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Abstract— As machine users generally only define the start
and end point of the movement, a large trajectory optimization
potential rises for single axis mechanisms performing repetitive
tasks. However, a descriptive mathematical model of the mecha-
nism needs to be defined in order to apply existing optimization
techniques. This is usually done with complex methods like
virtual work or Lagrange equations. In this paper, a generic
technique is presented to optimize the design of point-to-point
trajectories by extracting position dependent properties with
CAD motion simulations. The optimization problem is solved by
a genetic algorithm. Nevertheless, the potential savings will only
be achieved if the machine is capable of accurately following
the optimized trajectory. Therefore, a feedforward motion
controller is derived from the generic model allowing to use the
controller for various settings and position profiles. Moreover,
the theoretical savings are compared with experimental data
from a physical set-up. The results quantitatively show that
the savings potential is effectively achieved thanks to advanced
torque feedforward with a reduction of the maximum torque
by 12.6% compared with a standard 1/3-profile.

I. INTRODUCTION

As the global energy demand will continue to rise and
man’s negative impact on global warming is known to be a
fact, there is a strong desire to minimize the energy usage
of industrial machinery [1]. While there is much research
on energy efficiency improvements of machine actuators,
a significant opportunity lies in optimization which does
not require any adaptations or investments in the installed
hardware. Trajectory optimization is an example of such a
low-cost technique [2] that is very often applicable due to
the fact that the exact position as a function of the time, or
position function θ(t) (Fig. 1), in between these two points
is very often not an issue for machine users.

To date, there is a lot of research on the 3D trajectory plan-
ning and optimization for multiple axis robot systems [3].
However, lots of repetitive point to point actions are driven
by a single axis mechanism. Especially given the tendency, as
indicated in [4], to evolve from a single actuator driving all
machine components via mechanical transmission systems
towards dedicated actuators for each machine movement. In
many cases, these single axis driven mechanisms perform
repetitive tasks and it is therefore certainly worthwhile to
consider trajectory optimization since the effect will be
perceptible every machine cycle.
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Fig. 1. Position function for the trajectory between starting point A and
endpoint B

In order to optimize the position function θ(t), it is
essential to describe its impact on the torque Tm necessary
to drive the system [4]. Thus, it is essential to express the
position dependency of the critical machine parameters. On
the contrary, [5] and even more recent literature [2] on
trajectory optimization solely consider simple mechanical
systems with constant parameters inertia J , friction µk and
load torque Tl. Nevertheless, as indicated in literature [4],
[6], [7], it is essential to consider varying loads to cover the
majority of machine applications, such as, but not limited to,
position-dependent inertia’s J(θ).

However, in those cases obtaining a description of the im-
pact of the position function θ(t) on the torque Tm necessary
to drive the system is challenging for machine builders and
users [4]. For instance, [2], [5] assumes mechanical parame-
ter values J , µk and Tl are given and known. In practice this
will often not be the case, therefore [6] describes the use of
a genetic algorithm to identify the model parameters such as
inertia J and damping b, yet only for constant parameters.
In [8], an attempt was made to determine the system prop-
erties based on Hamiltons principle and Lagrange multiplier.
However, this approach is quite complex to be applicable by
machine builders and very machine specific. Additionally,
the majority of the machine builders design their machines
in multibody 3D CAD packages. If the users of these
software tools add the correct properties such as material
density, friction parameters µk and flexibility b, CAD motion
simulations can be used to determine the necessary driving
torque Tm and position dependent system properties J(θ)
and Tl(θ). In this paper, the procedure described in [4]
will be used to enable machine builders to extract position
dependent mechanical properties conveniently from CAD-
motion simulations. However, in [4] no validation of the
CAD model and achieved system properties on a real set-
up were performed and therefore cannot reveal the potential
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savings of the optimization.
For trajectory optimization, various optimization algo-

