
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Inductive biases for pixel representation learning

Shi, Z.

Publication date
2022
Document Version
Final published version

Link to publication

Citation for published version (APA):
Shi, Z. (2022). Inductive biases for pixel representation learning. [Thesis, fully internal,
Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/inductive-biases-for-pixel-representation-learning(9d38d6f1-5a68-421e-a50d-abd243398623).html

 Inductive Biases for
Pixel Representation Learning

Zenglin Shi

Inductive B
iases for P

ixel R
epresentation Learning

Zenglin S
hi

As the important part of human intelligence, inductive
biases or heuristics allow us to solve problems and make
decisions quickly and efficiently. This thesis is dedicated
to exploring the inductive biases that humans may exploit
to achieve better machine intelligence with deep learning.

Inductive Biases
for Pixel Representation Learning

Zenglin Shi

This book was typeset by the author using LATEX 2ε.

Copyright © 2022 by Zenglin Shi.
All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission from the author.

Inductive Biases
for Pixel Representation Learning

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Aula der Universiteit
op vrijdag 29 april 2022, te 14.00 uur

door

Zenglin Shi
geboren te Henan, China

Promotiecommissie

Promotor: prof. dr. C. G. M. Snoek Universiteit van Amsterdam

Co-promotor: dr. P. S. M. Mettes Universiteit van Amsterdam

Overige leden: prof. dr. ir. A. W. M. Smeulders Universiteit van Amsterdam
prof. dr. ing. Z. J. M. H. Geradts Universiteit van Amsterdam
prof. dr. ir. P. H. N. de With Technische Universiteit

Eindhoven
dr. S. Maji University of Massachusetts

Amherst
dr. X. Zhen Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

This work was carried out in the ASCI graduate school with dissertation number 433,
and at the Video & Image Sense Lab, University of Amsterdam.

C O N T E N T S

1 I N T RO D U C T I O N 7
2 S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R 13

2.1 Introduction . 13
2.2 Related work . 14

2.2.1 Inverse problems in imaging 14
2.2.2 Deep image prior . 16

2.3 Measuring spectral bias . 17
2.3.1 Frequency-band correspondence metric 18
2.3.2 Spectral measurement of deep image prior 20

2.4 Controlling spectral bias . 21
2.4.1 Lipschitz-controlled spectral bias 22
2.4.2 Gaussian-controlled spectral bias 25
2.4.3 Automatic stopping criterion 26
2.4.4 Performance analysis . 27

2.5 Applications . 28
2.5.1 Image denoising . 29
2.5.2 JPEG image deblocking . 32
2.5.3 Image inpainting . 34
2.5.4 Super-resolution . 35
2.5.5 Image enhancement . 36
2.5.6 Success and failure cases . 38

2.6 Conclusion . 39
3 U N S H A R P M A S K G U I D E D FI LT E R I N G 40

3.1 Introduction . 40
3.2 Background and related work . 41

3.2.1 Classical guided filtering . 42
3.2.2 Deep guided filtering . 43
3.2.3 Unsharp masking . 44

3.3 Filtering formulation . 45
3.4 Filtering network . 46
3.5 Experiments . 47

3.5.1 Experimental setup . 48
3.5.2 Unsharp-mask guided filtering without learning. 49
3.5.3 Unsharp-mask guided filtering with learning 49
3.5.4 Successive filtering network 55
3.5.5 Performance analysis. 57
3.5.6 Depth and flow upsampling 57
3.5.7 Depth and natural image denoising 58
3.5.8 Cross-modality filtering . 59

5

Contents

3.6 Conclusion . 62
4 C O U N T I N G W I T H F O C U S F O R F R E E 64

4.1 Introduction . 64
4.2 Related work . 65
4.3 Focus for free . 66

4.3.1 Focus from segmentation . 67
4.3.2 Focus from global density 68
4.3.3 Non-uniform kernel estimation 69
4.3.4 Architecture and optimization 69

4.4 Experiments and results . 71
4.4.1 Experimental setup . 71
4.4.2 Focus from segmentation . 72
4.4.3 Focus from global density 73
4.4.4 Combined focus for free . 73
4.4.5 Non-uniform kernel estimation 74
4.4.6 Comparison to the state-of-the-art 74

4.5 Conclusion . 76
4.6 Appendix . 77

5 T H R E E T H I N G S F O R I M P ROV I N G D E N S I T Y- BA S E D C O U N T I N G 81

5.1 Introduction . 81
5.2 Evaluation, datasets, and networks 82
5.3 Do not count on the background . 83
5.4 Create occlusion to handle occlusion 85
5.5 Gaussians are not ground-truth . 87
5.6 Comparative evaluation . 90
5.7 Conclusion . 91
5.8 Appendix . 92

6 S U M M A RY A N D C O N C L U S I O N S 97

6.1 Summary . 97
6.2 Conclusions . 99

Bibliography 111
Complete List of Publications 112
Samenvatting 114
Acknowledgments 116

6

1

I N T RO D U C T I O N

In daily life, a wide range of biases are continually influencing us by affecting our
thinking, behavior and decisions. For example, when we meet two new friends in the
Netherlands, one tall and one short, we may think the taller one is more likely to be
Dutch. Generally, a bias is a tendency to lean in favor of or against a person, group,
idea, or thing, and it may rely on our experiences and prior knowledge. Biases help us
solve problems and speed up our decision-making process by simplifying information
processing. There are many examples of bias, see Figure 1(a). For example, the salience
bias [161] makes us focus on items that are more prominent or emotionally striking
and helps us ignore those that are less remarkable. Attentional bias [162] makes us pay
attention to positive stimuli. At the same time, biases can introduce errors. For example,
biases may lead to inaccurate judgments about how commonly things occur and how
representative certain things may be. Machine-based decision-making also relies on
biases.

A machine-learning algorithm with an ability to generalize beyond the data it has
seen during training must have an inductive bias. Typically, given a particular dataset
and objective function to optimize, there are many possible solutions to the learning
problem that exhibit equally good performance on the training data. An inductive bias
allows a learning algorithm to prioritize one solution over another, independent of the
observed data [137]. Ideally, inductive biases improve the search for solutions without
substantially diminishing performance, and also help find solutions which generalize in a
desirable way. However, coming up with practical inductive biases, which align with the
structure of the problem at hand, is challenging. Mismatched inductive biases can also
lead to suboptimal performance by introducing too strong constraints. Several inductive
biases have been successfully used in classical machine learning methods. For example,
linear regression [201] assumes that the target has a linear relationship with each of the
input features. Nearest Neighbors assumes that cases that are near each other tend to
belong to the same class. Decision tree [159] assumes that shorter trees are preferred
over larger trees.

Inductive biases have also been explored for deep learning, and this is what in part
contributed to its success. Some examples of these inductive biases are shown in
Figure 1(b), where the relational inductive biases are explicitly encoded into the network
architecture. For example, convolutional layers have spatial translation invariance and
induce a relational inductive bias of locality, whereas recurrent layers have a temporal
invariance that induces the inductive bias of sequentiality [14]. Such relational inductive
biases are extremely powerful when well-matched to the data on which they are applied.
Besides explicit biases, there are also many implicit biases, which come from implicit
regularization [55, 135, 181]. Implicit biases play a crucial role in learning deep neural

7

I N T RO D U C T I O N

Availability BiasAttentional BiasConfirmation Bias

……

(a) Biases in human learning

Relational Bias Attentional Bias

……
Implicit Bias

(b) Biases in deep learning

Figure 1: Biases in human and deep learning.

networks. For example, the implicit bias introduced by optimization algorithms enables
over-parameterized networks to exhibit good generalization. Different from explicit
inductive biases, however, it is hard to explicitly identify and derive a formulation of
implicit bias. Also, there is no direct way to control the strength of an implicit bias. As a
result, it is difficult to apply an implicit bias in practice. Moreover, we still do not have a
good understanding of these implicit biases in different contexts. The current research
mostly focuses on identifying implicit biases in the context of image representation
learning for image classification [55, 135, 151]. The main focus of this thesis is to
uncover and exploit implicit inductive biases in the context of pixel representation
learning.

A number of computer vision problems can be formulated as a pixel representation
learning problem. Basically, these tasks require a function from a multi-channel input
with a spatial dimension to a structured output map with the same spatial dimensions
as the input. These include tasks such as semantic segmentation, image restoration,
and density-based counting, with typical examples shown in Figure 2. Compared to
image-level tasks, pixel-level tasks are more challenging because the pixel values are
unstructured and reside in a high-dimensional space. Identifying and understanding the
implicit inductive biases for pixel-level tasks is less explored. In addition, it requires
more research on encoding new inductive biases into the pixel representation learning by
exploiting prior knowledge. We therefore pose the central research question:

How to uncover and exploit inductive biases for pixel representation learning?

