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Abstract Evolutionary algorithms are applied to the on-
line generation of servo-motor control systems. In this paper,
the evolving population of controllers is evaluated at run-time
via hardware in the loop, rather than on a simulated model.
Disturbances are also introduced at run-time in order to pro-
duce robust performance. Multiobjective optimisation of both
PI and Fuzzy Logic controllers is considered. Finally an on-line
implementation of Genetic Programming is presented based
around the Simulink standard blockset. The on-line designed
controllers are shown to be robust to both system noise and ex-
ternal disturbances while still demonstrating excellent steady-
state and dvnamic characteristics.

INTRODUCTION

This paper investigates the potential of robust, automatic,
multiobjective control design with hardware in the loop.
Tuning of PI parameters on-line [19] has been achieved via
multiobjective genetic algorithms applied to a sealed pump
running on magnetic bearings for a nuclear powered sub-
marine. However, parameter and controller structure tuning
on-line presents a further level of potential for control sys-
tem design. A DC motor dynamometer rig and a microcon-
troller is used as a platform to develop and assess the con-
trol algorithms. An on-line tuned controller type (PI) and
an automatic method for fuzzy logic control design is pre-
sented, utilising a multiobjective evolutionary algorithm for
the optimisation process. Process uncertainty in the form of
parameter variations has been investigated [12] in which a
model which includes parameter uncertainty and measure-
ment noise is utilised with the aim of producing a controller
which is also robust to disturbances. Automatic controller
design considered here allows the evolutionary design to pro-
ceed in the presence of real-life measurement noise and pa-
rameter variation via the hardware in the loop . To further
develop the theme of robust design, external disturbances are
injected during each on-line chromosome assessment with
the aim of increasing the controller robustness. Moreover,
a complete plant cycle is performed during the evaluation
phase for each chromosome. Finally a method based on Evo-
lutionaly Programming, choosing both controller structure,
elements and parameters is presented. Again the optimisa-
tion procedure is conducted via hardware in the loop. Fuzzy
logic control, comprising a fuzzification interface, rule base
and defuzzification algorithm [18], [22]., has been applied to
a wide variety of motion control applications [1], [9]. A vital
region of interest concerns the implementation of the fuzzy

controller. Several different approaches have been postulated
to extract the knowledge base from experts or training exam-
ples to construct the input-output membership functions and
the fuzzy rule-base. These methods can be based on neu-
ral networks [I I], [ 14] or the application of fuzzy cluster-
ing techniques to construct a fuzzy controller from training
data sets [8]. It has been observed that the major drawback
of most fuzzy controllers and expert systems is the need to
predefine membership functions and fuzzy rules. In [11], a
method is proposed based on fuzzy clustering techniques and
decision tables to derive membership functions and fuzzy
rules from numerical data. A natural evolution of the tech-
nique was to integrate Genetic Algorithms (GAs) into the
Fuzzy logic design process [2], [10], [20]. The robustness
of the GA allows it to cover a multidimensional search space
while ensuring an optimal or near-optimal solution, thus si-
multaneous design of membership functions and fuzzy con-
trol rules can be achieved [21]. The development of these
techniques to design optimal robust fuzzy logic controllers
for example gas turbine engines [15] and aerospace autopi-
lots [13] has arisen to satisfy the need which exists when ex-
pert heuristic knowledge doesn't exist to translate into con-
troller design. The performance of a particular control de-
sign is fundamentally tied to the accuracy of the model upon
which it is based. This is especially true for iterative con-
trol design and optimisation procedures. The substitution of
hardware in the loop for the software model opens up new
possibilities for design based on real world perfomance indi-
cies. In this paper the implementation of GA fuzzy design is
evaluated by an on-line experimental DC motor connected to
a DC shunt load motor set to introduce dynamic disturbances.
The performance of the resulting motion controller is com-
pared with that of a manually tuned fuzzy controller. The
results presented here demonstrate a convenient and practi-
cal method to produce a robust controller design on a proto-
type plant. The final implementation considered in this paper
is Genetic Programming (GP), which is an extension of the
Genetic Algorithm specifically for handling complex compu-
tational structures [16]. The solution of a problem by means
of GP is achieved by searching combinations of symbolic ex-
pressions. In this case, the symbolic expressions are blocks
from the Simulink library, with the subsequent controllers
evaluated in real-time on hardware in-the-loop. These sym-
bolic networks are supported by parameter sets (e.g. gain
values, PID coefficients etc.) optimised by evolutionary al-
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A. Multiobjective optimisation bv evolutionarv algorithlm