rithms exist, each with their strengths and weaknesses.
Genetic algorithms (GA’s) have proven their usefulness
for trajectory optimization and their efficient and effective
techniques ensure that these are widely used techniques in
scientific and engineering areas. [9]. In contrast to gradient-
based algorithms that do not search the entire design space,
derivative-free algorithms like GA [10] must often sample a
wide part of the design space in order to be successful. On the
other hand, neuro-evolution techniques are known for their
good training times and lower susceptibility to getting stuck
in local maxima, especially in problems with high dimen-
sionality [11]. In previous literature, genetic algorithms have
been used for obstacle-avoiding robot trajectory planning
[12] and trajectory planning in a 3D space [13], [14]. In [6],
[15], [16], genetic algorithms were employed to determine
the optimal coefficients of the trajectory polynomial of
a single axis driven mechanism. However, only constant
mechanical parameters were considered and therefore do not
fully exploit the potential of the optimization. Furthermore,
in [5], [12], the achieved savings of the optimization are
based on theoretical assumptions and are not compared and
validated on an experimental set-up.

Nevertheless, the energy savings as a result from per-
forming trajectory optimization will only be achieved if the
controller is capable of following the desired and optimized
trajectory. An ineffective controller can lead to possible
complete eradication of the achieved savings. In [17], [18],
iterative learning control (ILC) was applied to reduce the
tracking error. However, ILC is heuristic in nature and does
not take the knowledge of the system into account.

On the other hand, a positive effect of the identification of
the system parameters is the fact that the necessary driving
torque can be calculated directly during the optimization.
This information is very beneficial to program a feedfor-
ward controller which, bypasses low controller dynamics
and ensures the machine accurately follows the desired
trajectory. In literature [16], [15], [7] optimal trajectories
were characterized and validated on an experimental set-
up. Nonetheless, the control of the mechanism was allocated
to standard PI(D)-controllers which require time-consuming
controller tuning and may not be able to follow the desired
trajectory. In this paper, the torque equation identified using
CAD-motion simulations according to [4] will be used to
program an accurate feedforward, enabling a reduction of
the tracking error compared to standard robust PI-cascaded
control by 93%.

The aim of the presented paper is to describe a generic
procedure to optimize the trajectory for single axis driven
mechanisms with position dependent properties and use this
knowledge to design an accurate motion controller.

In Section II, the model is defined and a technique is elab-
orated to determine the position dependent system properties.
In Section III a genetic algorithm is employed to optimize
the point-to-point trajectory considering imposed constraints
and different objectives. In Section IV, standard motion

Fig. 2. Experimental set-up (left) and virtual CAD model (right) of the
pick- and place unit used for validation.

controllers are extended with the system information in order
to create a more dynamic controller while reducing the
tracking error. Finally, in Section V, the complete procedure
is applied to the experimental set-up and the achieved savings
are compared with a standard position profile. Furthermore,
the motion controllers are implemented and evaluated on the
set-up. In Section VI, the results are compared and discussed.

II. MODELING AND EXTRACTION OF SYSTEM
PROPERTIES

An industrial pick and place system used for validation
of the optimization process is presented in Fig. 2. For opti-
mization and control of the system, it is essential to have an
adequate mathematical description of the machine properties.
Therefore, the relationship between the shaft position θ and
the necessary driving torque Tm needs to be known. This
relation is represented by the torque equation, as explained
in the following section.

A. Torque Equation

In the simplified model as shown in Fig. 3, all loads and
inertias of the mechanism are related to the main driving
axis resorting to the concept of reduced moment of inertia.
On top of that comes the inertia of the motor shaft itself Jm
which combines to the total inertia of the complete system.
The load torque Tl contains both gravitational forces as well
as external process powers that act on the mechanism. This
approach permits to fit every possible mechanism with a
known geometry to this model and allows to use a generic
optimization approach.

