. A recursive approach to local mesh refinement in two and three
dimensions. Journal of Computational and Applied Mathematics, 55(3):275–288,
1994.

[100] H.W. Kuhn. Some combinatorial lemmas in topology. IBM J. Res. Develop, 4:518–
524, 1960.

[101] M. Lee. Spatial Modeling using Triangular, Tetrahedral and Pentatopic Decompo-
sitions. PhD thesis, The University of Maryland, College Park, 2006.

[102] M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in hier-
archical tetrahedral meshes. In Proceedings International Conference on Shape
Modeling, pages 286–295, Genova, Italy, May 2001. IEEE Computer Society.

[103] M. Lee, L. De Floriani, and H. Samet. Constant-time navigation in four-dimensional
nested simplicial meshes. In Proceedings Shape Modeling International 2004,
pages 221–230. IEEE Computer Society, June 2004.

[104] M. Lee and H. Samet. Navigating through triangle meshes implemented as linear
quadtrees. ACM Transactions on Graphics, 19(2):79–121, April 2000.

[105] S. Lefebvre and H. Hoppe. Perfect spatial hashing. ACM Transactions on Graphics,
25(3):579–588, 2006.

[106] J. Levenberg. Fast view-dependent level-of-detail rendering using cached geometry.
In Proceedings IEEE Visualization, pages 259–266, Washington, DC, USA, 2002.
IEEE Computer Society.

[107] T. Lewiner, H. Lopes, L. Velho, and V. Mello. Extraction and compression of hierar-
chical isocontours from image data. Computerized Medical Imaging and Graphics,
30(4):231–242, 2006. Medical Imaging and Graphics in SIBGRAPI/SIACG.

246

[108] T. Lewiner, L. Velho, H. Lopes, and V. Mello. Hierarchical isocontours extraction
and compression. In 17th Brazilian Symposium on Computer Graphics and Image
Processing, pages 234–241, Curitiba, PA, October 2004.

[109] T. Lewiner, L. Velho, H. Lopes, and V. Mello. Simplicial isosurface compression.
In Vision, Modeling, and Visualization, pages 299–306, Stanford, CA, November
2004.

[110] W.B.R. Lickorish. Simplicial moves on complexes and manifolds. Geometry and
Topology Monographs, 2(299-320):314, 1999.

[111] P. Lindstrom and J. D. Cohen. On-the-fly decompression and rendering of multires-
olution terrain. In Proceedings of ACM Symposium on Interactive 3D Graphics and
Games, I3D ’10, pages 65–73, New York, NY, USA, 2010. ACM.

[112] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner.
Real-time continuous level of detail rendering of height fields. In Proceedings ACM
SIGGRAPH, pages 109–118, August 1996.

[113] P. Lindstrom and V. Pascucci. Terrain simplification simplified: A general frame-
work for view-dependent out-of-core visualization. IEEE Transactions on Visual-
ization and Computer Graphics, 8(3):239–254, 2002.

[114] L. Linsen, J. Gray, V. Pascucci, M. A. Duchaineau, B. Hamann, and K.I. Joy. Hierar-
chical large-scale volume representation with 3√2 subdivision and trivariate b-spline
wavelets. In G. Brunnett, B. Hamann, H. Mueller, and L. Linsen, editors, Geometric
Modeling for Scientific Visualization, Mathematics + Visualization, pages 359–378.
Springer Verlag, Heidelberg, Germany, 2004.

[115] L. Linsen, V. Pascucci, MA Duchaineau, B. Hamann, and KI Joy. Wavelet-based
multiresolution with n√2 subdivision. Journal on Computing, Special Edition:
Dagstuhl Seminar on Geometric Modelling, 72:129–142, 2004.

[116] A. Liu and B. Joe. Quality local refinement of tetrahedral meshes based on bisection.
SIAM Journal on Scientific Computing, 16(6):1269–1291, 1995.

[117] Y. Livnat and C. Hansen. View dependent isosurface extraction. In Proceedings
IEEE Visualization, pages 175–180, 1998.

[118] Y. Livnat, H.W. Shen, and C.R. Johnson. A near optimal isosurface extraction
algorithm using the span space. IEEE Transactions on Visualization and Computer
Graphics, 2(1):73–84, 1996.