As a starting point, we consider the spectral bias. Spectral bias is an inductive bias in
neural networks that manifests itself not just in the process of learning, but also in the
parameterization of the model itself. This bias leads over-parameterized networks to pri-
oritize learning simple patterns that generalize across data samples. Rahaman et al. [151]
and Xu et al. [208] provide empirical evidence of spectral biases in image classification,
i.e., lower frequencies are learned first. We provide an in-depth investigation on spectral
bias for pixel representation learning. We pose the research question:

What is the importance of spectral bias for pixel representation learning?

In Chapter 2, we study the spectral bias for generative models with a single image,

8

I N T RO D U C T I O N

(a) Semantic Segmentation (b) Image Super-Resolution (c) Density-based Counting

Figure 2: Examples of pixel representation learning problems. The first row shows
the input images, and the second row show the output images. The output is either a
category classification or a regressed value for each pixel location.

which is known as the deep image prior [186]. The deep image prior showed that a
randomly initialized network with a suitable architecture can be trained to solve inverse
imaging problems by simply optimizing it’s parameters to reconstruct a single degraded
image. However, it suffers from two practical limitations. First, it remains unclear how
to control the prior beyond the choice of the network architecture. Second, training
requires an oracle stopping criterion as during the optimization the performance de-
grades after reaching an optimum value. To address these challenges, we introduce a
frequency-band correspondence measure to characterize the spectral bias of the deep
image prior, where low-frequency image signals are learned faster and better than high-
frequency counterparts. Based on our observations, we propose techniques to prevent the
eventual performance degradation and accelerate convergence. We introduce a Lipschitz-
controlled convolution layer and a Gaussian-controlled upsampling layer as plug-in
replacements for layers used in the deep architectures. The experiments show that with
these changes the performance does not degrade during optimization, relieving us from
the need for an oracle stopping criterion.

Prior research has found that the salience bias is encoded into the network architecture
and affects model predictions. By computing a saliency map, Simonyan et al. [175]
revealed that convolutional networks make predictions based mainly on the salient con-
tents in the input image, rather than the entire image. Since then, saliency maps have
become a popular visualization tool for gaining insight into how a representation learning
model arrives at an individual decision. One may wonder how to explore the salience
bias beyond visualization. We therefore pose the research question:

What is the importance of salience bias for pixel representation learning?

We study the salience bias in the context of guided filtering in Chapter 3. The key
idea of guided filtering is to leverage an additional guidance image as a structure prior

9

I N T RO D U C T I O N

and transfer the structure of the guidance image to a target image. By doing so, it strives
to preserve salient features, such as edges and corners, while suppressing noise. Due
to the salience bias, the network can implicitly transfer the structure of the guidance
to the target image simply by means of feature fusion from the guidance and target
images. Yet, this implicit way of structure-transfer may fail to transfer the desired
edges and may suffer from transferring undesired salient content to the target image.
To address these problems, we propose a new and simplified formulation of the guided
filter. Our formulation enjoys a filtering prior from a low-pass filter and enables explicit
structure transfer by estimating a single coefficient. Based on our proposed formulation,
we introduce a successive guided filtering network, which provides multiple filtering
results from a single network, allowing for a trade-off between accuracy and efficiency.
Extensive ablations, comparisons and analysis show the effectiveness and efficiency of
our formulation and network, resulting in state-of-the-art results across filtering tasks
like upsampling, denoising, and cross-modality filtering.

The attentional bias has been encoded into the network architecture by adding an
attention module [24, 49, 214]. The attention module outputs an attention map to em-
phasize the desirable features. Usually, the attention map is implicitly learned with the
task-specific objective. In this way, the learned attention map can not explicitly guide the
network to focus on task relevant features. One may wonder about the importance of
explicitly encoding the attentional bias into the learning process for a given pixel-level
task. We therefore pose the question:

What is the importance of attentional bias for pixel representation learning?

In Chapter 4, we study the attentional bias for the problem of object counting. The
leading counting approaches start from point annotations per object from which they
construct density maps. Then, their training objective transforms input images to density
maps through deep convolutional networks. We posit that the point annotations serve
more supervision purposes than just constructing density maps. We introduce ways to
repurpose the points for free. First, we propose supervised focus from segmentation,
where points are converted into binary maps. The binary maps are combined with a
network branch and accompanying loss function to focus on areas of interest. Second,
we propose supervised focus from global density, where the ratio of point annotations
to image pixels is used in another branch to regularize the overall density estimation.
Experiments on six datasets show that our supervised focuses allow the counting network
to explicitly emphasize meaningful features and suppress undesired ones, and thus better
reduce the counting error, compared to the standard attentional bias [24, 83, 105, 206].

In the first three chapters, we reveal the importance of three different inductive biases
for pixel-level tasks. In the last chapter, we seek to develop new inductive biases by
exploiting prior knowledge. Prior knowledge is auxiliary information about the learn-
ing task that originates from some discovery processes or domain experts [217]. Prior
knowledge can be used to guide the learning process for better generalization and faster
convergence. However, exploiting the right prior knowledge for a particular type of task
is not always straightforward, since prior knowledge is not obvious and its representation
varies. We therefore pose the following research question:

10

I N T RO D U C T I O N

How to exploit prior knowledge as inductive bias for pixel representation learning?

In Chapter 5, we explore prior knowledge for object counting. We take a closer look
at density-based counting and identify three things that limit every counting approach,
and for each we propose a simple network plug-in module as a mitigation. Specifically,
(i) we find that predicting densities on the background induces over half the error rate
in counting, and we outline a cascade to limit the effect of counting on background
pixels; (ii) occlusions are persistent in counting, yet do not occur often enough in training
images to learn to handle them properly. We propose an augmentation on both input
and density images to learn to be more robust to occlusions; (iii) constructing density
maps from point annotations with Gaussian convolutions is suboptimal for counting.
We propose an alternative that learns to distill density maps from an auxiliary density
prediction network. Such distilled maps are smoother and more robust to noise than
their Gaussian counterparts. All three proposals are simple, can be plugged into any
density-based counting network and when combined achieves state-of-the-art results.

11

I N T RO D U C T I O N

List of Publications

• Chapter 2 is based on “On Measuring and Controlling the Spectral Bias of the
Deep Image Prior”, International Journal of Computer Vision, https://doi.
org/10.1007/s11263-021-01572-7, 2022 [169], by Zenglin Shi, Pascal
Mettes, Subhransu Maji, and Cees G. M. Snoek.

Contribution of authors

Zenglin Shi: all aspects,
Pascal Mettes: guidance and technical advice,
Subhransu Maji: guidance and technical advice,
Cees G. M. Snoek: supervision and insight.

• Chapter 3 is based on “Unsharp Mask Guided Filtering”, published in IEEE
Transactions on Image Processing, vol. 30, pp. 7472-7485, 2021 [168], by Zenglin
Shi, Yunlu Chen, Efstratios Gavves, Pascal Mettes, and Cees G. M. Snoek.

Contribution of authors

Zenglin Shi: all aspects,
Yunlu Chen: help with experiments,
Efstratios Gavves: guidance and technical advice,
Pascal Mettes: guidance and technical advice,
Cees G. M. Snoek: supervision and insight.

• Chapter 4 is based on “Counting with Focus for Free”, published in IEEE/CVF
International Conference on Computer Vision, 2019 [170], by Zenglin Shi, Pascal
Mettes, Cees G. M. Snoek.

Contribution of authors

Zenglin Shi: all aspects,
Pascal Mettes: guidance and technical advice,
Cees G. M. Snoek: supervision and insight.

• Chapter 5 is based on “Three Things Everyone Should Know to Improve Density-
Based Counting”, in submission to European Conference on Computer Vision,
2022, by Zenglin Shi, Pascal Mettes, and Cees G. M. Snoek.

Contribution of authors

Zenglin Shi: all aspects,
Pascal Mettes: guidance and technical advice,
Cees G. M. Snoek: supervision and insight.

More works by the author are provided in the Complete List of Publications.

12

https://doi.org/10.1007/s11263-021-01572-7
https://doi.org/10.1007/s11263-021-01572-7

2

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

2.1 I N T RO D U C T I O N

This chapter considers the problem of inverse imaging, where the task is to recover the
original image from the one that is degraded due to noise, blur, down-sampling and other
hardships [16]. This problem is ill-posed, as a degraded image may correspond to several
original images. Hence, reconstructing a unique solution that fits the degraded image
is difficult, or impossible even, without some prior knowledge about the image or the
degradation [46].

