77,158 research outputs found

    An oil pipeline design problem

    Get PDF
    Copyright @ 2003 INFORMSWe consider a given set of offshore platforms and onshore wells producing known (or estimated) amounts of oil to be connected to a port. Connections may take place directly between platforms, well sites, and the port, or may go through connection points at given locations. The configuration of the network and sizes of pipes used must be chosen to minimize construction costs. This problem is expressed as a mixed-integer program, and solved both heuristically by Tabu Search and Variable Neighborhood Search methods and exactly by a branch-and-bound method. Two new types of valid inequalities are introduced. Tests are made with data from the South Gabon oil field and randomly generated problems.The work of the first author was supported by NSERC grant #OGP205041. The work of the second author was supported by FCAR (Fonds pour la Formation des Chercheurs et l’Aide à la Recherche) grant #95-ER-1048, and NSERC grant #GP0105574

    Optimal valve location in long oil pipelines

    Get PDF
    We address the valve location problem, one of the basic problems in design of long oil pipelines. Whenever a pipeline is depressurized, the shutoff valves block the oil flow and seal the damaged part of the pipeline. Thus, the quantity of oil possibly contaminating the area around the pipeline is determined by the volume of the damaged section of the pipeline between two consecutive valves. Then, ecologic damage can be quantified by the amount of leaked oil and the environmental characteristics of the accident area. Given a pipe network together with environmental characteristics of the area, and given a number of valves to be installed, the task is to find a valve location minimizing the maximal possible environmental damage. In this paper we present a complete framework for fast computing of an optimal valve location.environmental economics ;

    On-bottom stability design of submarine pipelines: the fundamentals

    Get PDF
    Pipelines are major cost of items in the oil and gas field development. Poor on-bottom stability design may lead to fatigue, lateral and propagation buckling problems. Consequently, additional cost may be incurred during pipeline design and construction due to critical problems relating to poor design. But cost related to the on-bottom stability problem can be significantly reduced by optimizing design. This paper presents comparative review of submarine pipelines on-bottom stability design methods. Comparing absolute lateral stability, generalized lateral stability and traditional force balance methods show variation in submerged weight and effect of pipe-soil interaction on submerged weight parameters. Overall, most literatures agreed that pipelines lateral stability can be increased by increasing porosity of soil, soil embedment and submerged weight. But steel wall and concrete thicknesses are the major parameters used to establish lateral stability of submarine steel pipelines. Therefore, providing an in depth understanding of on-bottom pipeline stability design is necessary to prevent pipeline movement during operation, its associated risks and optimized design.Keywords: Displacement, lateral stability, on-bottom design, pipeline, submerge weigh

    Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices

    Get PDF
    This paper examines the conditions for the deployment of large-scale pipeline and storage infrastructure needed for the capture of CO2 in Spain by 2040. It details a modeling framework that allows us to determine the optimal infrastructure needed to connect a geographically disaggregated set of emitting and storage clusters, along with the threshold CO2 values necessary to ensure that the considered emitters will make the necessary investment decisions. This framework is used to assess the relevance of various policy scenarios, including (i) the perimeter of the targeted emitters for a CCS uptake, and (ii) the relevance of constructing several regional networks instead of a single grid to account for the spatial characteristics of the Spanish peninsula. We find that three networks naturally emerge in the north, center and south of Spain. Moreover, the necessary CO2 break-even price critically depends on the presence of power stations in the capture perimeter. Policy implications of these findings concern the elaboration of relevant, pragmatic recommendations to envisage CCS deployment locally, focusing on emitters with lower substitution options toward low-carbon alternatives

    Mechanical Design and Dynamic Analysis of Pipe Crawling Robot for 6” to 10” diameter Internal Gas Pipeline Inspection

    Get PDF
    With the world moving forward, robot has been considered as an attractive and innovative alternative to help human in their work. For oil and gas industry, pipelines have been an important asset that needs to be maintained always. For many centuries, it has been integrals part of our constructions. However, with the cost of maintenance continue to increase, a new approach needed to accomplishing them. Many different types of pipelines robot have been proposed in the past. Unfortunately, many of the robot work under very restricted area or environments such as customized pipes sometimes have no vertical movement or can traverse through only a simple pipeline structure. This project is targeted to build and design a functional robot where the application can be tailored to internal pipelines inspection and maintenance. With overcome the existing problem from the past pipeline inspection robot, a new and improved design will help in constructing the robot. The scope of this project is focused on mechanical and structural design of the pipe crawling robot. The methodology of this project will be involving research and identification, conceptual and system design including analysis, construction of the prototype, simulation testing and analysis and completing the final report. In the end of this project will be able to develop a simulation model of pipe crawling robot for internal pipeline inspection. The related mechanical model and analyzing of the mechanical design and active adaption to pipe diameter, tractive force adjusting, control system structure are discussed. As a pipe crawling robot for visual inspection, this project can become the fundamental for other inspection robo

    Stability analysis of slug flow control

    Get PDF
    The threat of slugging to production facilities has been known since the 1970s. This undesirable flow phenomenon continues to attract the attention of researchers and operators alike. The most common method for slug mitigation is by choking the valve at the exit of the riser which unfortunately could negatively affect production. The focus, therefore, is to satisfy the need for system stability and to maximize production simultaneously. Active feedback control is a promising way to achieve this. However, due to the complexity of multiphase flow systems, it is a challenge to develop a robust slug control system to achieve the desired performance using existing design tools. In this paper, a new general method for multiphase flow system stability analysis was proposed. Active feedback control was observed to optimize slug attenuation compared with manual choking. The use of soft sensors was believed to be desirable for the practical implementation of the proposed control technique

    Arctic Standards: Recommendations on Oil Spill Prevention, Response, and Safety in the U.S. Arctic Ocean

    Get PDF
    Oil spilled in Arctic waters would be particularly difficult to remove. Current technology has not been proved to effectively clean up oil when mixed with ice or when trapped under ice. An oil spill would have a profoundly adverse impact on the rich and complex ecosystem found nowhere else in the United States. The Arctic Ocean is home to bowhead, beluga, and gray whales; walruses; polar bears; and other magnificent marine mammals, as well as millions of migratory birds. A healthy ocean is important for these species and integral to the continuation of hunting and fishing traditions practiced by Alaska Native communities for thousands of years.To aid the United States in its efforts to modernize Arctic technology and equipment standards, this report examines the fierce Arctic conditions in which offshore oil and gas operations could take place and then offers a summary of key recommendations for the Interior Department to consider as it develops world-class, Arctic-specific regulatory standards for these activities. Pew's recommendations call for improved technology,equipment, and procedural requirements that match the challenging conditions in the Arctic and for full public participation and transparency throughout the decision-making process. Pew is not opposed to offshore drilling, but a balance must be achieved between responsible energy development and protection of the environment.It is essential that appropriate standards be in place for safety and for oil spill prevention and response in this extreme, remote, and vulnerable ecosystem. This report recommends updating regulations to include Arctic specific requirements and codifying temporary guidance into regulation. The appendixes to this report provide substantially more detail on the report's recommendations, including technical background documentation and additional referenced materials. Please refer to the full set of appendixes for a complete set of recommendations. This report and its appendixes offer guidelines for responsible hydrocarbon development in the U.S. Arctic Ocean

    New England Overview: A Guide to Large-Scale Energy Infrastructure Issues in 2015

    Get PDF
    The report outlines how regional electricity and natural gas infrastructure decisions are made. It examines the current proposals to expand electricity transmission lines and natural gas pipelines into New England, as solutions to electricity and gas price and reliability issues, and briefly discusses the major implications of both
    • 

    corecore