[119] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. In Proceedings SIGGRAPH, pages 163–169. ACM Press
New York, NY, USA, 1987.

247

[120] F. Losasso and H. Hoppe. Geometry clipmaps: Terrain rendering using nested
regular grids. In Proceedings ACM SIGGRAPH, pages 769–776. ACM New York,
NY, USA, 2004.

[121] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner. Level
of Detail for 3D Graphics. Computer Graphics and Geometric Modeling. Morgan-
Kaufmann, San Francisco, 2002.

[122] S. Marchesin, J.M. Dischler, and C. Mongenet. 3D ROAM for scalable volume
visualization. In IEEE Symposium on Volume Visualization and Graphics, pages
79–86, 2004.

[123] J. M. Maubach. Local bisection refinement for n-simplicial grids generated by
reflection. SIAM Journal on Scientific Computing, 16(1):210–227, January 1995.

[124] J. M. Maubach. The efficient location of neighbors for locally refined n-simplicial
grids. In 5th Int. Meshing Roundable, 1996.

[125] V. Mello, L. Velho, and G. Taubin. Estimating the in/out function of a surface
represented by points. In Symposium on Solid Modeling and Applications, pages
108–114, 2003.

[126] B.E. Meserve. Double factorials. The American Mathematical Monthly, 55(7):425–
426, 1948.

[127] M.M. Mesmoudi, L. De Floriani, and U. Port. Discrete distortion in triangulated
3-manifolds. Computer Graphics Forum, 27(5):1333–1340, 2008.

[128] W.F. Mitchell. Adaptive refinement for arbitrary finite-element spaces with hier-
archical bases. Journal of computational and applied mathematics, 36(1):65–78,
1991.

[129] D. Moore. The cost of balancing generalized quadtrees. In Proc. ACM Solid
Modeling, pages 305–312. ACM, 1995.

[130] D. Moore and J. Warren. Adaptive simplicial mesh quadtrees. Houston J. Math,
21(3):525–540, 1995.

[131] D.M. Moore. Simplicial mesh generation with applications. PhD thesis, Cornell
University, Ithaca, NY, USA, 1992.

[132] H. Müller and M. Stark. Adaptive generation of surfaces in volume data. The Visual
Computer, 9(4):182–199, 1993.

[133] M.H.A. Newman. A theorem in combinatorial topology. J. London Math. Soc,
s1–6(3):186–192, 1931.

[134] T.S. Newman and H. Yi. A survey of the marching cubes algorithm. Computers &

Graphics, 30(5):854–879, October 2006.

248

[135] G. M. Nielson. On marching cubes. IEEE Transactions on Visualization and
Computer Graphics, 9(3):283–297, 2003.

[136] G. M. Nielson. Dual marching tetrahedra: Contouring in the tetrahedronal envi-
ronment. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli,
J. Peters, J. Klosowski, L. Arns, Y. Chun, T. Rhyne, and L. Monroe, editors, Ad-
vances in Visual Computing, pages 183–194. Springer, 2008.

[137] G. M. Nielson and J. Sung. Interval volume tetrahedralization. In Proceedings
IEEE Visualization, pages 221–228, 1997.

[138] G.M. Nielson and B. Hamann. The asymptotic decider: Resolving the ambiguity
in marching cubes. In Proceedings IEEE Visualization, pages 83–91, 1991.

[139] P. Ning and J. Bloomenthal. An evaluation of implicit surface tilers. Computer
Graphics and Applications, IEEE, 13(6):33–41, 1993.

[140] R.H. Nochetto, K.G. Siebert, and A. Veeser. Theory of adaptive finite element
methods: An introduction. In Multiscale, Nonlinear and Adaptive Approximation,
pages 409 –542. Springer, 2009. Dedicated to Wolfgang Dahmen on the Occasion
of his 60th Birthday.

[141] M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on nested
grids. Computing, 56(4):365–385, 1997.

[142] R. Pajarola. Large scale terrain visualization using the restricted quadtree trian-
gulation. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proceedings IEEE
Visualization, pages 19–26, Research Triangle Park, NC, October 1998. IEEE Com-
puter Society.

[143] R. Pajarola and E. Gobbetti. Survey of semi-regular multiresolution models for
interactive terrain rendering. The Visual Computer, 23(8):583–605, 2007.