The classical computer vision approaches to inverse imaging minimize a regularized
cost function to incorporate some prior knowledge into the solution, e.g., [3, 41, 58, 104].
Despite their excellent results, it remains difficult to handcraft an appropriate regularizer
and choose a suitable regularisation parameter for a given application because expert
knowledge is often required [82, 155]. Rather than providing the priors as input, deep
neural networks offer the ability to learn image priors from numerous image samples,
e.g., [5, 119, 134]. By doing so, the image priors are gradually encoded into network
parameters during training and reused in the inference phase. Despite its promise, the
dependence on image pairs seen during training may result in poor generalization of the
learned priors [223, 224].

Contrary to the belief that learning on numerous image samples is necessary to obtain
useful image priors, Ulyanov et al. [186, 187] show that the architecture of a generator
network itself contains an inductive bias independent of learning, where a deep image
prior can be implicitly captured by a particular network architecture like an encoder-
decoder. To leverage the deep image prior for solving inverse imaging problems, a
suitably designed network is optimized, starting from a random initialization and a
random input, on just a single degraded image through gradient descent. The network is
able to output a well-restored image, when its optimization is stopped at the right time,
with an early-stopping oracle. The literature studying the deep image prior mostly focuses
on designing network architectures [28, 30, 63, 67]. However, it remains unclear how to
control the deep image prior beyond the choice of the network architecture and prevent
performance degradation when an oracle to stop the optimization at peak performance
is unavailable. in this chapter, we study the deep image prior from a complementary
perspective to address these problems.

As our first contribution, we study the deep image prior through measuring its spectral
bias (Section 2.3). We find that both the networks of the original deep image prior
[186, 187] and its variants [30, 63] exhibit a spectral bias during optimization, where
the low frequency components of the target images are learned better and faster than

13

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

the high-frequency components. We believe that the spectral bias leads the networks to
capture deep image priors during optimization, beyond the choice of the architecture,
since natural images are well approximated by low-frequency components according to
the power spectrum [174]. We measure the spectral bias with a new Frequency-Band
Correspondence metric and pinpoint why the performance of the deep image prior
gradually degrades after reaching a peak during the optimization.

We observe that deep image prior performance degrades when high-frequency noise
is learned beyond a certain level, which could affect the high-frequency image details.
As our second contribution, we therefore propose to prevent performance degradation
by restricting the ability of the network to fit high-frequency noise (Section 2.4). We
bound the layers of our network with Lipschitz regularization and introduce a Lipschitz-
variant of batch normalization to accelerate and stabilize the optimization. We also
observe that widely used upsampling methods, like bilinear upsampling, over-smooth,
which introduces a bias towards lower frequencies. This slows down the learning
of the desired higher frequencies, delaying optimization convergence. Therefore, we
propose an upsampling method which allows controlling the amount of smoothing and
is capable of balancing performance and convergence. Besides these two methods for
controlling spectral bias, we further introduce a simple automatic stopping criterion to
avoid superfluous computation.

Lastly, we demonstrate the effectiveness of our method on four inverse imaging
applications and one image enhancement application: image denoising, JPEG image
deblocking, image inpainting, image super-resolution and image detail enhancement
(Section 2.5). The experiments show that our method no longer suffers from eventual
performance degradation during optimization, relieving us from the need for an oracle
criterion to stop early. The automatic stopping criterion avoids superfluous computation.
Our method also obtains favorable restoration and enhancement results compared to
current approaches, across all tasks.

2.2 R E L AT E D W O R K

2.2.1 Inverse problems in imaging

An inverse problem in imaging is the task of recovering an unknown image x∗ ∈ X
from its noisy measurements y ∈ Y, where y = A(x∗) + e. Here e ∈ Y denotes some
noise in the measurements. The mapping A : X → Y denotes the forward operator,
which could represent various inverse problems, such as an identity operator for image
denoising, convolution operators for image deblurring, filtered subsampling operators
for super-resolution, etc. Since the operatorA has a non-trivial null space, these inverse
problems are often ill-posed. Meaning that the solution is unstable with respect to
the measurements, or there are several possible solutions that are consistent with the
measurements [16]. To solve these ill-posed inverse problems, we review the classical
knowledge-driven approaches and the recent data-driven approaches with deep neural
networks.

The classical knowledge-driven approaches assume some prior knowledge about the
image x∗, such as smoothness [85, 185] or sparsity [34, 45]. These approaches typically

14

2.2 R E L AT E D W O R K

aim to find a solution that fits well with the measurements y and is consistent with
the assumed prior knowledge. To do so, an optimization criterion is used, such as the
minimization of the l2 error norm ||y −A(x∗)||2. Then, prior knowledge is incorporated
into the solution process through regularization. Specifically, Rudin et al. [158] leveraged
the fact that in natural images nearby pixels tend to have similar values, and proposed
a denoising model with the total variation regularization, which promotes smoothness
while preserving edges in images. Based on the finding that natural images can be
generally coded by structural primitives such as edges and line segments [142], sparse
representation-based regularization models, e.g., [34, 45, 149], have been successfully
used in image deconvolution tasks. A natural image often has many repetitive local
patterns, and thus a local image patch always has many similar patches across the
image [43]. This non-local self-similarity prior was later employed in many inverse
imaging problems such as image denoising [32], image deblurring [88] and super-
resolution [150]. Later, Mairal et al. [123] proposed non-local sparse regularization
models which combine the local sparsity and the non-local self-similarity into a unified
framework, where the similar image patches are simultaneously coded to improve the
robustness of the inverse reconstruction. Despite their excellent results, a downside
of these approaches is that their handcrafted regularization only captures a fraction
of the prior knowledge about the image, limiting the inverse imaging ability of their
models [82, 155].

Data-driven approaches leverage large collections of training data to directly compute
regularized reconstructions with deep neural networks. The central idea is to create a
paired dataset of ground truth images x and corresponding measurements y, which can be
done by simulating (or physically implementing) the forward operatorA on clean data.
Subsequently, one can train a network to learn a direct mapping from measurements y to
the ground truth images x. Most approaches have focused on designing a proper network
architecture to learn a high-performing mapping. For example, Dong et al. [40] learned
a convolutional neural network for image super-resolution, and Jain et al. [78] learned
a convolutional neural network for image denoising. Mao et al. [124] demonstrated
convolution neural networks with encoder-decoder architectures perform better for
restoring degraded images. Zhang et al. [223] proposed to use the convolution neural
networks with residual blocks and skip connections to further improve image super-
resolution and denoising performance. Ledig et al. [92] proposed a generative adversarial
network for image super-resolution to recover the finer texture details. Li et al. [95]
proposed a computationally efficient frequency domain deep network for image super-
resolution. Despite their excellent results, these approaches are sensitive to changes or
uncertainty to the forward operator A. For image denoising, for example, a specific
network needs to be trained for each considered noise level. To remedy this issue,
Lefkimmiatis et al. [93] proposed a universal denoising network with non-local filtering
layers, which is able to handle a wide range of noise levels using a single set of learned
parameters. Recently, Chen et al. [23] proposed a plugin module, which can be inserted
into any backbone networks. This plugin allows the once trained network to be used for
multiple forward operators in various image processing tasks, including image smoothing,
image denoising, image deblocking, image enhancement and neural style transfer. Wan et
al. [193] proposed a triplet domain translation network for restoring old photos, in which
multiple degradations exist and are mixed. Such supervised approaches typically perform

15

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

very well but rely on a paired dataset of ground truth images and their measurements,
which may not be available. In this chapter, we consider the unsupervised inverse imaging
approach with a deep image prior.

2.2.2 Deep image prior

The deep image prior, introduced by [186, 187], revealed the remarkable ability of un-
trained convolution neural networks to solve challenging inverse problems by optimizing
on just a single degraded image. Let fθ : Z → Y denote a convolutional neural network
parameterized by θ ∈ Θ, which transforms a tensor/vector z ∈ Z to a degraded image
y ∈ Y. Without training, the network fθ has no knowledge about high-level semantic
concepts such as the categories of objects in the images. However, the deep image prior
found that the network does contain knowledge about the low-level structure of natural
images. This prior knowledge is sufficient to model the conditional image distribution
p(x∗|y0). Here, the unknown image x∗ has to be determined given a measurement y0,
which allows solving inverse problems in imaging. Specifically, we consider energy
minimization problems of the type, θ∗ = arg min

θ
E(fθ(z); y0) where E(fθ(z); y0) is a

task-dependent data term. For inverse imaging problems, y0 is a noisy, low-resolution,
compressed, or occluded image. The minimizer θ∗ is obtained using an optimizer such
as gradient descent, starting from a random initialization of the parameters. Given a
minimizer θ∗ obtained by N steps of gradient descent, we obtain a restoration result
by y∗= fθ∗(z). Competitive performance is even feasible when stopping the network
optimization with an early-stopping oracle.

The deep image prior has inspired many to investigate how to expand its applications
[33, 50, 86, 154, 188], how to improve its performance [6, 28, 106, 133, 231], how to
understand its workings [30, 64, 186, 187], and how to avoid its early-stopping oracle
[30, 63].

