73,041 research outputs found

    NASA space station automation: AI-based technology review. Executive summary

    Get PDF
    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics

    Prospects of a mathematical theory of human behavior in complex man-machine systems tasks

    Get PDF
    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued

    A Supervisor for Control of Mode-switch Process

    Get PDF
    Many processes operate only around a limited number of operation points. In order to have adequate control around each operation point, and adaptive controller could be used. When the operation point changes often, a large number of parameters would have to be adapted over and over again. This makes application of conventional adaptive control unattractive, which is more suited for processes with slowly changing parameters. Furthermore, continuous adaptation is not always needed or desired. An extension of adaptive control is presented, in which for each operation point the process behaviour can be stored in a memory, retrieved from it and evaluated. These functions are co-ordinated by a ¿supervisor¿. This concept is referred to as a supervisor for control of mode-switch processes. It leads to an adaptive control structure which quickly adjusts the controller parameters based on retrieval of old information, without the need to fully relearn each time. This approach has been tested on experimental set-ups of a flexible beam and of a flexible two-link robot arm, but it is directly applicable to other processes, for instance, in the (petro) chemical industry

    Telepresence for space: The state of the concept

    Get PDF
    The purpose here is to examine the concept of telepresence critically. To accomplish this goal, first, the assumptions that underlie telepresence and its applications are examined, and second, the issues raised by that examination are discussed. Also, these assumptions and issues are used as a means of shifting the focus in telepresence from development to user-based research. The most basic assumption of telepresence is that the information being provided to the human must be displayed in a natural fashion, i.e., the information should be displayed to the same human sensory modalities, and in the same fashion, as if the person where actually at the remote site. A further fundamental assumption for the functional use of telepresence is that a sense of being present in the work environment will produce superior performance. In other words, that sense of being there would allow the human operator of a distant machine to take greater advantage of his or her considerable perceptual, cognitive, and motor capabilities in the performance of a task than would more limited task-related feedback. Finally, a third fundamental assumption of functional telepresence is that the distant machine under the operator's control must substantially resemble a human in dexterity

    Electric field emissions of FPGA chip based on gigahertz transverse electromagnetic cell modeling and measurements

    Get PDF
    Modern integrated circuits (ICs) are significant sources of undesired electromagnetic wave. Therefore, characterization of chip-level emission is essential to comply with EMC tests at the product level. A Gigahertz Transverse Electromagnetic (GTEM) cell is a common test instrument used to measure IC radiated emission and the test cost is relatively low. Regular IC radiated emission measurements using GTEM tend to neglect some significant emission sources. Thus, this research proposed an alternative methodology to perform field measurement of the IC inside the GTEM cell in order to optimize the field measurements. This research study also attempted analysis of the overall GTEM cell performance using transmission line theory. An FPGA chip was adopted as the IC under test because of its flexibility in configuration to any digital circuit. The investigations discovered that the impact of the FPGA board supporting components and interconnection cables can be significantly reduced with appropriate shielding and grounding. The electric field predict a far distance from the FPGA chip was carried out based on the dipole moment technique. In particular, the dipole moment model emphasizing the tiny horizontal and vertical radiation elements inside the FPGA chip as Hertzian antenna and small current loop. Equations to predict the horizontal and vertical electric field were developed based on Hertzian antenna and small current loop which relate the tiny radiation sources to electric and magnetic dipole moments. The prediction was validated with 3-meter field measurements in a semi-anechoic chamber. On top of that, a spiral-like pattern was developed to obtain a correction factor for further improvement of the correlation between prediction and SAC measurement. The results revealed that the correction factor effectively reduced the gap between the prediction and measurement fields and boosted the correlation coefficient by 44%. The difference of peak values also has limited to less than 0dB after correction. These results suggest a promising finding for a future EMI test of ICs with a cheaper GTEM cell

    Orbital operation for large automated satellites

    Get PDF
    Orbital operations concepts for the shuttle launched Large Automated Satellites (LAS) are discussed. It includes the orbital operations elements and the major options for accomplishing each element. This study is based on the preliminary payload information available in Level I and II documents and on orbital operations methods used on past programs, both manned and unmanned. It includes a definition of detailed trade studies which need to be performed as satellite design details and organization responsibilities are defined. The major objectives of this study were to define operational methods and requirements for the long duration LAS missions which are effective and primarily economical to implement

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML

    Electricity consumption forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Get PDF
    Universiti Tun Hussein Onn Malaysia (UTHM) is a developing Malaysian Technical University. There is a great development of UTHM since its formation in 1993. Therefore, it is crucial to have accurate future electricity consumption forecasting for its future energy management and saving. Even though there are previous works of electricity consumption forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS), but most of their data are multivariate data. In this study, we have only univariate data of UTHM electricity consumption from January 2009 to December 2018 and wish to forecast 2019 consumption. The univariate data was converted to multivariate and ANFIS was chosen as it carries both advantages of Artificial Neural Network (ANN) and Fuzzy Inference System (FIS). ANFIS yields the MAPE between actual and predicted electricity consumption of 0.4002% which is relatively low if compared to previous works of UTHM electricity forecasting using time series model (11.14%), and first-order fuzzy time series (5.74%), and multiple linear regression (10.62%)

    Software for Embedded Control Systems

    Get PDF
    The research of our team deals with the realization of control schemes on digital computers. As such the emphasis is on embedded control software implementation. Applications are in the field of mechatronic devices, using a mechatronic design approach (the integrated and optimal design of a mechanical system and its embedded control system). The ultimate goal is to support the application developer (i.e. mechatronic design engineer) such that implementing control software according to ðo it the first time right¿ becomes business as usual
    corecore