[144] A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-independent
modeling with simplicial complexes. ACM Transactions on Graphics, 12(1):56–
102, January 1993.

[145] V. Pascucci. Multi-dimensional and multi-resolution geometric data-structures for
scientific visualization. PhD thesis, Purdue University, West Lafayette, IN, USA,
2000. Major Professor-Bajaj, Chandrajit L.

[146] V. Pascucci. Slow Growing Subdivision (SGS) in any dimension: Towards re-
moving the curse of dimensionality. Computer Graphics Forum, 21(3):451–460,
September 2002.

[147] V. Pascucci. Isosurface computation made simple: Hardware acceleration, adaptive
refinement and tetrahedral stripping. In Eurographics/IEEE TVCG Symposium on
Visualization (VisSym), pages 293–300, 2004.

249

[148] V. Pascucci and C. L. Bajaj. Time-critical isosurface refinement and smoothing.
In Proceedings IEEE Symposium on Volume Visualization, pages 33–42, Salt Lake
City, UT, October 2000. IEEE Computer Society.

[149] V. Pascucci and R. J. Frank. Global static indexing for real-time exploration of
very large regular grids. In Proceedings ACM/IEEE Supercomputing, pages 45–45,
2001.

[150] B.A. Payne and A.W. Toga. Surface mapping brain function on 3D models. Com-
puter Graphics and Applications, IEEE, 10(5):33–41, Sept. 1990.

[151] S. Plantinga and G. Vegter. Isotopic meshing of implicit surfaces. The Visual
Computer, 23(1):45–58, 2007.

[152] A. Plaza and GF Carey. Local refinement of simplicial grids based on the skeleton.
Applied Numerical Mathematics, 32(2):195–218, 2000.

[153] A.A. Pomeranz. ROAM using surface triangle clusters (RUSTiC). Master’s thesis,
U.C. Davis, 2000.

[154] E. Puppo. Variable resolution triangulations. Computational Geometry Theory and
Applications, 11(3-4):219–238, 1998.

[155] E. Puppo and D. Panozzo. RGB subdivision. IEEE Transactions on Visualization
and Computer Graphics, 15(2):295–310, 2009.

[156] G. V. S. Reddy, H. J. Montas, A. Shirmohammadi, and H. Samet. Quadtree-based
triangular mesh generation for finite element analysis of heterogeneous spatial data.
In Proceedings of the International ASAE Annual Meeting, Sacramento, CA, 2001.

[157] M.C. Rivara. Algorithms for refining triangular grids suitable for adaptive and
multigrid techniques. International Journal for Numerical Methods in Engineering,
20(4):745–756, 1984.

[158] M.C. Rivara. Local modification of meshes for adaptive and/or multigrid finite-
element methods. Journal of Computational and Applied Mathematics, 36(1):79–
89, 1991.

[159] M.C. Rivara and C. Levin. A 3D refinement algorithm suitable for adaptive and
multigrid techniques. Communications in Applied Numerical Methods, 8(5):281–
290, 1992.

[160] J. C. Roberts and S. Hill. Piecewise-linear hypersurfaces using the marching cube
algorithm. In R. Erbacher and A. Pang, editors, Visual Data Exploration and
Analysis VI, Proceedings of SPIE Visualization 2000, pages 170–181. SPIE, 1999.

[161] S. Roettger, W. Heidrich, P. Slusallek, and H.P. Seidel. Real-time generation of
continuous levels of detail for height fields. In Proceedings Central Europe Winter
School of Computer Graphics (WSCG), pages 315–322, 1998.

250

[162] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer Graphics, 5(1):47–61, 1999.

[163] C.P. Rourke and B.J. Sanderson. Introduction to piecewise-linear topology, vol-
ume 69 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, 1972.

[164] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, Reading, MA, 1990.

[165] H. Samet. Foundations of Multidimensional and Metric Data Structures. The
Morgan Kaufmann series in computer graphics and geometric modeling. Morgan
Kaufmann, 2006.

[166] S. Schaefer, T. Ju, and J. Warren. Manifold dual contouring. IEEE Transactions on
Visualization and Computer Graphics, 13(3):610–619, 2007.