Liu et al. [106] and Mataev et al. [133] employ extra regularization to boost per-
formance of the deep image prior. Chen et al. and Ho et al. [28, 67] leverage neural
architecture search to obtain a better deep image prior network for improved perfor-
mance. Asim et al. [6] employ deep image prior on image patches, which improves its
reconstruction ability. Zukerman et al. [231] improve the deep image prior by using a
backprojection loss function. These approaches improve results, but still require an oracle
to determine when to stop the optimization. In this chapter, we boost the performance of
the deep image prior by controlling its spectral bias, and achieve an automatic stopping
with a new criterion.

An intuition provided by [186, 187] for the workings of the deep image prior is that
their network follows an encoder-decoder architecture, which imposes strong priors
about natural images. Heckel and Hand [64] further attribute the effects of the deep
image prior to the special architecture with convolutions using fixed interpolating filters.
Alternatively, Cheng et al. [30] explain the deep image prior from a Bayesian perspective
by showing that the model behaves like a stationary Gaussian process at initialization.
These works have focused on studying the workings of deep image prior, mostly from
the view of the network architecture design. In this chapter, we provide a complementary
perspective. We show that the spectral bias leads the networks to capture deep image

16

2.3 M E A S U R I N G S P E C T R A L B I A S

Figure 3: Frequency-band correspondence metric. The left image shows an example
of correspondence map H, which is computed according to Eq. (2.1). We divide the
correspondence map into N subgroups corresponding to N non-overlapping frequency
bands. Since the correspondence map is symmetrical around the center, we group it
according to the distance between its elements and its center uniformly, as illustrated
by the right image when N = 5. Different colors represent different subgroups. We
compute the mean correspondence for each band to transform the 2D map to the 1D one.

priors during optimization, beyond the choice of the architecture. We do so by introducing
a metric, the Frequency Band Correspondence, which offers a spectral measurement of
the deep image prior, revealing the low-frequency natural image signals are learned faster
and better than high-frequency noise signals.

A downside of the original deep image prior [186, 187] is the requirement of an oracle
to determine when to stop the optimization as its performance degrades after reaching a
peak over the iterations of optimization. Heckel et al. [63] tackle this problem with an
underparameterized network, at the expense of reduced performance. Cheng et al. [30]
avoid the need for early stopping with a Bayesian approach, at the expense of slower
convergence. In this chapter, we prevent the performance degradation over iterations with
Lipschitz-controlled spectral bias and enable stopping the optimization automatically at
an appropriate moment with a new criterion.

A few recent works [21, 151, 208] have paid attention to the spectral bias as well.
Rahaman et al. [151] and Xu et al. [208] analyze the spectral bias for classification
problems with supervised learning, not for generative models with a single image.
Chakrabarty et al. [21] exposed the deep image prior has a spectral bias by adding noise
at different frequencies to the image and analyzing the optimization trajectories from
different noisy versions of the input. However, they do not measure and control the bias.
In this chapter, we propose a frequency band correspondence to measure the spectral
bias of the deep image prior. We further control the bias to address the performance
degradation problem and the performance-convergence trade-off problem.

2.3 M E A S U R I N G S P E C T R A L B I A S

The literature attributes the ability of an untrained network to obtain restored results
from degraded target images to a particular architecture, like an encoder-decoder, which

17

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

...

Encoder-Decoder ConvNetDecoder

convolutionstrided convolution upsampling

...

Figure 4: Network architectures used in the experiments of Section 2.3. The Encoder-
Decoder is the same as the one used in [187]. Specifically, the encoder contains five
convolution blocks. Each block contains two convolution layers with the kernel size of
3× 3 and the channel number of 128. The stride of the first convolution layer is set to 2 to
achieve the downsampling. The decoder contains five bilinear upsampling layers, where
each upsampling layer is followed by a convolution layer with the kernel size of 3× 3 and
the channel number of 128. Each convolution layer is followed by a batch normalization
layer and a leaky ReLU layer with a negative slope of 0.01. The Decoder is obtained
by removing the encoder from the Encoder-Decoder. Removing the upsampling layers
from the Decoder finally leads to the ConvNet.

imposes strong priors about natural images. In this chapter, we show that the spectral bias
leads the networks to capture deep image priors during optimization, beyond the choice of
the architecture. We do so by introducing a metric, the Frequency Band Correspondence,
which offers a spectral measurement of the deep image prior, revealing the low-frequency
natural image signals are learned faster and better than high-frequency noise signals, and
pinpoint why inverse images can be restored, when the network optimization is stopped
at the right time.

2.3.1 Frequency-band correspondence metric

The proposed Frequency-Band Correspondence metric examines the input-output cor-
respondence in the frequency domain across several frequency bands. For this metric,
let {θ(1), . . . , θ(T)} denote the trajectory of T steps of gradient descent in the parameter
space and let { fθ(1) , . . . , fθ(T)} denote the corresponding trajectory in the output space.
We propose to analyze the Fourier spectrum of the output images fθ(t),t=1,...,T to show
the convergence dynamics of different frequency components of the target image. The
Fourier spectrum of the output image fθ(t) is obtained by the Fourier transform F , de-
noted as F { fθ(t)} for step t. We similarly compute the Fourier transform for the target
image y0, denoted as F {y0}. We then compute an element-wise correspondence between
both transforms as:

Hθ(t) =
F { fθ(t)}
F {y0}

. (2.1)

Intuitively, Hθ(t) denotes to what extent any deep image prior at step t corresponds
with image y0 in the frequency domain; the closer the values are to 1, the higher the
correspondence. As we are interested in the spectral bias of the deep image prior, we
divide the correspondence map into N subgroups corresponding to N non-overlapping
frequency bands. Since the correspondence map is symmetrical around the center, we

18

2.3 M E A S U R I N G S P E C T R A L B I A S

(a) Image denoising (top: σ=15, bottom: σ=25)

(b) JPEG image deblocking (top: quality=10, bottom: quality=20)

(c) Image inpainting (top: ratio=0.1, bottom: ratio=0.25)

Figure 5: Spectral measurement of the deep image prior on image denoising, JPEG
image deblocking and image inpainting. The network of the deep image prior [187]
exhibits a spectral bias during optimization across inverse inaging problems, degradation
levels and degraded images, where lower frequencies are learned faster and better than
high-frequencies. The degraded images can be restored well when optimizations are
stopped at the right time, as marked by the green vertical lines.

group it according to the distance between its elements and its center uniformly, as
illustrated in Fig. 3. To transform the 2D map to the 1D one, we compute the mean

19

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

(a) Decoder architecture

(b) ConvNet architecture

Figure 6: Spectral measurement of the deep image prior with different architectures
on image denoising. The spectral bias is not specific to the Encoder-Decoder architecture
of [187]. Alternative architectures, such as a Decoder and a ConvNet, also exhibit a
bias towards specific image frequencies during optimization. Also, the ConvNet learns
higher frequencies faster than the Decoder by removing the upsampling layers, but at the
expense of reduced peak performance.

correspondence for each band, denoted as H̄(n)
θ(t)

, with n=1, . . . , N. The value of H̄(n)
θ(t)

indicates the convergence dynamics of different frequency components of a target image.

2.3.2 Spectral measurement of deep image prior

We use this metric, denoted as FBC (Frequency-Band Correspondence), to measure how
well the network output of the deep image prior corresponds to the target image as a
function of N frequency bands. Since the FBC metric is computed with the Fourier
transform, our spectral measurement in this section denotes the frequency domain
analysis. The Fourier transform F in Eq. (2.1) is implemented by means of the 2D Fast
Fourier Transform, where only the magnitude is used to compute the Fourier spectrum of
the images. We use N=5 where frequency bands are divided into the lowest frequency,
low frequency, medium frequency, high frequency and the highest frequency. We perform
empirical studies on three inverse imaging problems, including image denoising, JPEG
image deblocking, and image inpainting with the ‘peppers’, ‘F16’ and ‘Lena’, images
from [32]. For image denoising, the image is degraded by adding Gaussian noise with
two noise levels, including σ=15 and σ=25, following [223]. Following [39], we
evaluate JPEG image deblocking on the gray-scale images, which are compressed with
the PIL encoder into two quality levels, including quality=10 and quality=20. For
image inpainting, the image is degraded by using a central region mask, and we consider
two hole-to-image area ratios, including ratio=0.1 and ratio=0.25, following [145].
Following [186,187], the network input is given as uniform noise between 0 and 0.1 with
a depth of 32 by default.