Evolutionary algorithms are global parallel search and
optimisation methods based around Darwinian principles,
working on a population of potential solutions to a problem
(in this case the on-line design of robust servo controllers via
hardware in the loop'). Every individual in the population rep-
resents a particular solution to the problem, often expressed
in binary code. The population is evolved over a series of
generations to produce better solutions to the problem. The
general multiple objective optimisation problem is described
as [15]:

rlint {f1(X) Z1 f(X) = } (1 )
where

xED, (2)
The solution of x = [xi, . Xi] is a vector of decision vari-
ables, and D is the set of feasible solutions. If each deci-
sion variable takes discrete values from a finite set, then the
problem is combinatorial. The image of solution x in the
objjective space is a point

z =- ..|=f(x)
such that

Ali f(x),j 1.J. (4)
Point zt dominates z2, z1 > z2, if Vj -l < z2 and _< _2

for at least one j. Solution x1 dominates x2 if the image of
x1 dominates the image of x2. A solution x e D is effi-
cient (Pareto-optimal) if there is no x' E D that dominates
x. The point which is an image of an efficient solution is
nondominated. The set of all efficient solutioms is called the
efficient set. The image of the efficient set in the objective
space is called the nondominated set or Pareto fiont. An ap-
proximation to the nondominated set is a set A of points (and
corresponding solutions) such that -]3z', z2 e A such that
Z>- z2, that is set A is composed of mutually nondomi-
nated points. The point z* composed of the best attainable
objective function values is called the idealpoint. At every
generational step, each individual of the population is run on
the hardware, and its perfomiance evaluated and ranked via
a cost function. Individual performance is indicated by a fit-
ness value, an expression of the solution's suitability in the
solution of the problem. The relative degree of tlhe fitness
value determines the level of propagation of the individual's
genes to the next generation. In the multi-objective evolu-
tionary algorithm (MOGA) in use here, the rank of a certain
individual corresponds to the number of individuals in the
current population by which it is dominated. All nondomi-
nated individuals are assigned rank 1, while donminated ones
are penalized according to the population density of the cor-
responding region ofthe tradeoff surface. Fitness assignment
is performed as follows [6];

. Sort population according to rank.

. Assign fitness to individuals by interpolating from the
best (rank 1) to the worst (rank n < M), the Pareto
ranking assignmentprocess [7], according to a (usually)
linear function.

I. Average the fitness of individuals with the same rank,
so that all of them will be sampled at the same rate.

This keeps the global population fitness constant while
maintaining appropriate selective pressure.

Evolution is subsequently performed by a set of genetic oper-
ators which stochastically manipulate the genetic code. Most
genetic algorithms include operators which select individu-
als for mating, and produce a new generation of individu-
als. Crossoveer and Mutation are two well-used operators.
The crossover operator exchanges genetic material between
parental chromosomes to produce offspring with new genetic
code. The mutation operator makes small random changes to
a chromosome. Trade-offs occur between competing objec-
tives with the consequence that it is very rare to find a single
solution to a particular problem. In reality a family of non-
dominated solutions will exist. These Pareto-optimal [4], [5]
solutions are those for which no other solution can be found
which improves on a particular objective without a detrimen-
tal effect on one or more competing objectives. The designer
then has the opportunity to select an appropriate compromise
solution from the trade-off family based on a subjective en-
gineering knowledge of the required performance. Individu-
als which represent candidate solutions to the optimisation
problem (in this case fuzzy controller parameters such as
membership functions, rule bases etc.) are encoded as eitlher
binary or real number strings, producing an initial popula-
tion of chromosomes by randomly genlerating these strings.
The population of individuals is evaluated using an objective
function which characterises the individual's performance in
the problem domain. The experimental system is run iter-
atively with each individual 's set of controller parameters.
The objective function determines how well each individual
performs based on experimental data (in this case the current
and velocity tracking performance and power consumption),
and is used as the basis for selection via the assignient of
a fitness value. The motivation in this case for combining
GAs with fuzzy logic for control is to investigate a number
of factors. Firstly, the design potential which can be gained
by removing the need for knowledge solicitation to enable
the fuzzy logic design. Secondly to reduce the design time.
Thirdly to examine a method for introducing robustness fea-
tures into the fuzzy design. Finally to investigate and define
an method for multiobjective controller design where an ac-
curate system model is either unavailable, or runs extremely
slowly, a limiting factor in the process of iterative evolution-
ary design.