[167] R. Schneiders. Refining quadrilateral and hexahedral element meshes. In 5th
International Conference on Grid Generation in Computational Field Simulations,
pages 679–688, Mississippi State University, 1996.

[168] G. Schrack. Finding neighbors of equal size in linear quadtrees and octrees in
constant time. CVGIP: Image Understanding, 55(3):221–230, May 1992.

[169] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle meshes.
In Proceedings ACM SIGGRAPH, 26(2):65–70, July 1992.

[170] E.G. Sewell. Automatic generation of triangulations for piecewise polynomial
approximation. PhD thesis, Purdue University, 1972.

[171] E.G. Sewell. A finite element program with automatic user-controlled mesh grading.
In R. Vichnevetsky and R.S. Stepleman, editors, Advances in Computer Methods
for Partial Differential Equations III, pages 8–10. IMACS, 1979.

[172] R. Shekhar, E. Fayyad, R. Yagel, and J.F. Cornhill. Octree-based decimation of
marching cubes surfaces. In Proceedings IEEE Visualization, pages 335–342, Los
Alamitos, CA, USA, 1996. IEEE Computer Society.

[173] H.W. Shen, C.D. Hansen, Y. Livnat, and C.R. Johnson. Isosurfacing in Span
Space with Utmost Efficiency (ISSUE). In Proceedings IEEE Visualization. IEEE
Computer Society Press Los Alamitos, CA, USA, 1996.

[174] R. Shu, C. Zhou, and M.S. Kankanhalli. Adaptive marching cubes. The Visual
Computer, 11(4):202–217, 1995.

[175] R. Sivan. Surface modeling using quadtrees. PhD thesis, University of Maryland,
College Park, 1996.

[176] R. Sivan and H. Samet. Algorithms for constructing quadtree surface maps. In
Proc. 5th Int. Symposium on Spatial Data Handling, pages 361–370, 1992.

251

[177] R. Stevenson. The completion of locally refined simplicial partitions created by
bisection. Mathematics of Computation, 77(261):227–242, 2008.

[178] H. Sundar, R.S. Sampath, and G. Biros. Bottom-up construction and 2:1 balance
refinement of linear octrees in parallel. SIAM Journal of Scientific Computing,
30(5):2675–2708, 2008.

[179] U.S. Geological Survey. Global 30 arc second elevation data. http://edc.usgs.
gov/products/elevation/gtopo30/gtopo30.html.

[180] H. Tanaka, Y. Takama, and H. Wakabayashi. Accuracy-based sampling and recon-
struction with adaptive grid for parallel hierarchical tetrahedrization. In Proceedings
Volume Graphics, pages 79–86. ACM Press, 2003.

[181] H.T. Tanaka. Accuracy-based sampling and reconstruction with adaptive meshes
for parallel hierarchical triangulation. Computer Vision and Image Understanding,
61(3):335 – 350, 1995.

[182] M.J. Todd. The computation of fixed points and applications. Number 124 in
Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, 1976.

[183] C. T. Traxler. An algorithm for adaptive mesh refinement in n dimensions. Com-
puting, 59(2):115–137, 1997.

[184] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised marching tetrahedra:
Improved iso-surface extraction. Computers and Graphics, 23(4):583–598, 1999.

[185] T. Tu, D. R. OHallaron, and J. C. Lòpez. Etree: A database-oriented method for
generating large octree meshes. Engineering with Computers, 20:117–128, 2004.

[186] T. Tu and D.R. OHallaron. Balanced refinement of massive linear octrees. Technical
Report CMU-CS-04-129, Carnegie Mellon School of Computer Science, April
2004.

[187] A.W. Tucker. Some topological properties of disk and sphere. In Proceedings First
Canadian Math. Congress, Montreal, volume 285–309, 1945.

[188] M.A. Van Kreveld. Efficient methods for isoline extraction from a TIN. Geograph-
ical Information Systems, 10(5):523–540, 1996.

[189] Volvis library. http://www.volvis.org/.

[190] B. Von Herzen and A. H. Barr. Accurate triangulations of deformed, intersecting
surfaces. In Proceedings ACM SIGGRAPH, pages 103–110, New York, NY, USA,
1987. ACM.

[191] C. Weigle and D. Banks. Complex-valued contour meshing. In Proceedings IEEE
Visualization, pages 173–180. IEEE Computer Society, October 1996.

