561 research outputs found

    Multi-level agent-based modeling with the Influence Reaction principle

    Full text link
    This paper deals with the specification and the implementation of multi-level agent-based models, using a formal model, IRM4MLS (an Influence Reaction Model for Multi-Level Simulation), based on the Influence Reaction principle. Proposed examples illustrate forms of top-down control in (multi-level) multi-agent based-simulations

    Is Ambient Intelligence a truly Human-Centric Paradigm in Industry? Current Research and Application Scenario

    Get PDF
    The use of pervasive networked devices is nowadays a reality in the service sector. It impacts almost all aspects of our daily lives, although most times we are not aware of its influence. This is a fundamental characteristic of the concept of Ambient Intelligence (AmI). Ambient Intelligence aims to change the form of human-computer interaction, focusing on the user needs so they can interact in a more seamless way, with emphasis on greater user-friendliness. The idea of recognizing people and their context situation is not new and has been successfully applied with limitations, for instance, in the health and military sectors. However its appearance in the manufacturing industry has been elusive. Could the concept of AmI turn the current shop floor into a truly human centric environment enabling comprehensive reaction to human presence and action? In this article an AmI scenario is presented and detailed with applications in human’s integrity and safety.Ambient Intelligence, networks, human-computer interaction

    Evolvable production systems in a RMS context: enabling concepts and technologies

    Get PDF
    The goal of this paper is to describe the research on Evolvable Production Systems (EPS) in the context of Reconfigurable Manufacturing Systems (RMS), and to briefly describe a multiagent based control solution. RMS, Holonic and EPS concepts are briefly described and compared. Novel inspiration areas and concepts to solve the demanding requirements set by RMS, such as artificial life and complexity theory, are described. Finally, the multiagent based control solution is described as the underlying infrastructure to support all future development in EPS, using concepts such as emergence and self-organisation

    TeleTruck : a holonic fleet management system

    Get PDF
    In this paper we describe TeleTruck, a multiagent dispatching system that was developed in close cooperation with a forwarding company and that is capable of handling real-world requirements like dynamics and uncertainty. The main idea underlying the TeleTruck approach is the usage of holonic agents, i.e. agents composed of subagents that act in a corporated way. We describe the implementation in detail and point out the advantages of the holonic paradigm

    A generic holonic control architecture for heterogeneous multi-scale and multi-objective smart microgrids

    Get PDF
    Designing the control infrastructure of future “smart” power grids is a challenging task. Future grids will integrate a wide variety of heterogeneous producers and consumers that are unpredictable and operate at various scales. Information and Communication Technology (ICT) solutions will have to control these in order to attain global objectives at the macrolevel, while also considering private interests at the microlevel. This article proposes a generic holonic architecture to help the development of ICT control systems that meet these requirements. We show how this architecture can integrate heterogeneous control designs, including state-of-the-art smart grid solutions. To illustrate the applicability and utility of this generic architecture, we exemplify its use via a concrete proof-of-concept implementation for a holonic controller, which integrates two types of control solutions and manages a multiscale, multiobjective grid simulator in several scenarios. We believe that the proposed contribution is essential for helping to understand, to reason about, and to develop the “smart” side of future power grids

    A Holonic Model Of System For The Resolution Of Incidents In The Software Engineering Projects

    Get PDF
    The need of automation in the resolution of the incidents that arise in the different phases of the software engineering projects, the desire of to manage the knowledge about how to solve an incident, the high specialization that appears in the different sub-domains of knowledge (security, networking, etc.), not only at individuals' level but also at organizations' one and the high rate of changes in the IT staffs, lead us to propose a model of a system for the resolution of the incidents before mentioned, based on the concepts of holon and informon

    Holonic Learning: A Flexible Agent-based Distributed Machine Learning Framework

    Full text link
    Ever-increasing ubiquity of data and computational resources in the last decade have propelled a notable transition in the machine learning paradigm towards more distributed approaches. Such a transition seeks to not only tackle the scalability and resource distribution challenges but also to address pressing privacy and security concerns. To contribute to the ongoing discourse, this paper introduces Holonic Learning (HoL), a collaborative and privacy-focused learning framework designed for training deep learning models. By leveraging holonic concepts, the HoL framework establishes a structured self-similar hierarchy in the learning process, enabling more nuanced control over collaborations through the individual model aggregation approach of each holon, along with their intra-holon commitment and communication patterns. HoL, in its general form, provides extensive design and flexibility potentials. For empirical analysis and to demonstrate its effectiveness, this paper implements HoloAvg, a special variant of HoL that employs weighted averaging for model aggregation across all holons. The convergence of the proposed method is validated through experiments on both IID and Non-IID settings of the standard MNISt dataset. Furthermore, the performance behaviors of HoL are investigated under various holarchical designs and data distribution scenarios. The presented results affirm HoL's prowess in delivering competitive performance particularly, in the context of the Non-IID data distribution

    A holonic multi-agent methodology to design sustainable intelligent manufacturing control systems

    Full text link
    [EN] The urgent need for sustainable development is imposing radical changes in the way manufacturing systems are designed and implemented. The overall sustainability in industrial activities of manufacturing companies must be achieved at the same time that they face unprecedented levels of global competition. Therefore, there is a well-known need for tools and methods that can support the design and implementation of these systems in an effective way. This paper proposes an engineering method that helps researchers to design sustainable intelligent manufacturing systems. The approach is focused on the identification of the manufacturing components and the design and integration of sustainability-oriented mechanisms in the system specification, providing specific development guidelines and tools with built-in support for sustainable features. Besides, a set of case studies is presented in order to assess the proposed method.This research was supported by research projects TIN2015-65515-C4-1-R and TIN2016-80856-R from the Spanish government. The authors would like to acknowledge T. Bonte for her contribution to the NetLogo simulator of the AIP PRIMECA cell.Giret Boggino, AS.; Trentesaux, D.; Salido Gregorio, MÁ.; Garcia, E.; Adam, E. (2017). A holonic multi-agent methodology to design sustainable intelligent manufacturing control systems. Journal of Cleaner Production. 167(1):1370-1386. https://doi.org/10.1016/j.jclepro.2017.03.079S13701386167

    The holonic approach for flexible production: a theoretical framework

    Get PDF
    This paper discusses the body of knowledge about Holonic Approach to theoretically demonstrate how Holonic Production System (HPS) can be a convincing choice to overcome the problems of traditional production systems? architectures. Today, enterprises are trying to find ways to manage the growing environmental complexity that is well described by Complex Systems Theory (CST). After the focus on the main problem regarding environmental complexity, the Holonic system and the Holonic Production System will be analyzed. The paper will focus the potential of HPS to adapt and react to changes in the business environment whilst being able to maintain systemic synergies and coordination through the holonic structure where functional production units are simultaneously autonomous and cooperative

    Improve the Performance of Industrial Agents using Fog Computing

    Get PDF
    In the last decade, the market requirements have been increasing by demanding numerous different products being highly customizable. Given this need, the necessity for dynamic and flexible production lines are a high priority to meet this change. A traditional approach is not enough to meet the market demand and due to this, several paradigms have been coined out to try and solve this problem. The proposed approach is related to communication between the shop-floor modules in order to create different products. This work proposes an architecture where an integration layer will join a Multiagent System capable of the more recent production paradigms with legacy hardware that is present in the more traditional factories in order to have different products being produced in the same production line. This architecture that revolves an interface that can be used by the agents in the factory in order to use the hardware modules to create a different product if need be. The main features of this project is the fact that by using datamodels and an interface created, it can be easily plugged new stations with different tools to modify the product thus increasing the amount of products that can be created
    corecore