 J = Jm + Jl Tl

Ө
Tm

Fig. 3. Simplified model of a single axis driven mechanism with driving
torque Tm, inertia J and load torque Tl.

Based on the concept of energy conservation, the driving
torque can thus be written as in (1) with load torque Tl,
inertia J , speed θ̇ and acceleration θ̈ [4], [7], [19]. Note
that Tl(θ) and J(θ) are based on the crank position θ.
This equation holds for systems with negligible friction.



Furthermore, as indicated in [4], in such case torque-based
approaches can be effectively employed.

Tm = Tl +
1

2

dJ

dθ
(θ̇)2 + Jθ̈ (1)

B. Extraction System Properties based on CAD Motion
Simulations

The analytic determination of the system’s dynamics for
the identification of the driving torque Tm can be quite cum-
bersome resorting to methods of virtual work and Lagrange
equations [20]. With CAD motion simulations, it is possible
to determine the driving torque for a certain position profile.
However, as these simulations require a lot of computational
time, using them as such in an iterative optimization routine
would intolerably increase the optimization time. Therefore,
[4] describes a technique to derive the position dependency
of critical parameters, such as inertia J(θ), based on a limited
number of CAD motion simulations. These numerical results
can subsequently be used by the optimization algorithm in
order to define the impact of the position profile θ(t) on the
necessary driving torque Tm.

The procedure (Fig. 4) requires three different motion
simulations, each under different circumstances and settings,
in order to determine the position dependency of inertia J(θ)
and load torque Tl(θ). The position range is defined between
the start (θA) and endpoint (θB). The simulation time tsim
results from this range and speed ω at which the simulation
has been executed. The more advanced torque equation
also takes friction and damping into account, although the
described approach is limited to extracting inertia J(θ) and
load torque Tl(θ). This means that before performing the
three motion simulations, all friction and damping that was
included in the motion environment must be turned off. The
simulations are conducted as follows:

Gravity disabled,
Constant speed

Gravity disabled, 
Constant 
acceleration

Gravity enabled,
Constant speed

CAD Motion
Simulations

Sim3

Sim1

Sim2

+

++

-

Fig. 4. Graphical overview of the procedure for extracting position
dependent properties J(θ) and Tl based on three different CAD motion
simulations with negligible friction.

• Simulation 1: While gravitational and external forces
are disabled for the motion simulation, a constant speed
ω is imposed upon the driving axis. Since there is no
change in speed or acceleration, the resulting driving
torque according to Equation (1) is:

Tm1(θ) =
1

2

dJ(θ)

dθ
(ω)2 (2)

As a result, the inertia can be calculated as follows:

J(θ) =

∫ θ

θA

2.Tm1(θ)

ω2
dθ + C θ ∈ [θA, θB ] (3)

Note that there still is an unknown constant of integra-
tion C.

• Simulation 2: Gravity is disabled and a constant accel-
eration α is selected. For this simulation, only the initial
torque is essential since this will allow determining the
initial inertia Jinit. As the initial speed at the beginning
of the simulation is zero, the torque equation (1) can be
simplified as follows:

Tm2(θA) = Jinitα (4)

Equation (4) allows to calculate the constant of integra-
tion C (3):

J(θA) = C = Jinit =
Tm2(θA)

α
(5)

• Simulation 3: The same constant speed ω as in simula-
tion 1 is imposed and external and gravitational forces
are enabled. The resulting driving torque according to
(1) is:

Tm3(θ) = Tl(θ) +
1

2

dJ(θ)

dθ
(ω)2 (6)

Since the second term of this equation is known from
simulation 1, the load torque Tl can be identified by:

Tl(θ) = Tm3(θ)− Tm1(θ) (7)

The knowledge of J(θ) and Tl(θ) allow describing the
effect of the position θ on the driving torque Tm according
to Equation (1).

Fig. 5. Schematic overview of the working principles of applying genetic
algorithms for trajectory optimization.