252

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://www.volvis.org/

[192] C. Weigle and D. Banks. Extracting iso-valued features in 4-dimensional scalar
fields. In Proceedings IEEE Visualization, pages 103–110. IEEE Computer Society,
October 1998.

[193] A. Weiser. Local-mesh, local-order, adaptive finite element methods with a poste-
riori error estimators for elliptic partial differential equations. PhD thesis, Yale
University, 1981.

[194] K. Weiss and L. De Floriani. Modeling and visualization approaches for time-
varying volumetric data. In Advances in Visual Computing, volume 5359 of Lecture
Notes in Computer Science, pages 1000–1010. Springer, 2008.

[195] K. Weiss and L. De Floriani. Multiresolution interval volume meshes. In IEEE/

EG Symposium on Volume and Point-Based Graphics, pages 65–72. Eurographics
Association, 2008.

[196] K. Weiss and L. De Floriani. Sparse terrain pyramids. In Proceedings ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems, pages 115–124, New York, NY, USA, 2008. ACM.

[197] K. Weiss and L. De Floriani. Diamond hierarchies of arbitrary dimension. Com-
puter Graphics Forum (Proceedings SGP 2009), 28(5):1289–1300, 2009.

[198] K. Weiss and L. De Floriani. Supercubes: A high-level primitive for diamond hier-
archies. IEEE Transactions on Visualization and Computer Graphics (Proceedings
IEEE Visualization 2009), 15(6):1603–1610, November-December 2009.

[199] K. Weiss and L. De Floriani. Bisection-based triangulations of nested hypercubic
meshes. In S. Shontz, editor, Proceedings 19th International Meshing Roundtable,
pages 315–333, Chattanooga, Tennessee, October 3–6 2010.

[200] K. Weiss and L. De Floriani. Isodiamond hierarchies: An efficient multiresolu-
tion representation for isosurfaces and interval volumes. IEEE Transactions on
Visualization and Computer Graphics, 16(4):583 – 598, July-Aug. 2010.

[201] K. Weiss and L. De Floriani. Nested refinement domains for tetrahedral and dia-
mond hierarchies. In IEEE Visualization 2010 Poster Compendium, 2010.

[202] K. Weiss and L. De Floriani. Simplex and diamond hierarchies: Models and
applications. In H. Hauser and E. Reinhard, editors, EG 2010 - State of the Art
Reports, pages 113–136, Norrköping, Sweden, 2010. Eurographics Association.

[203] K. Weiss and L. De Floriani. Simplex and diamond hierarchies: Models and
applications. Computer Graphics Forum, 30:(To appear), 2011.

[204] K. Weiss, M.M. Mesmoudi, and L. De Floriani. Multiresolution analysis of 3D
images based on discrete distortion. In International Conference on Pattern Recog-
nition (ICPR), pages 4093–4096, Istanbul, Turkey, August 2010. IEEE Computer
Society.

253

[205] R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of regular volume
data by adaptive reconstruction of isosurfaces. The Visual Computer, 15(2):100–
111, 1999.

[206] H. Whitney. Geometric integration theory. Princeton University Press, 1957.

[207] J. Wilhelms and A. Van Gelder. Topological considerations in isosurface generation
extended abstract. In Proceedings Workshop on Volume Visualization, pages 79–86.
ACM Press New York, NY, USA, 1990.

[208] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. ACM
Transactions on Graphics, 11(3):201–227, 1992.

[209] R. Williams. The goblin quadtree. The Computer Journal, 31(4):358–363, 1988.

[210] Z.J. Wood, M. Desbrun, P. Schroder, and D. Breen. Semi-regular mesh extraction
from volumes. In Proceedings IEEE Visualization, pages 275–282. IEEE Computer
Society Press Los Alamitos, CA, USA, 2000.

[211] M.A. Yalçın, K. Weiss, and L. De Floriani. GPU algorithms for diamond-based mul-
tiresolution terrain processing. In Eurographics Symposium on Parallel Graphics
and Visualization, Bangor, Wales, April 10–11 2011.

[212] S. Zhang. Successive subdivision of tetrahedra and multigrid methods on tetrahedral
meshes. Houston Journal of Mathematics, 21:541–556, 1995.