B. Hardware overview
The application consists of a brushed DC permanent mag-

net field motor fed by a four quadrant DC chopper drive
operating at 5kHz. Figure 1 shows a schematic of the on-
line control system and hardware setup. The objective is
to perform robust closed loop speed control on this motor.
The drive motor is coniected via a flexible coupling to a

field wound DC load motor which itself is fed directly by
a 200V DC supply. The disturbance torque from this load
motor is independently controllable, based on the applied ar-
mature voltage. Current control is embedded in the INTEL
80C196KC microcontroller as is the automatically designed
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velocity controller. The microcontroller also hosts the ve-
locity and current feedback signals from the motor set and
chopper drive respectively. The multiobjective optimisation

Velocity Feedback

Current Feedback

(Brushed DC 1/ ' Wound Field
Drive Motor;%.'_, DC Load Motor

ITEL

,- D48001961(0 v¾4 Quadrant

Microcontroller Chopper

l. 200VDC}A i`200V DC I200V DC
Host PC Spl

(MOGA Matlab)

NII ~~~~~~~~Diturbac
0 Data Acquisition jtConco

Board ________________ ~ControlDemand d)BIar

Demand

Fig. 1. Onlilne optimisatioli hardware setup

programme runs under Matlab [18]. and resides on a PC.
Candidate controllers are downloaded from this host to the
microcontroller via the serial link and on-line debug facility
allowing direct access to programme memory. Assessment
of the candidate controllers is performed on the PC accord-
ing to a pre-programmed performance cost function. A Na-
tional Instruments data acquisition board performs signal ac-
quisition to bring feedback signals into the PC, to facilitate
performance evaluation via the objective function.

I. ON-LINE PID CONTROL DESIGN

Various methods exist to tune the gains of a PID con-
troller off-line to attain the prescribed transient response and
steady state error criteria. These methods generally involve
some form of iterative approach to achieve performance cri-
teria such as rise-tii-nt , o!eaIcrshoot and settling - time
[17]. In keeping with the development of the fuzzy con-
troller designed later in this paper, the PID control scheme
was designed and tuned on-line. This on-line method has
been shown to be extremely effective in a variety of appli-
cations including active magnetic bearings [19]. In the ap-

'Objective Furrction)

FMeasured Multiobjedive Measured
Veloity ... Genetc . - - Current
Erro Algorithm 1 Error sDisturbance

Profile ReRelay
Control

Controller DC Load Motor>
g( Parameters ri (Disturbance

(Velocity J PID VelocitvyI PID Current DC ChopperA DMechanical
Demand Controller' Controller J Drive

- DC Drive McAor f-* .-

Current Feedback

Velocity Feedback

Fig. 2. Online PID current and velocity controller optimisation
setup

plication under consideration here, the PID controllers to be
optimised comprise two cascaded [17] control loops (figure
2). An outer loop performs tracking of a velocity demand,
supplying a current demand based upon velocity error to the

inner control loop which tracks the current demand based
on current error. The output of the PID current controller
is applied as a voltage to the DC drive motor via the PWM
channel of the microcontroller and four quadrant DC chop-
per drive. The dynamic performance of the system is limited
by current and voltage restraints specified by the motor man-
ufacturer, namely

. Supply to chopper drive: 150V DC
* Current limit: 1.5A

The parameters to be tuned here are the proportional IKyp, in-
tegral K, and derivative gains Kd for both the current and
velocity control loops, to achieve tracking performance, and
also load disturbance reject on for the velocity oop.