III. TRAJECTORY OPTIMIZATION WITH GENETIC
ALGORITHMS

In this paper, a genetic algorithm (GA) is employed
in order to optimize the design of the position trajectory
between the defined and fixed position endpoints. A GA is
a stochastic optimization searching algorithm first developed
by Holland [21] that is based on evolution mechanisms such
as mutation, crossover and selection in order to minimize a
certain objective function. Starting from a randomly gener-
ated population of possible candidates, an iterative process is
employed to evolve towards improved solutions [22], [23].



Applied to trajectory optimization and as depicted in Fig.
5, the routine will randomly generate a population of initial
trajectories. The fitness value of these possible candidates is
then determined and for this purpose, a description of the
system established by the torque equation (1) is essential.

A. Position Profile

Every optimization routine uses certain design parameters
which can be adjusted by the algorithm in order to converge
towards an optimal solution. In this paper, these decision
variables define the shape of the trajectory between start
point θA at instant tA and endpoint θB at instant tB (Fig.1).
As indicated in [2], optimality is often obtained through poly-
nomial motion profile. Therefore, the trajectory or position
profile itself is presented as a polynomial of order n with
unknown coefficients [p0, p1, . . . , pn] and n+ 1 DOF (8).

θ(t) = p0 + p1t
1 + p2t

2 + . . .+ pnt
n (8)

The lower order coefficients of this polynomial result from
constraints of position θ, velocity θ̇ and acceleration θ̈ in the
start (θA) and endpoint (θB) (9). On the assumption that
these constraints are imposed by the machine user, these
six extra constraints result in n − 5 degrees of freedom for
the optimization algorithm. The higher order coefficients are
free design parameters for the optimization algorithm [6].
A common trajectory profile in industry that can serve as a
reference is a 1/3 motion profile which accelerates during
1/3 of the time, moves at a constant speed during 1/3 and
decelerates at the last 1/3 of the motion time [2].

θ(tA) = θA ; θ̇(tA) = 0 ; θ̈(tA) = 0

θ(tB) = θB ; θ̇(tB) = 0 ; θ̈(tB) = 0
(9)

B. Objective Function and Constraints

Depending on the chosen optimization criterion, it is
possible to have different objectives, declared in fitness
functions. In this paper, three different objectives are com-
pared and validated, being root-mean-square torque Trms,
maximum torque Tmax and root-mean-square power Prms.
These objectives are theoretically defined as follows:

1) Root-Mean-Square Torque Trms

Trms =

√
1

T

∫ T

0

Tm
2 dt (10)

2) Maximum Torque Tmax

Tmax = max(abs(Tm)) (11)

3) Root-Mean-Square Power Prms

Prms =

√
1

T

∫ T

0

P 2 dt =

√
1

T

∫ T

0

(Tmθ̇)2 dt (12)

Next to the constraints in the start and end points of the
trajectory, several other machine specific constraints remain
which the GA can take into account. There can be limits on
speed θ̇, acceleration θ̈ and jerk

...
θ depending on the type of

application. Moreover, the maximum torque can be limited
based on the motor selection and the rate of change in torque
max(dTm

dt ) can be narrowed when the electrical dynamics
are considered. Furthermore, it is possible to have other
application dependent process constraints which will limit
the possible trajectories. All these constraints are controlled
by direct constraint handling that leaves the constraints as
they are and adapts the GA to enforce them, in contradiction
to constraints θ, θ̇, θ̈,

...
θ in the start and endpoint which are

incorporated directly in the polynomial trajectory [24].

IV. MOTION CONTROLLER DESIGN

The savings potential of the trajectories achievable with
trajectory optimization is only fulfilled when the motor is
able to follow the optimized trajectory setpoint. Therefore,
a good motion controller needs to be designed in order to
keep the tracking error as low as possible. The system has a
torque T ∗ or current input i∗ which is determined by cascade
PI speed and P position control loops. Both the measured
position and speed determine the error between the desired
and actual position/speed setpoint, which in turn serves as
an input for the controllers (Fig. 6).

