576 research outputs found

    Study and Comparison of Surface Roughness Measurements

    No full text
    National audienceThis survey paper focus on recent researches whose goal is to optimize treatments on 3D meshes, thanks to a study of their surface features, and more precisely their roughness and saliency. Applications like watermarking or lossy compression can benefit from a precise roughness detection, to better hide the watermarks or quantize coarsely these areas, without altering visually the shape. Despite investigations on scale dependence leading to multi-scale approaches, an accurate roughness or pattern characterization is still lacking, but challenging for those treatments. We think there is still room for investigations that could benefit from the power of the wavelet analysis or the fractal models. Furthermore only few works are now able to differentiate roughness from saliency, though it is essential for faithfully simplifying or denoising a 3D mesh. Hence we have investigated roughness quantification methods for analog surfaces, in several domains of physics. Some roughness parameters used in these fields and the additionnal information they bring are finally studied, since we think an adaptation for 3D meshes could be beneficial

    Adversarial Examples in the Physical World: A Survey

    Full text link
    Deep neural networks (DNNs) have demonstrated high vulnerability to adversarial examples. Besides the attacks in the digital world, the practical implications of adversarial examples in the physical world present significant challenges and safety concerns. However, current research on physical adversarial examples (PAEs) lacks a comprehensive understanding of their unique characteristics, leading to limited significance and understanding. In this paper, we address this gap by thoroughly examining the characteristics of PAEs within a practical workflow encompassing training, manufacturing, and re-sampling processes. By analyzing the links between physical adversarial attacks, we identify manufacturing and re-sampling as the primary sources of distinct attributes and particularities in PAEs. Leveraging this knowledge, we develop a comprehensive analysis and classification framework for PAEs based on their specific characteristics, covering over 100 studies on physical-world adversarial examples. Furthermore, we investigate defense strategies against PAEs and identify open challenges and opportunities for future research. We aim to provide a fresh, thorough, and systematic understanding of PAEs, thereby promoting the development of robust adversarial learning and its application in open-world scenarios.Comment: Adversarial examples, physical-world scenarios, attacks and defense

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    Intuitive and Accurate Material Appearance Design and Editing

    Get PDF
    Creating and editing high-quality materials for photorealistic rendering can be a difficult task due to the diversity and complexity of material appearance. Material design is the process by which artists specify the reflectance properties of a surface, such as its diffuse color and specular roughness. Even with the support of commercial software packages, material design can be a time-consuming trial-and-error task due to the counter-intuitive nature of the complex reflectance models. Moreover, many material design tasks require the physical realization of virtually designed materials as the final step, which makes the process even more challenging due to rendering artifacts and the limitations of fabrication. In this dissertation, we propose a series of studies and novel techniques to improve the intuitiveness and accuracy of material design and editing. Our goal is to understand how humans visually perceive materials, simplify user interaction in the design process and, and improve the accuracy of the physical fabrication of designs. Our first work focuses on understanding the perceptual dimensions for measured material data. We build a perceptual space based on a low-dimensional reflectance manifold that is computed from crowd-sourced data using a multi-dimensional scaling model. Our analysis shows the proposed perceptual space is consistent with the physical interpretation of the measured data. We also put forward a new material editing interface that takes advantage of the proposed perceptual space. We visualize each dimension of the manifold to help users understand how it changes the material appearance. Our second work investigates the relationship between translucency and glossiness in material perception. We conduct two human subject studies to test if subsurface scattering impacts gloss perception and examine how the shape of an object influences this perception. Based on our results, we discuss why it is necessary to include transparent and translucent media for future research in gloss perception and material design. Our third work addresses user interaction in the material design system. We present a novel Augmented Reality (AR) material design prototype, which allows users to visualize their designs against a real environment and lighting. We believe introducing AR technology can make the design process more intuitive and improve the authenticity of the results for both novice and experienced users. To test this assumption, we conduct a user study to compare our prototype with the traditional material design system with gray-scale background and synthetic lighting. The results demonstrate that with the help of AR techniques, users perform better in terms of objectively measured accuracy and time and they are subjectively more satisfied with their results. Finally, our last work turns to the challenge presented by the physical realization of designed materials. We propose a learning-based solution to map the virtually designed appearance to a meso-scale geometry that can be easily fabricated. Essentially, this is a fitting problem, but compared with previous solutions, our method can provide the fabrication recipe with higher reconstruction accuracy for a large fitting gamut. We demonstrate the efficacy of our solution by comparing the reconstructions with existing solutions and comparing fabrication results with the original design. We also provide an application of bi-scale material editing using the proposed method

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    • …
    corecore