C = Et KI, 1 + + KdS (5)
where Et is the tracking e+or andt_ is the c&n manded con-
trol action. The optimisation engine chosen for this appli-
cation is the Multi Objective Genetic Algorithm (MOGA)
which runs on the PC platfonn [3], and is interfaced to
Simulink. Genetic algorithms can tolerate experimental
noise, and are as such ideal for this application, since a pop-
ulation of potential solutions evolve by means of a selection
and transformation process which is stochastic by nature.
The on-line control optimisation was based on the structure
of a standard manually tuned controller. A software interface
allows the controller parameters to be altered on the micro-
controller in real time from within the MOGA environment
and also allows measured data to be read back into MAT-
LAB for performance assessment. The optimisation proce-
dure is constructed with the PID parameters for the two con-
trol loops as decision variables and direct measurements of
the controllers performance to form the basis for assessment
as optimisation objectives. The current and velocity con-
trollers were tuned concurrently, and performance was as-
sessed in response to a step velocity demand of 200rcads- 1
The objective function comprised three elements, and was of
the form

* minimise f' Ij dt
* minimise fle 1,dt
* minimise f 1i.dt

where ei is the current tracking error, e, is the velocity track-
ing error, and J v i.dt is the power consumption of the sys-
tem. In this way, it is required that a search be performed
for a pair of controllers which deliver the most accurate cur-
rent and velocity tracking performance, while utilising the
minimum possible energy. An extra feature wliich was built
into the optimisation procedure was the injection of a distur-
bance via the load motor of approximately O.3Nmn which is
approximately 30% of torque at the rated current of 1.5A.
In this way, it was expected that a controller set would be de-
signed robust to external load disturbances. The optimisation
algorithm was set according to the following parameters:

* Number of individuals per generation: 40
* Number of random immigrants per generation: 6
* Number of generations: 100
. Number of decision variables: 6 (PID parameters for
two controllers)

* Number of objectives: 3 (current tracking, velocity
tracking and power consumption)
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. Number of immigrants per generation: 6 (random indi-
viduals to ensure complete search)

* Decision variable range: 0-2000
* All objectives set to minimise at zero.

The selection of the PID controller was extremely easy in
this case. Minimisation of current tracking error also results
in the minimisation of velocity tracking error. The power in-
tegral minimisation objective is to a greater extent a tradeoff
with the tracking objectives. Relaxation of the power cri-
teria results in improved tracking performance up to a point
where no improvement is achieved. From this point onwards,
no improvement is made in tracking, even with the expendi-
ture of larger amounts of energy. Evidently, the larger gains
associated with controllers beyond this point waste energy in
a more aggressive control action without any improvement
in performance. Consequently the controller gains which are
associated with this boundary are chosen as the optimal set.

vC

1,l t:_ 14 U.; 1E"l

ts)

Fig. 3. Motor step demand tracking response withi external
torque disturbance (a :velocity response, (b,):current response,
(c):estimated disturbance torque

*Current controller gains: P 293.5, I1 50, D 0
*Velocity controller gains: P 43.8, I 13.8, D 0

The switching- pattem of the relay controlling the voltage to
the load motor is shown in graph (c) (figure 3. The values
shown have been scaled to the value of applied disturbanice
torque. This compares with a maximum torque of lNm-i from
the drive motor at a rated current of 1 .5A. Under these con-
ditions, a rise-time from Orads,~ 1 to 200r-ads- 1 in approxi-
mately 4.5sq can be expected.

IL. ON-LINE FUTZZY LOGIC CONTROLLER DESIGN

Due to the considerable computational and experimental
considerations implicit in this method, certain constraints are
included in the, bounds of the decision variable vector in or-
der to bring the automatic design time down to a reasonable
level. A flowchart of the experimental setup is shown in fig-
ure 4 and contains a number of elements; The ob~jective func-
tion contains the elements of performance and design to be
minimised, principally

* Rise-time in response to step changes in velocity de-
mand

* Steady-state error in response to step changes in velocity
demand

. Overall f vi.dt power utilisation for a complete plant
cycle

Rise time,
Objectve Function Steady-State error

Control compiexity etc.

(Msiti.bjectioe Decision Variables
Evouionary (Membership fUncons
Agorithm etc.)

Matlab
Fuzzy Logic
Toolbox

Rarndom Disturbance
Demandl Fuzzy Lactic Moor
profile t ler

Velocity

Fig. 4. On-line Fuzzy Logic design setup

Control complexity, i.e. the structure of the fuzzy logic
controller is to e kept as simple as possible.