The basic controllers only react to occurring errors, mean-
ing tracking errors are quintessential to this approach. Feed-
forward control, also depicted in Fig. 6, is a control loop
expansion that anticipates load disturbances and drives the
actuators before tracking errors occur. For speed feedfor-
ward, this means that the position setpoint gets derived into
a speed set-point and injected into the speed controller input,
bypassing the position controller. This enables a more robust
controller since it relieves the feedback position (P) and
speed (PI) controllers from their task to react dynamically
and aggressively [25].

For applications with constant inertia, the speed setpoint
can also be derived into the desired acceleration. By multi-
plying this acceleration with the inertia of the system, the
required acceleration torque Jθ̈ can be determined. This
results in an acceleration or torque feedforward (Fig. 6).

However, for systems with variable inertia, the desired
driving torque is not limited to Jθ̈. Therefore, equation (1)
should be considered. The implementation of (1) can be
achieved in multiple ways, depending on what is achievable
with the selected drive/software. Using CAD motion simu-
lations, the required torque can be determined for a desired
trajectory. These results can be exported as a lookup table
and loaded into the drive. (Fig. 7 top). [26] Nonetheless, this
approach is trajectory dependent and requires a new table for
every new trajectory.

Another more advanced possibility is the implementation
of the torque equation (1) in the controller scheme allowing
to use the controller for different position profiles (Fig.
7). Upon this implementation, the aforementioned equation
requires two different lookup tables; one that contains the
inertia J with respect to the time and one that contains the
variation of inertia dJ

dθ . Instead, by using the chain rule (13)
and combining it with equation (1), an alternate version of
the torque equation (14) can be obtained. Since the time



derivative of the inertia dJ
dt is used in (14) instead of the

position derivative in (1), this equation can be implemented
in the controller with only one lookup table (Fig. 7 bottom).

1

2

dJ

dθ
(θ̇)2 =

1

2

dJ

dt

dt

dθ
(θ̇)2 =

1

2

dJ

dt
θ̇ (13)

Tm = Tl +
1

2

dJ

dt
θ̇ + Jθ̈ (14)

For clarity of the scheme, the load torque Tl has been left
out in Fig. 7, although in reality this torque is added to the
output of the feedforward as a lookup table as well.

θ [rad]

θ*[rad] + +
P P I

n*[rpm] i*[A]- -

n [rpm]

Cascade control loops
+Speed feed forward

+Torque feed forward

d /dt
θ*[rad/s]
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+

d /dt
θ*[rad/s2]
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+

.

+

Jmean
rpm
rad/s

SYSTEM

Fig. 6. Schematic overview of the feedforward motion control scheme
with torque feedforward for systems with constant inertia.
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Fig. 7. Schematic overview of the motion controllers for systems with
variable inertia. Depending on the driver capabilities, the torque feedforward
can be implemented as lookup tables from CAD motion simulations (top) or
as an implementation of the torque equation in the control scheme (bottom).

V. RESULTS

In order to evaluate the effect of the aforementioned
optimization procedure, the complete method is applied and
validated on the experimental set-up (Fig. 2). The mechanism
is required to cycle through a back-and-forth movement
bounded by its start position θA of 0◦ and end position θB
of 173.6◦ and has a cycle time of 0.3s

Starting from the CAD model, the system dependent
properties of the pick and place unit J(θ) and Tl(θ) are
extracted. The results are passed on to the GA and the

optimization routine is conducted for each of the three
objectives (10)-(12). The trajectory is defined as a 17th order
polynomial with 12 DOF (8). The results of the theoretical
saving potential achieved with GA are presented in Table I.

TABLE I
SAVING POTENTIAL ACHIEVED WITH GA.