[213] Y. Zhang, C. Bajaj, and B.S. Sohn. Adaptive and quality 3d meshing from imaging
data. In Proceedings ACM Symposium on Solid Modeling and Applications, pages
286–291. ACM Press New York, NY, USA, 2003.

[214] Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for
visualizing regular volume data. In R. Yagel and H. Hagen, editors, Proceedings
IEEE Visualization, pages 135–142. IEEE Computer Society, October 1997.

[215] D. Zorin and P. Schröder. A unified framework for primal/dual quadrilateral subdi-
vision schemes. Computer Aided Geometric Design, 18(5):429–454, 2001.

254

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Contribution
	Thesis organization

	Background notions
	Cellular meshes
	Hypercubic meshes
	Simplicial meshes

	Nested mesh refinement
	Regular refinement
	Bisection refinement

	Modeling scalar fields
	Isosurfaces and interval volumes

	Multiresolution models
	Selective refinement

	State of the art
	Domain decompositions
	Uniform grid
	Quadtrees, octrees and 2^d-trees
	K-d trees
	Nested simplicial meshes

	Marching cells
	Isosurfaces
	Interval volumes

	Hierarchical data structures for scientific visualization
	Hierarchy as spatial access structure
	Multiresolution field representations
	Adaptive representations for extracted meshes
	Multiresolution representations for extracted meshes

	Discussion

	Diamond hierarchies of arbitrary dimension
	Cross simplex and cross complex
	Simplicial decomposition of hypercubes
	Kuhn subdivisions
	Maubach's typographical bisection scheme
	Fully subdivided hypercubes

	A hierarchy of RSB simplices
	A hierarchy of diamonds
	Diamond subdivision
	Diamond dependency relation
	Parent-child duets

	Properties of a hierarchy of diamonds
	Querying an RSB hierarchy
	Discussion

	Supercubes: A high-level primitive for RSB hierarchies
	Tiling space with Kuhn cubes
	Supercubes
	Discussion

	Encoding diamond hierarchies
	Encoding diamonds
	Diamond scale
	Diamond type
	Supercube origin
	Diamond components
	Example
	Domain corners

	Encoding supercubes
	Encoding collections of supercubes

	Encoding RSB meshes
	Simplex-based representation
	Diamond-based representation
	Supercube-based representation

	Diamond-based multiresolution scalar fields
	DMSF Model
	Generating a DMSF

	Full DMSF
	Partial DMSF
	Theoretical evaluation
	Applications
	Error-based generation
	Range-based generation
	Region Of Interest-based generation
	Merging corresponding partial DMSFs

	Runtime performance
	Discussion

	Topological navigation on diamond meshes
	Topological relations
	Properties of diamond meshes
	Retrieving topological relations on diamond meshes
	Retrieving topological relations on 2D diamond meshes
	Boundary relations involving 2D diamonds
	Adjacency relations involving 2D diamonds
	Co-boundary relations involving 2D diamonds
	Deriving the remaining topological relations

	Retrieving topological relations on 3D diamond meshes
	Boundary relations involving 3D diamonds
	Adjacency relations involving 3D diamonds
	Co-boundary relations involving 3D diamonds

	Results
	Discussion

	Isodiamond hierarchies
	Isodiamonds
	Encoding isodiamonds
	Relevant isodiamonds
	Definition
	Data structure
	Generating an RI hierarchy
	Querying an RI hierarchy

	Minimal isodiamonds
	Definition
	Properties
	Data structure
	Generating an MI hierarchy
	Querying an MI hierarchy

	Results
	Front-size and extraction times

	Discussion

	Hierarchies of balanced hypercubes
	Hypercube hierarchies
	Balanced refinement
	Balanced hypercube hierarchies

	Encoding hypercube hierarchies and their extracted meshes
	Encoding hypercubes
	Encoding dependency relations
	Encoding k-balanced hypercubic meshes

	Triangulating nested hypercubic meshes
	Mesh balancing
	Vertex caching
	Hypercube triangulation
	Results

	Conclusions
	Three families of nested RSB meshes
	Future work

	Double factorial
	Common terms involving binomials, exponents and factorials
	Binomial theorem
	Simplified binomial theorem
	Related proof

	Bibliography