The decision variable vector contains the elements of con-
troller design which are implemented in each individual dur-
ing the evolutionary process. The decision variables include
the number of inputs, number of membership functions for
each input and output, number of rules in the rule base, and-
or-ignore conjugates in each rule, and finally the defuzzifica-
tion algorithm. The selected values in the decision variables
vector are passed to the Matlab Fuzzy Logic Toolbox to be
constructed into a controller file. In order to reduce the nec-
essary execution time to converge to a satisfactory conclusion
the decision variable vector is bounded as follows

. number of inputs: 1-2
* number of membership functions for each input 3-5
. membership functions limited to triangular, with 2 base

and one peak co-ordinate
* number of rules: 3-5
. conjugates: and, or, none
* defuzzification: centre of maximum

In addition, a random +/ - O.2Nm disturbance is injected
during each experimental run to introduce an element of ro-
bustness into the design procedure. For each iteration of the
design, the fuzzy controller was run on the motor rig and
its performance ranked. It was found that the selected con-
troller appeared early on in the procedure (generation 17 in
a population of 10), in an initial run of 50 generations. The
Pareto-Optimal set of solutions included several configura-
tions and combinations of membership functions, including
one which was markedly similar to the solution defined by
the off-line fuzzy design with on-line tuning. The solution
chosen for presentation here however, exhibits the required
dynamic and steady-state performance but is coupled with a
minimal set of membership functions (comprising an addi-
tional objective) and rules which presents computational ad-
vantages. The first results to present are those which show
the dynamic and steady state performance of the velocity
controller. The undisturbed case is shown in figure 5, and the
disturbed case in figure 6 In both cases, the velocity tracking
response of the system is comparable with earlier designs
achieved by both PI and fuzzy logic control. One difference
of particular interest is the current waveform in both cases
which exhibits high frequency components. This effect has
been commented upon [23] in the context of fuzzy logic con-
trol design, concluding that some off-line or on-line tuning
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Fig. 5. On-l'ine designed Fuzzy Logic velocity controller perfor-
mance

is necessary to eliminate or effectively reduce the harmornics.
In the case of the off-line fuzzy logic controller described
earlier in this paper, the harmonics were reduced by on-line
tuning. For future work in this case, the addition of frequency
analysis to the objective function to minimise the unwanted
harmonics would be a beneficial area of research. Hardware
and computational constraints precluded the implementation
of this analysis on-line at this time, but it is intended that
the investigation of this phenomenon on an upgraded rig be
performed at some fuiture time. Although the performances

Fig. 6. On-line designied Fuzzy Logic velocity controller perfor-
mance with disturbance

of the various controllers are very similar, the structure of
the on-line and off-line designed controllers are very differ-
ent. Both have similar rule bases, but whereas the off-line
design has inputs of both error and change-of-error, the auto-
matically designed controller solely acts on error input. The

put set are shown in figure 8 and are linked to the input set
by the rule base;

* if velocity error is negbig THEN current demand is neg-
big

. if velocity error is negsmall THEN current demand is
negsmall

. if velocity error is zero THEN current demand is zero
* if velocity error is poshig THEN current demand ispos-

big
. if velocity error is possmall THEN current demand is
possmall

A B C [, E
j'. Si;

j! \, i
(I 8 L

tE

,{ ;

u4L \

',

_

-1S -1 -,g ' of 1f.
cuirrent aemand (4

Fig. 8. On-lilne designed Fuzzy Logic velocity controller out-
put membership functions. A:negbig. B:negsmall. C:zero,
D:possmall, E:posbig.

The methods attached to the fuzzy logic controller were as
follows;

. and:min

. or:max

. implication:min

. aggregation:max

. defuzzification:mom

III. GP CONTROLLER DESIGN

A symbolic approach was adopted to design the RST con-
troller shown in block diagram form in figure 9.The deci-
sion variables which form the genetic material of the indi-
viduals in the population are the contents of the R, S and T
controllers. Each genome contains infomiation defining the
symbolic contents and associated parameters of each of the
controllers. The symbolic contents available are shown in

v6 ,' ' ' -'

-3u~ -2oi -16 1O 20\3

Fig. 7. On-line designed Fuzzy Logic velocity controller in-
put membership functions. A:negbig, B:negsmall, C:zero,
D:possmall, E:posbig.

membership functions which make up the input set are shown
in figure 7, being the same number (5) as in the off-line de-
signed case, but are far more closely clustered around the
zero set. The membership functions which make up the out-

Fig. 9. Genetic Programmiiing design setup

figure 10 An identical GA setup to the PI and Fuzzy Con-
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