7,752 research outputs found

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    CAD enabled trajectory optimization and accurate motion control for repetitive tasks

    Get PDF
    As machine users generally only define the start and end point of the movement, a large trajectory optimization potential rises for single axis mechanisms performing repetitive tasks. However, a descriptive mathematical model of the mecha- nism needs to be defined in order to apply existing optimization techniques. This is usually done with complex methods like virtual work or Lagrange equations. In this paper, a generic technique is presented to optimize the design of point-to-point trajectories by extracting position dependent properties with CAD motion simulations. The optimization problem is solved by a genetic algorithm. Nevertheless, the potential savings will only be achieved if the machine is capable of accurately following the optimized trajectory. Therefore, a feedforward motion controller is derived from the generic model allowing to use the controller for various settings and position profiles. Moreover, the theoretical savings are compared with experimental data from a physical set-up. The results quantitatively show that the savings potential is effectively achieved thanks to advanced torque feedforward with a reduction of the maximum torque by 12.6% compared with a standard 1/3-profil

    On-line multiobjective automatic control system generation by evolutionary algorithms

    Get PDF
    Evolutionary algorithms are applied to the on- line generation of servo-motor control systems. In this paper, the evolving population of controllers is evaluated at run-time via hardware in the loop, rather than on a simulated model. Disturbances are also introduced at run-time in order to pro- duce robust performance. Multiobjective optimisation of both PI and Fuzzy Logic controllers is considered. Finally an on-line implementation of Genetic Programming is presented based around the Simulink standard blockset. The on-line designed controllers are shown to be robust to both system noise and ex- ternal disturbances while still demonstrating excellent steady- state and dvnamic characteristics

    Observer based tuning techniques and integrated SAW torque transducers for two-inertia servo-drive systems

    Get PDF
    A controller design and tuning methodology is proposed that facilitates the rejection of periodic load-side disturbances applied to a torsional mechanical system, whilst simultaneously compensating for the disturbance observer's inherent phase delay, thereby facilitating the used of lower bandwidth, practically realisable, disturbance observers. The merits of implementing both a full- and reduced order observer, is investigated, with the latter being implemented with a new low-cost, high-bandwidth torque sensing device based on surface acoustic wave technolog

    Real-time evolution of an embedded controller for an autonomous helicopter

    Get PDF
    In this paper we evolve the parameters of a proportional, integral, and derivative (PID) controller for an unstable, complex and nonlinear system. The individuals of the applied genetic algorithm (GA) are evaluated on the actual system rather than on a simulation of it, thus avoiding the ldquoreality gaprdquo. This makes implicit a formal model identification for the implementation of a simulator. This also calls for the GA to be approached in an unusual way, where we need to consider new aspects not normally present in the usual situations using an unnaturally consistent simulator for fitness evaluation. Although elitism is used in the GAs, no monotonic increase in fitness is exhibited by the algorithm. Instead, we show that the GApsilas individuals converge towards more robust solutions

    SAW torque transducers for disturbance rejection and tracking control of multi-inertia servo-drive systems

    Get PDF
    The paper proposes a resonance ratio control (RRC) technique for the coordinated motion control of multi-inertia mechanical systems, based on the measurement of shaft torque via a SAW-based torque sensor. Furthermore, a new controller structure, RRC plus disturbance feedback is proposed, which enables the controller to be designed to independently satisfy tracking and regulation performance. A tuning method for the RRC structure is given based on the ITAE index, normalized as a function of the mechanical parameters enabling a direct performance comparison between a basic proportional and integral (PI) controller. The use of a reduced-order state observer is presented to provide a dynamic estimate of the load-side disturbance torque for a multi-inertia mechanical system, with an appraisal of the composite closed-loop dynamics. It is shown that the integrated formulation of the tuning criteria enables lower bandwidth observers to be implemented with a corresponding reduction in noise and computational load. The control structures are experimentally validated via a purpose designed test facility and demonstrate significant improvement in dynamic tracking performance, whilst additionally rejecting periodic load side disturbances, a feature previously unrealisable except by other, high-gain control schemes that impose small stability margins

    Antilock braking control using robust control approach

    Get PDF
    The aims of this study are to establish the mathematical model and the robust control technique for an Antilock Braking System (ABS). The ABS have been developed to reduce tendency of wheel lock up and to improve vehicle control during sudden braking. The ABS work by maintaining the wheel slip to a desired level so that maximum tractive force and maximum vehicle deceleration is obtained, thus reducing the vehicle stopping distance. A quarter vehicle model undergoing straightline braking maneuver, tire dynamics and hydraulic brake dynamics mathematical model are developed to represent the ABS model. The established mathematical model shows the ABS dynamics exhibits strong nonlinear characteristics. Thus, Sliding Mode Control which is a robust control technique is proposed in this study to regulate the wheel slip at the desired value depending on the road surface. The mathematical derivations proved the designed controller satisfy the stability requirement. Extensive simulation study is performed to verify the effectiveness of the designed controller and the result shows the designed controller able to maintain the wheel slip at the desired value and reducing the stopping distanc

    GA-based tuning of nonlinear observers for sensorless control of IPMSMs

    Get PDF
    The paper considers two observer-based rotor position estimation schemes for sensorless control of interior permanent magnet synchronous machines (IPMSMs). Emphasis is given to techniques based on feedback linearisation followed by Luenberger observer design, and direct design of nonlinear observers. Genetic algorithms (GAs) based on the principles of evolution, natural selection and genetic mutation are employed to address difficulties in selecting correction gains for the observers, since no analytical tuning mechanisms yet exist, with results included to demonstrate the enhanced performance attributes offered by observers tuned in this way
    corecore