20

2.4 C O N T RO L L I N G S P E C T R A L B I A S

First, we investigate whether the network of the original deep image prior exhibits
any form of spectral bias in its optimization. We take the Encoder-Decoder architecture
of [186, 187] and show its Frequency Band Correspondences for five frequency bands
in Fig. 5. The plot highlights, across inverse imaging problems, degradation levels and
degraded images, low frequencies are learned quickly and with high correspondence
to the target image, while high frequencies are learned slower and with lower corre-
spondence. We conclude that the network of the deep image prior during optimization
has a spectral bias towards low frequencies, and this bias helps to obtain a meaningful
performance. The peak PSNR (Peak Signal-to-Noise Ratio) performance of the deep
image prior occurs when the lowest frequencies are matched nearly perfect, while the
highest frequencies are less used, as marked by the green vertical lines. However, once
the higher frequencies obtain a higher correspondence, the performance starts to drop.

Next, we show that such a spectral bias is not specific to the Encoder-Decoder
architecture. We take two other architectures as examples, as shown in Fig. 4. We
remove the Encoder from the Encoder-Decoder architecture of [186, 187] to obtain the
Decoder. We additionally remove the upsampling layers from the Decoder to get the
ConvNet. Fig. 6(a) and 6(b) show that both Decoder and ConvNet learn low-frequency
components of the target image faster than learning the high-frequency components,
reaffirming the spectral bias. We also observe that ConvNet learns high-frequency
components faster than Decoder by removing the upsampling layers, but at the expense
of reduced peak performance. Having established the architecture is not critical for the
deep image prior, we use from now on the Decoder as the default network architecture
to benefit from a good trade-off between performance and run-time.

Our study provides a clear implication: untrained solutions for inverse imaging prob-
lems work by a latent ability to learn low frequencies faster than learning high frequencies.
As natural images are well approximated by low-frequency components, degraded im-
ages can be restored well when optimizations are stopped at the right time. The network
is optimized to fit the degraded image, in which higher frequencies consist of both
structured high-frequency image details and random high-frequency noise. The struc-
tured high-frequency image details, that have self-similarity across the image, are fitted
better and faster. However, once the random high-frequency noise is fitted over a certain
level, which could affect the structured high-frequency image details, the output quality
degrades. This behavior explains why the performance in the deep image prior degrades
when training longer. Hence, a key enabler for improving the deep image prior is to
control the spectral bias by restricting the fitting of random high-frequency noise in
the output. Our study also finds that the upsampling layer is beneficial for obtaining
good peak performance, but may introduce too much spectral bias towards the low
frequencies, slowing down the learning of desired high frequencies. Hence, it’s a feasible
way to balance peak performance and convergence by controlling the spectral bias in
upsampling.

2.4 C O N T RO L L I N G S P E C T R A L B I A S

We exploit the measured spectral bias to avoid the degradation of performance over itera-
tions and to balance peak performance and convergence. We do so by controlling spectral

21

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

(a) Peppers

(b) F16

(c) Lena

Figure 7: Lipschitz-controlled spectral bias for image denoising. Setting the right
Lipschitz constant (λ=2) avoids performance decay while maintaining a high PSNR.
Different constants result in different levels of spectral bias. A high constant (λ=3) still
incorporates a lot of high-frequency noise signals, while a low constant (λ=1) fails to
incorporate the important low frequency image signals. With the right balance (λ=2),
we maintain the low frequencies while avoiding the high-frequency noise signals.

biases in the two core layer types of inverse imaging networks: the convolution layer and
the upsampling layer. We present a Lipschitz-controlled approach for the convolution and
a Gaussian-controlled approach for the upsampling layer. The approaches are general in
their setup, making them applicable to any network form and scale. Besides these two
methods for controlling spectral bias, we further introduce a simple stopping criterion to
avoid superfluous computation.

2.4.1 Lipschitz-controlled spectral bias

From the point of view of the frequency domain, the Fourier spectrum of the network
indicates its ability to learn higher frequencies. Lower frequencies are learned first, while
higher frequencies are learned later in the optimization process. This implies that the
ability of the network to learn higher frequencies is gradually enhanced by optimizing
the learnable layers. Improving the Fourier spectrum of the network is only achievable
through adjusting the spectrum of the learnable layers. Based on this observation, we
aim to upper bound the Fourier coefficients of the convolutional layers, for the sake

22

2.4 C O N T RO L L I N G S P E C T R A L B I A S

(a) Peppers

(b) F16

(c) Lena

Figure 8: Gaussian-controlled spectral bias for image denoising. Varying the Gaussian
kernel by σ controls convergence and performance. Too small values (σ=0) results in
worse performance, while too big values (σ=1) introduce too much smoothing, slowing
down the convergence. With a suitable value (σ=0.5), our upsampling introduces an
appropriate spectral bias, leading to fast convergence and good denoising performance.

of constraining the Fourier spectrum of the network. We are able to impose an upper
bound on the Fourier coefficients of a convolution layer by enforcing Lipschitz continuity,
according to [87]. Specifically, if a convolution layer f is Lipschitz continuous, there
exists a constant L for any inputs x, y satisfying ∥ f (x)− f (y)∥ ≤ L∥x− y∥. The minimum
over all such values satisfying this condition is called the Lipschitz constant of f , denoted
by C. Then the Fourier coefficients of f , i.e., | f̂ (k)|, is bounded by,

| f̂ (k)| ≤
C
|k|2

. (2.2)

Further, the Lipschitz constant of a convolution layer is bounded by the spectral norm of
its parameters. Then we obtain,

| f̂ (k)| ≤
C
|k|2
≤
∥w∥sn

|k|2
, (2.3)

where w is the weight of a convolution layer f , and ∥·∥sn denotes the spectral norm,
which can be approximated relatively quickly using a few iterations of the power method

23

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

(a) Image denoising (top: σ=15, bottom: σ=25)

(b) JPEG image deblocking (top: quality=10, bottom: quality=20)

(c) Image inpainting (top: ratio=0.1, bottom: ratio=0.25)

Figure 9: Automatic stopping criterion evaluated on image denoising, JPEG image
deblocking and image inpainting. The vertical green line shows the selected iteration by
the proposed stopping criterion. Across inverse imaging problems, degradation levels
and degraded images, we observe the optimization can be stopped earlier, with a minimal
performance loss compared to a fixed stop at 10,000 iterations.

24

2.4 C O N T RO L L I N G S P E C T R A L B I A S

[138]. The power law |k|−2 indicates that the spectral decay is stronger towards higher
frequencies, which means that learning higher frequencies requires a higher spectral
norm. Thus, we are able to manipulate the ability of a convolution layer in learning higher
frequencies by upper bounding its spectral norm to a specific value λ with w

max(1,∥w∥sn/λ) .
Where we leave the weight matrix w untouched if its spectral norm is lower than λ.
Otherwise, we normalize w by ∥w∥sn/λ.

To accelerate and stabilize the optimization, batch normalization [74] is often used
after convolution layers. However, we find it is not compatible with our Lipschitz
constraining as its output is invariant to the channel weight vector norm ∥w∥p, i.e.,

BN(wx/∥w∥p) = BN(wx), (2.4)

where x denotes the channel input. We therefore propose a Lipschitz normalization
by exploring the idea of combining Lipschitz constraining with a special version of
batch normalization: mean-only batch normalization. We only subtract out the mini-
batch means, without dividing by the minibatch standard deviations. The Lipschitz
normalization is defined as:

LN(w, x) =
wx

max(1, ∥w∥sn/λ)
− µ+ b, (2.5)

where µ denotes the channel mean of the pre-activation wx and b is a scalar bias term.
The Lipschitz normalization layer is inserted between a convolutional layer and a ReLU
activation. With this normalization, the Lipschitz constant of a convolution layer is
bounded by the hyperparameter λ. As a result, we can manipulate the ability of the
network in learning high frequencies by tuning λ, leading to a controlled spectral bias of
the deep image prior.

2.4.2 Gaussian-controlled spectral bias

Upsampling is an important operation in network architectures for inverse imaging
problems, as it produces high-resolution outputs from low-resolution inputs. Well-
known approaches such as the bilinear and nearest neighbor upsampling have a constant
smoothing effect [21, 64]. Different tasks, however, might operate best under different
levels of smoothing. Too strong a smoothing introduces too much spectral bias towards
lower frequencies. This slows down the learning of the desired higher frequencies,
delaying convergence of optimization (as shown in Fig. 6). Therefore, we propose an
upsampling method which allows controlling the amount of smoothing and is capable of
balancing performance and convergence.

