9,476 research outputs found

    The projector algorithm: a simple parallel algorithm for computing Voronoi diagrams and Delaunay graphs

    Full text link
    The Voronoi diagram is a certain geometric data structure which has numerous applications in various scientific and technological fields. The theory of algorithms for computing 2D Euclidean Voronoi diagrams of point sites is rich and useful, with several different and important algorithms. However, this theory has been quite steady during the last few decades in the sense that no essentially new algorithms have entered the game. In addition, most of the known algorithms are serial in nature and hence cast inherent difficulties on the possibility to compute the diagram in parallel. In this paper we present the projector algorithm: a new and simple algorithm which enables the (combinatorial) computation of 2D Voronoi diagrams. The algorithm is significantly different from previous ones and some of the involved concepts in it are in the spirit of linear programming and optics. Parallel implementation is naturally supported since each Voronoi cell can be computed independently of the other cells. A new combinatorial structure for representing the cells (and any convex polytope) is described along the way and the computation of the induced Delaunay graph is obtained almost automatically.Comment: This is a major revision; re-organization and better presentation of some parts; correction of several inaccuracies; improvement of some proofs and figures; added references; modification of the title; the paper is long but more than half of it is composed of proofs and references: it is sufficient to look at pages 5, 7--11 in order to understand the algorith

    Light in Power: A General and Parameter-free Algorithm for Caustic Design

    Get PDF
    We present in this paper a generic and parameter-free algorithm to efficiently build a wide variety of optical components, such as mirrors or lenses, that satisfy some light energy constraints. In all of our problems, one is given a collimated or point light source and a desired illumination after reflection or refraction and the goal is to design the geometry of a mirror or lens which transports exactly the light emitted by the source onto the target. We first propose a general framework and show that eight different optical component design problems amount to solving a light energy conservation equation that involves the computation of visibility diagrams. We then show that these diagrams all have the same structure and can be obtained by intersecting a 3D Power diagram with a planar or spherical domain. This allows us to propose an efficient and fully generic algorithm capable to solve these eight optical component design problems. The support of the prescribed target illumination can be a set of directions or a set of points located at a finite distance. Our solutions satisfy design constraints such as convexity or concavity. We show the effectiveness of our algorithm on simulated and fabricated examples

    Geodesic-Preserving Polygon Simplification

    Full text link
    Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon P\mathcal{P} by a polygon P\mathcal{P}' such that (1) P\mathcal{P}' contains P\mathcal{P}, (2) P\mathcal{P}' has its reflex vertices at the same positions as P\mathcal{P}, and (3) the number of vertices of P\mathcal{P}' is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both P\mathcal{P} and P\mathcal{P}', our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of P\mathcal{P}

    Rounding Algorithms for a Geometric Embedding of Minimum Multiway Cut

    Full text link
    The multiway-cut problem is, given a weighted graph and k >= 2 terminal nodes, to find a minimum-weight set of edges whose removal separates all the terminals. The problem is NP-hard, and even NP-hard to approximate within 1+delta for some small delta > 0. Calinescu, Karloff, and Rabani (1998) gave an algorithm with performance guarantee 3/2-1/k, based on a geometric relaxation of the problem. In this paper, we give improved randomized rounding schemes for their relaxation, yielding a 12/11-approximation algorithm for k=3 and a 1.3438-approximation algorithm in general. Our approach hinges on the observation that the problem of designing a randomized rounding scheme for a geometric relaxation is itself a linear programming problem. The paper explores computational solutions to this problem, and gives a proof that for a general class of geometric relaxations, there are always randomized rounding schemes that match the integrality gap.Comment: Conference version in ACM Symposium on Theory of Computing (1999). To appear in Mathematics of Operations Researc

    Revisiting interval protection, a.k.a. partial cell suppression, for tabular data

    Get PDF
    The final publication is available at link.springer.comInterval protection or partial cell suppression was introduced in “M. Fischetti, J.-J. Salazar, Partial cell suppression: A new methodology for statistical disclosure control, Statistics and Computing, 13, 13–21, 2003” as a “linearization” of the difficult cell suppression problem. Interval protection replaces some cells by intervals containing the original cell value, unlike in cell suppression where the values are suppressed. Although the resulting optimization problem is still huge—as in cell suppression, it is linear, thus allowing the application of efficient procedures. In this work we present preliminary results with a prototype implementation of Benders decomposition for interval protection. Although the above seminal publication about partial cell suppression applied a similar methodology, our approach differs in two aspects: (i) the boundaries of the intervals are completely independent in our implementation, whereas the one of 2003 solved a simpler variant where boundaries must satisfy a certain ratio; (ii) our prototype is applied to a set of seven general and hierarchical tables, whereas only three two-dimensional tables were solved with the implementation of 2003.Peer ReviewedPostprint (author's final draft

    Distance-Sensitive Planar Point Location

    Get PDF
    Let S\mathcal{S} be a connected planar polygonal subdivision with nn edges that we want to preprocess for point-location queries, and where we are given the probability γi\gamma_i that the query point lies in a polygon PiP_i of S\mathcal{S}. We show how to preprocess S\mathcal{S} such that the query time for a point~pPip\in P_i depends on~γi\gamma_i and, in addition, on the distance from pp to the boundary of~PiP_i---the further away from the boundary, the faster the query. More precisely, we show that a point-location query can be answered in time O(min(logn,1+logarea(Pi)γiΔp2))O\left(\min \left(\log n, 1 + \log \frac{\mathrm{area}(P_i)}{\gamma_i \Delta_{p}^2}\right)\right), where Δp\Delta_{p} is the shortest Euclidean distance of the query point~pp to the boundary of PiP_i. Our structure uses O(n)O(n) space and O(nlogn)O(n \log n) preprocessing time. It is based on a decomposition of the regions of S\mathcal{S} into convex quadrilaterals and triangles with the following property: for any point pPip\in P_i, the quadrilateral or triangle containing~pp has area Ω(Δp2)\Omega(\Delta_{p}^2). For the special case where S\mathcal{S} is a subdivision of the unit square and γi=area(Pi)\gamma_i=\mathrm{area}(P_i), we present a simpler solution that achieves a query time of O(min(logn,log1Δp2))O\left(\min \left(\log n, \log \frac{1}{\Delta_{p}^2}\right)\right). The latter solution can be extended to convex subdivisions in three dimensions
    corecore