Trajectory Trms[Nm] Tmax[Nm] Prms[W ]

1/3-profile
(Reference) 15.09 63.62 919.2

Optimized
to Trms

12.06 37.26 619.0
-20.1% -41.4% -32.7%

Optimized
to Tmax

12.64 34.76 680.0
-16.3% -45.3% -26.0%

Optimized
to Prms

12.27 37.76 640.9
-18.7% -40.6% -30.3%

Theoretically, a maximum torque Tmax reduction of
45.3% is possible and the root-mean-square torque Trms can
be diminished with 20.1%. It is interesting to note that the
largest root-mean-square power Prms savings (-32.7%) occur
when the trajectory is optimized to the root-mean-square
torque Trms. This is a consequence of the functioning of
GA’s that can get stuck in local minima and cannot guarantee
to find the global optimum. Nevertheless, a correlation exists
between the root-mean-square torque Trms and power Prms
as optimizing one will almost always also affect the other
similarly.

In order to validate these savings on the experimental
set-up, an adequate controller must be selected. Therefore,
in Fig. 8, the previously described motion controllers are
applied on the physical set-up and the performance is
compared. The trajectory with maximum torque Tmax as
the optimization criterion is selected as set-point for the
controllers as this limits the required torque and thus allows
for a smaller motor.

The cascade position (P) and speed (PI) controller are
configured as robust controllers in order to increase the
stability of the system. However, as depicted in Fig. 8, solely
employing these controllers leads to undesired behavior as
the controller is not able to follow the desired trajectory and
the constraints of the process are not satisfied. However, a
speed feedforward can significantly increase the performance
of the controller, with a maximum tracking error of 8.91◦,
Nevertheless, the best results are achieved when combining
the speed and torque feedforward, especially on high dynam-
ical applications, as illustrated in Fig. 7 with a maximum
tracking error of 6.93◦. When using feedforward, it is no
longer necessary to rely solely on the feedback loops for
high dynamics. Instead, the feedback controllers can be set
more robust while maintaining an accurate execution of the
trajectory.

Finally, the optimized trajectory is validated on the exper-
imental set-up. Therefore, the trajectories are loaded into the
motor drive and a motion controller with torque feedforward
is implemented as in Fig. 7. Table II reports the theoretical
and measured savings concerning a standard 1/3-profile and



-8

12

32

52

72

92

112

132

152

172

0 0.05 0.1 0.15 0.2 0.25 0.3

[ tne
mecalpsid ralugnA

°

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3

Tr
ac

ki
ng

 e
rr

or
 [°

]

Time [s]
Setpoint Cascade control loops Speed feedforward Torque feedforward

Fig. 8. Results of angular displacement and tracking error of the pick and
place unit with different feedforward loops.

the trajectory optimized to maximum torque Tmax. All
measurements are averaged over 10 cycles. The theoretical
values are adopted from Table I.

TABLE II
ACHIEVED SAVINGS ON THE EXPERIMENTAL SET-UP.

Trajectory Trms

[Nm]
Tmax

[Nm]
Prms

[W]

1/3-profile Theoretical 15.09 63.62 919.2
Experimental 13.44 42.67 838.5

Optimized to
Tmax

Theoretical 12.64
-16.3%

34.76
-45.3%

680.0
-26.0%

Experimental 11.47
-14.7%

37.3
-12.6%

646.5
-22.9%

VI. CONCLUSIONS

For what concerns the experimental results, large savings
can be obtained when optimizing the design of the trajectory.
It can be noted that the achieved savings are smaller than the
theoretically obtained values, especially for what concerns
the maximum torque Tmax where a reduction of -12.6%
is realized as opposed to the theoretical value of -45.3%.
This is a consequence of the employed one-mass model
which does not take the flexibility of the coupling into
account. Nevertheless, large savings can be obtained with
the described optimization procedure (Trms -14.7%, Tmax -
12.6% and Prms -22.9%) while reducing the required torque
and therefore extending the life span of the machine.
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