We first decompose the upsampler into an expansion and a filtering step. Let xi be the
i-th channel of input x. For expansion, xi is padded with a “bed of nails” scheme, i.e.,
inserting s − 1 zeros between the pixels of xi along its rows and columns. Such a “bed
of nails” expansion creates a high-frequency replica of the original signal. To smooth
out the noisy high-frequencies, we perform filtering by convolving the upsampled signal

25

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

with an interpolating filter. We use a Gaussian filter sampled by N(0,σ2). Hence, we
define our Gaussian upsampling by:

Up(xi) =↑s (xi) ∗Gσ, (2.6)

where ↑s (xi) denotes expanding xi with factor s, ∗ is the convolution operation, Gσ
denotes the Gaussian filter. In the frequency domain, we obtain the Fourier spectrum of
our upsampling by,

F (Up(xi)) = F (↑s (xi)) ⊙F (Gσ), (2.7)

where F is the Fourier transform, ⊙ is the Hadamard product and F (Gσ)[k]=1/e2π2σ2k2
.

We manipulate the Fourier spectrum of our upsampling by choosing different σ, allowing
us to control the spectral bias in the upsampling.

2.4.3 Automatic stopping criterion

With the ability to control the spectral bias, we can fix the number of iterations for
network optimization without fear of performance degradation. As different tasks have
different levels of convergence, however, using a fixed number of iterations still leads
to redundant optimization. To improve efficiency, we introduce a simple criterion to
automatically perform early stopping.

It is well known that an image looks blurry when there is a high amount of low
frequencies in its Fourier spectrum. We exploit this property by computing the blurriness
and sharpness for an output image and use their ratio as the metric to stop the optimization.
In case of a spectral bias, low frequencies will be learned first, while high-frequencies
will be learned later. Our Lipschitz normalization limits the ability of the network in
learning high frequencies to an upper bound. Hence, when this upper bound is reached,
the ratio of blurriness to sharpness of the output image will converge as well. To that
end, we design the following measure:

r(fθ) =B(fθ)/S(fθ),

∆r(fθt) =

∣∣∣∣∣∣1n
n∑

i=1

r
(

fθ(t−i)
)
−

1
n

n∑
i=1

r
(

fθ(t−n−i)
) ∣∣∣∣∣∣, (2.8)

where fθ denotes the output image and fθ(t) denotes an instance in iteration t. B(fθ)
denotes the blurriness of the output image y computed using [31]. S(fθ) denotes the
sharpness of the output image y computed using [11]. r(fθ) denotes the ratio of blurriness
to sharpness of the output image fθ. Then, 1

n
∑n

i=1 r
(

fθ(t−i)
)

computes the mean ratio of

output images from iteration t to t − n, and 1
n
∑n

i=1 r
(

fθ(t−n−i)
)

computes the mean ratio
of output images from iteration t − n to t − 2n. If their absolute difference is smaller than
a constant value ϵ, the optimization is stopped.

Compared to the ratio r itself, the ratio difference ∆r between optimization iterations
is independent of the images. Since the deep image prior no longer suffers from perfor-
mance degradation with the controlled spectral bias, the ratio r barely changes when the
performance is stable. Thus, we can set the ratio difference threshold ϵ to a small value,
like 0.01. As the main benefit of the auto-stopping is to avoid redundant computation, it

26

2.4 C O N T RO L L I N G S P E C T R A L B I A S

does not directly affect the inverse imaging performance. Note that the stopping criterion
fails for the original deep image prior [186,187] because the high-frequency components
of its output image keeps increasing until the degraded target image is fully fitted.

2.4.4 Performance analysis

We empirically analyze the deep image prior with the Lipschitz-controlled spectral bias,
the Gaussian-controlled spectral bias and the automatic stopping criterion.

Lipschitz-controlled spectral bias. Following the work of [186, 187], we use bilinear
upsampling in this experiment. In Eq. (2.5), λ is the only parameter which controls the
ability of the network in learning high frequencies. Finding the best λ for each image is
still an open question. Here we just empirically study three settings, i.e., λ=1,λ=2, and
λ=3. The spectral norm ∥w∥sn is estimated with the power iteration method [138]. The
results are shown in Fig. 7. Setting a suitable constraint (e.g., λ=2) results in a PSNR
curve without performance decay. The FBC graphs show this is because setting a low
Lipschitz constant amplifies the spectral bias. High frequencies are hardly incorporated
at all, while low frequencies still obtain a high correspondence to the target image. Using
a too high constraint (e.g., λ=3) results in a similar performance peak and decay as the
original deep image prior. When using a too low constraint (e.g., λ=1), we not only
suppress high frequencies, but also the low frequencies, which generally corresponds
to the structure of the image, hampering the performance. We conclude, utilizing
Lipschitz normalization with a suitable value of λ addresses the problem of performance
degradation.

Gaussian-controlled spectral bias. Next, we study the effect of the Gaussian-
controlled spectral bias to balance performance and convergence. We replace the bilinear
upsampling with our Gaussian upsampling and use λ=2 to maintain the effect of the
Lipschitz-controlled spectral bias on avoiding performance degradation. We consider
Gaussian upsampling with three settings in Eq. (2.6), σ=0, σ=0.5, σ=1 where the
kernel size is fixed to 5 × 5. We show the effect of different settings on the denoising
performance and amount of spectral bias in Fig. 8. The smaller the value for σ, the
faster the convergence is reached. However, a too small value e.g., σ=0 results in worse
performance, because the upsampling reduces to the “bed of nails” expansion. A value
of σ=1 introduces too much smoothing, slowing down the convergence. With a suitable
value, e.g., σ=0.5, our upsampling introduces an appropriate spectral bias, leading
to fast convergence and good denoising performance. Furthermore, compared to the
widely used upsampling, like bilinear upsampling (refer to its performance in Fig. 7),
our upsampling achieves a better trade-off between performance and convergence. We
conclude our upsampling allows to control the spectral bias, enabling us to improve the
performance of deep image prior for inverse imaging problems like image denoising.

Stopping criterion. Finally, we analyze the effect of the proposed stopping criterion
on image denoising, JPEG image deblocking and image inpainting. For each problem,
we evaluate on different degradation levels, as specified before in Section 2.3.2. We use
n=100 and ϵ=0.01 throughout the experiment. We set the fixed stopping iteration to
10,000. We show the dynamics of the Peak Signal-to-Noise score and ratio values in
Fig. 9. We observe the stopping criterion is effective, it reduces the number of required

27

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

Ulyanov et al. Heckel and Hand Cheng et al. Ours

Figure 10: Image denoising. PSNR scores of various methods over multiple iterations
for removing additive Gaussian white noise with σ=25. Compared to [187], our method
doesn’t suffer from performance degradation, and we can stop the optimization auto-
matically at an appropriate moment for each image (marked by the green vertical lines),
leading to good PSNR scores. Compared to [63] and [30], we either achieve a faster
convergence or obtain a higher PSNR score.

iterations considerably with only a minimal loss in performance, across inverse imaging
problems, degradation levels, and degraded images. For the worst performing “F16”
image for denoising with σ=25, the PSNR drops from 31.04 to 30.98 when reducing the
iterations from 10,000 to 3,896. We also found that the performance in terms of PSNR
changes less than 0.1 when the ratio difference threshold ϵ ranges from 0.001 to 0.1. A
bigger threshold means the optimization stopped earlier.

2.5 A P P L I C AT I O N S

With the gained ability to control the spectral bias in the deep image prior, we consider
four inverse imaging applications and one image enhancement application for compar-
ative evaluation: image denoising, JPEG image deblocking, image inpainting, image
super-resolution and image detail enhancement. On all tasks, we compare to the deep im-

28

2.5 A P P L I C AT I O N S

Ulyanov et al.

Heckel and Hand

Cheng et al.

Ours

Figure 11: JPEG image deblocking. PSNR scores of various methods when reducing
artifacts of a compressed JPEG image with quality=10. We again observe that the
performance of the deep image prior [187] degrades. [30] and [63] do not suffer from
degradation, at the expense of either reduced performance or slow convergence. Our
method achieves a good trade-off between PSNR score and convergence (marked by the
green vertical lines).

age priors of [186, 187], [63] and [30]. For reference, we also report the results obtained
by classical methods like [32], and supervised-learning based methods like [223].

We report our results with the Decoder, introduced in Section 2.3.2, as our network
architecture. Lipschitz normalization with λ=2 and Gaussian upsampling with σ=0.5
are combined into the Decoder to achieve a controllable deep image prior. Network
parameters are initialized with He initialization [61]. Our approach works with popular
optimizers such as standard gradient descent and Adam [89]. Following [186, 187], we
use Adam with a mini-batch of 1 to optimize our networks. We set β1 to 0.9, β2 to 0.999
and the initial learning rate to 0.001. The network input is a uniform noise between 0
and 0.1 with a depth of 32 by default. Our code will be released.

2.5.1 Image denoising

For the denoising comparison we use two datasets, i.e., the standard dataset by [32]
consisting of 9 RGB images, and CBSD68 by [156] consisting of 68 RGB images. Each
noisy image is generated by adding an additive Gaussian white noise with three noise
levels, including σ=15, σ=25 and σ=50. The goal is to distill the original image
without Gaussian noise. Results on the dataset of [32] are shown in Fig. 10, where PSNR
scores of various methods are shown over multiple iterations. The performance of the
deep image prior [186, 187] gradually degrades after reaching a peak. For each image,
the peak is reached at a different number of iterations, so simply using a fixed number of
iterations will be suboptimal for most images.

29

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

 Ulyanov et al.

Heckel and Hand

Cheng et al.

Ours

Figure 12: Image inpainting. PSNR scores of various methods for pixel inpainting.
We again observe the degradation of performance over iterations for the deep image
prior [187]. [30] and [63] do not suffer from the degradation problem, at the expense of
either reduced performance or slow convergence. Our method achieves a good trade-off
between PSNR score and convergence (marked by the green vertical lines).

Our method provides two advantages: 1) The performance does not decay over
iterations with controlled spectral bias; 2) The optimization can be automatically stopped
at an appropriate moment using the proposed stopping criterion, leading to good PSNR
scores for all images (marked by the green vertical lines). [63] achieve fast convergence
without performance degradation, but at the expense of reduced performance. [30] obtain
comparable PSNR scores, but they require 2 to 4 times as many iterations to converge.

30

2.5 A P P L I C AT I O N S

(a) Noisy image (b) Heckel and Hand (c) Cheng et al. (d) Ours

Figure 13: Image denoising. The goal is to remove the additive Gaussian white noise
with σ=25. From the top regions masked by the green rectangles, we observe the method
of [30] still overfits some high-frequency noise, while our method does not. From the
bottom regions masked by the green rectangles, we observe the method of [63] has
difficulty preserving high-frequency edges, while our method performs better.

Table 1: Image denoising on CBSD68 for varying σ. Supervised approaches and
CBM3D prevail, but our unsupervised method obtains better PSNR than the deep image
prior and its variants across three noise levels.

15 25 50
Ulyanov et al. [187]†∗ 30.58 27.84 24.59
Heckel and Hand [63]† 28.66 26.60 24.06
Cheng et al. [30]† 30.77 28.08 24.71
Ours 30.80 28.15 24.83
CBM3D [32]†† 33.52 30.71 27.38
CDnCNN [223]†† 33.89 31.23 27.92
FFDNet [224] 33.87 31.21 27.96
†Results based on author-provided code.
∗Results obtained with oracle stopping.
††Results provided by [224].

So far, we have shown the performance of various methods per image over a varying
number of optimization iterations. Next, we compare their overall PSNR performance
on the 68 images in CBSD68, as shown in Table 1. While our unsupervised method is
outperformed by supervised-learning alternatives [223,224] and CBM3D [32], it does
better than the deep image prior [186, 187], and its variants [30, 63] across three noise
levels. We also provide qualitative results for denoising in Fig. 13, where we observe our
method preserves the high-frequency edges without overfitting to high-frequency noise.

31

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

(a) Corrupted image (b) Cheng et al. (c) Ours (d) Ground truth

Figure 14: JPEG image deblocking. The goal is to reduce the artifacts of the compressed
JPEG image with quality=20. From the regions masked by the green rectangles, we
observe our method performs well, especially when reducing the artifacts and recovering
high-frequency image details.

Table 2: JPEG image deblocking on LIVE1 for varying quality levels. Supervised
approached prevail, but compared to the unsupervised deep image prior and its variants,
our method obtains better performance in terms of PSNR.

10 20 30
Ulyanov et al. [187]†∗ 27.52 29.75 31.08
Heckel and Hand [63]† 26.63 27.65 28.99
Cheng et al. [30]† 27.59 29.81 31.12
Ours 27.70 29.86 31.14
AR-CNN [39]†† 28.96 31.29 32.67
TNRD [27]†† 29.15 31.46 32.84
DnCNN [223] 29.19 31.59 32.98
†Results based on author-provided code.
∗Results obtained with oracle stopping.
††Results provided by [223].

2.5.2 JPEG image deblocking

JPEG image deblocking is the process of reducing the compression artifacts in JPEG
images. We evaluate on the Classic5 dataset by [48] and the LIVE1 dataset by [163].
Classic5 consists of 5 gray-scale images, and LIVE1 consists of 29 color images. Follow-
ing [39], the color images are transformed to gray-scale using the YCbCr color model by

32

2.5 A P P L I C AT I O N S

(a) Corrupted image (b) Cheng et al. (c) Ours (d) Ground truth

Figure 15: Image inpainting. The goal is to reconstruct the 50% missing pixels resulting
from a binary Bernoulli mask. From the regions masked by the green rectangles, we
observe our method performs well, especially when recovering high-frequency details.

Table 3: Image inpainting on CBSD68 for varying ratio. In terms of PSNR, our method
outperforms the deep image prior and its variants on region-based inpainting, across
three hole-to-image area ratios.

0.1 0.25 0.5
Ulyanov et al. [187] †∗ 22.78 19.42 17.26
Heckel and Hand [63]† 21.52 18.67 16.81
Cheng et al. [30]† 22.83 19.49 17.28
Ours 22.87 19.58 17.36
†Results based on author-provided code.
∗Results obtained with oracle stopping.

keeping the Y component only. Then, the gray-scale images are compressed with the PIL
encoder into three qualities, 10, 20, and 30. Fig. 11 provides a quantitative comparison
on Classic5 for quality=10. Akin to the denoising comparison, we again observe the
degradation of performance over iterations for the deep image prior [186, 187]. [30]
and [63] do not suffer from the degradation problem, at the expense of either reduced per-
formance or slow convergence. With the controlled spectral bias and automatic stopping

33

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

(a) Corrupted image (b) Heckel and Hand (c) Cheng et al. (d) Ours

Figure 16: Image inpainting. The goal is to reconstruct the missing pixels resulting
from a binary region mask. From the regions masked by the green rectangles, we observe
our method performs better than [63] and as good as [30].

criterion, we achieve a good trade-off between PSNR score and convergence (marked by
the green vertical lines).

We also provide quantitative results for LIVE1 in Table 2. Naturally, the learning-
based methods [27, 39, 223] perform best. Across three quality levels, our unsupervised
method performs better than the deep image prior [186, 187] and its two variants [30, 63].
We also provide qualitative examples in Fig. 14, which shows that our method better
reduces the artifacts and recovers high-frequency image details.

2.5.3 Image inpainting

In image inpainting, we are given an image with missing pixels resulting from a binary
mask. The goal is to reconstruct the missing data. We evaluate on the standard dataset
by [65], consisting of 11 grayscale images, and the CBSD68 dataset by [156] consisting
of 68 RGB images. Following [30, 186, 187], we consider inpainting with masks that are
randomly sampled according to a binary Bernoulli distribution on the standard dataset.
Each mask is sampled to drop 50% of the pixels at random. For CBSD68, we consider
inpainting with central region masks and we evaluate on three hole-to-image area ratios,
ratio=0.1, ratio=0.25 and ratio=0.5, following [145]. Fig. 12 provides a quantitative
comparison on the standard dataset. We also provide quantitative results for CBSD68 in
Table 3. Our observations are the same as for the denoising and deblocking comparison.
We provide qualitative examples for pixel inpainting in Fig. 15 and region inpainting in
Fig. 16, which shows our ability to recover high-frequency details.

34

2.5 A P P L I C AT I O N S

(a) Ulyanov et al. (b) Cheng et al. (c) Ours (d) Ground truth

Figure 17: Super-resolution. Results on the ‘baby’ image and the ‘flowers’ image for 4×
super-resolution, and on the ‘butterfly’ image for 8× super-resolution. From the regions
masked by the green rectangles, we observe our method is able to better recover details
with fewer artifacts (best viewed digitally).

2.5.4 Super-resolution

In image super-resolution, a low-resolution image is given; the goal is to recover its
scaled-up version. Following [186, 187], the network generates a high-resolution image
from the random noise input. The high-resolution image is then downsampled using a
differentiable Lanczos filter to compute the loss with the provided low resolution image
for optimizing the network. We report on the standard Set14 dataset by [219] and Set5
by [17]. We evaluate the performance for an up-scaling of 4 and 8. For the super-
resolution task, the deep image prior [186, 187] does not suffer from the performance
degradation over iterations because the optimization objective strives to find the low-
resolution image without high-frequency noise. Following [186, 187], we report the
PSNR score at a stopping iteration of 2,000 for the scaling of 4, and 4,000 for the scaling
of 8. Results on Set 14 are provided in Table 4 and results on Set 5 are summarized in

35

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

(a) Original image (b) λ=1 (c) λ=2 (d) λ=3

Figure 18: Image enhancement. The goal is to enhance the image details. We obtain the
smoothed images (second row) using the controlled deep image priors with different λ,
as defined in Eq. (2.5). We then subtract the smoothed version from the original image
to get fine details and enhance them (first row). The smaller the λ, the higher smoothness
of the output images and the more enhancement to the image details.

Table 5. On most images our method achieves better performance, not only for [186,187]
but also compared to [63] and [30]. We provide a qualitative comparison in Fig. 17. We
observe that our method produces fewer high-frequency artifacts than [186,187] and [30].
We postulate that our Lipschitz normalization contributes to the benefit. Interestingly, our
method also recovers fine details. A likely explanation is that our Gaussian upsampling
is better at learning the desired higher frequencies. Note that fine details like textures are
high-frequency compared to flat regions, but still relatively low-frequency compared to
most artifacts.

2.5.5 Image enhancement

Following [186, 187], we also evaluate our method on image enhancement. The deep
image prior performs sharpness enhancement by means of unsharp masking [140], which
can be described by xe = (x0 − xs) + x0, where an enhanced image is represented by xe,
an original image by x0, an unsharp mask by (x0 − xs) where xs denotes the smoothed
version of the original image. The smoothness of xs controls the size of the region around
the edge pixels that is affected by sharpening. The higher the smoothness, the wider the
regions around the edges that got sharpened. The deep image prior obtains the smoothed
images by stopping the optimization at different iterations. However, the smoothness of

36

2.5 A P P L I C AT I O N S

Ta
bl

e
4:

Su
pe

r-
re

so
lu

tio
n

on
Se

t1
4.

Th
e

PS
N

R
sc

or
es

ar
e

re
po

rte
d

fo
ra

st
op

pi
ng

ite
ra

tio
n

of
2,

00
0

fo
rt

he
sc

al
in

g
of

4,
an

d
4,

00
0

fo
rt

he
sc

al
in

g
of

8,
fo

llo
w

in
g

[1
86

,1
87

].
O

n
m

os
ti

m
ag

es
w

e
ac

hi
ev

e
be

tte
rp

er
fo

rm
an

ce
th

an
ex

is
tin

g
m

et
ho

ds
,a

nd
w

e
ob

ta
in

th
e

hi
gh

es
tP

SN
R

on
av

er
ag

e
fo

r4
×

an
d

8×
su

pe
r-

re
so

lu
tio

n. B
ab

oo
n

B
ar

ba
ra

B
ri

dg
e

C
oa

st
gu

ar
d

C
om

ic
Fa

ce
Fl

ow
er

s
Fo

re
m

an
L

en
na

M
an

M
on

ar
ch

Pe
pp

er
Pp

t3
Z

eb
ra

Av
er

ag
e

4×
re

so
lu

tio
n

U
ly

an
ov

et
al

.[
18

7]
∗

22
.2

9
25

.5
3

24
.3

8
25

.8
1

22
.1

8
31

.0
2

26
.1

4
31

.6
6

30
.8

3
26

.0
9

29
.9

8
32

.0
8

24
.3

8
25

.7
1

27
.0

0
H

ec
ke

la
nd

H
an

d
[6

3]
†

20
.5

4
21

.5
1

20
.9

7
23

.5
2

18
.8

6
28

.1
5

20
.8

8
24

.4
4

24
.0

7
21

.1
8

21
.2

1
23

.8
9

17
.2

8
18

.5
9

21
.7

9
C

he
ng

et
al

.[
30

]†
21

.5
1

24
.8

4
23

.7
4

25
.0

2
21

.9
4

30
.1

1
25

.4
1

30
.5

7
28

.6
2

25
.3

7
28

.4
1

30
.2

5
23

.6
9

24
.4

8
26

.0
7

O
ur

s
22

.8
1

25
.7

4
25

.0
2

25
.8

6
22

.3
1

32
.0

9
26

.7
4

32
.7

7
31

.2
9

26
.4

2
30

.7
7

32
.6

2
24

.7
3

25
.8

7
27

.5
0

B
ic

ub
ic
†
†

22
.4

4
25

.1
5

24
.4

7
25

.5
3

21
.5

9
31

.3
4

25
.3

3
29

.4
5

29
.8

4
25

.7
0

27
.4

5
30

.6
3

21
.7

8
24

.0
1

26
.0

5
T

V
pr

io
r†
†

22
.3

4
24

.7
8

24
.4

6
25

.7
8

21
.9

5
31

.3
4

25
.9

1
30

.6
3

29
.7

6
25

.9
4

28
.4

6
31

.3
2

22
.7

5
24

.5
2

26
.4

2
[1

84
]†
†

22
.8

3
25

.6
9

25
.3

6
26

.2
1

22
.9

0
32

.6
2

27
.5

4
33

.5
9

31
.9

8
27

.2
7

31
.6

2
33

.8
8

25
.3

6
26

.9
8

28
.1

3

8×
re

so
lu

tio
n

U
ly

an
ov

et
al

.[
18

7]
∗

21
.3

8
23

.9
4

22
.2

0
24

.2
1

19
.8

6
29

.5
2

22
.8

6
27

.8
7

27
.9

3
23

.5
7

24
.8

6
29

.1
8

20
.1

2
20

.6
2

24
.1

5
H

ec
ke

la
nd

H
an

d
[6

3]
†

20
.0

7
19

.8
6

19
.6

7
22

.3
0

18
.0

1
26

.5
3

19
.5

7
22

.7
6

22
.0

6
19

.5
4

19
.7

1
21

.4
4

15
.6

4
17

.2
0

20
.3

1
C

he
ng

et
al

.[
30

]†
19

.8
1

23
.6

9
22

.1
9

19
.2

2
19

.7
2

28
.8

8
22

.8
1

27
.3

4
19

.6
9

23
.3

6
24

.4
3

28
.7

2
26

.1
4

19
.8

9
20

.6
7

O
ur

s
21

.5
7

24
.4

8
22

.6
4

24
.1

8
19

.7
1

29
.9

4
22

.9
2

27
.9

5
27

.6
7

23
.8

6
24

.4
6

28
.9

1
23

.2
8

19
.9

3
24

.1
7

B
ic

ub
ic
†
†

21
.2

8
23

.4
4

22
.2

4
23

.6
5

19
.2

5
28

.7
9

22
.0

6
25

.3
7

26
.2

7
23

.0
6

23
.1

8
26

.5
5

18
.6

2
19

.5
9

23
.0

9
T

V
pr

io
r†
†

21
.3

0
23

.7
2

22
.3

0
23

.8
2

19
.5

0
28

.8
4

22
.5

0
26

.0
7

26
.7

4
23

.5
3

23
.7

1
27

.5
6

19
.3

4
19

.8
9

23
.4

8
[1

84
]†
†

21
.5

1
24

.2
1

22
.7

7
24

.1
0

20
.0

6
29

.8
5

23
.3

1
28

.1
3

28
.2

2
24

.2
0

24
.9

7
29

.2
2

20
.1

3
20

.2
8

24
.3

5
†
R

es
ul

ts
ba

se
d

on
au

th
or

-p
ro

vi
de

d
co

de
.∗

R
es

ul
ts

ob
ta

in
ed

w
ith

or
ac

le
st

op
pi

ng
.†
†
R

es
ul

ts
pr

ov
id

ed
by

[1
87

].

37

S P E C T R A L B I A S O F T H E D E E P I M AG E P R I O R

Table 5: Super-resolution on set5. The PSNR scores are reported for a stopping iteration
of 2,000 for the scaling of 4, and 4,000 for the scaling of 8, following [187]. On most
images we achieve better performance than existing methods, and we perform best on
average for both 4× and 8× super-resolution.

Baby Bird Butterfly Head Woman Average
4× resolution
Ulyanov et al. [187] ∗ 31.49 31.80 26.23 31.04 28.93 29.89
Heckel and Hand [63]† 24.57 24.66 18.46 27.64 22.44 23.55
Cheng et al. [30]† 27.35 28.37 24.21 27.45 25.48 26.57
Ours 32.76 32.71 26.47 31.79 28.54 30.45
Bicubic †† 31.78 30.20 22.13 31.34 26.75 28.44
TV prior †† 31.21 30.43 24.38 31.34 26.93 28.85
LapSRN [184] †† 33.55 33.76 27.28 32.62 30.72 31.58

8× resolution
Ulyanov et al. [187] ∗ 28.28 27.09 20.02 29.55 24.50 25.88
Heckel and Hand [63]† 21.95 22.97 16.18 26.56 20.46 21.62
Cheng et al. [30]† 27.18 26.64 19.64 24.76 23.81 24.41
Ours 28.46 26.79 20.32 30.07 24.76 26.08
Bicubic †† 27.28 25.28 17.74 28.82 22.74 24.37
TV prior †† 27.93 25.82 18.40 28.87 23.36 24.87
LapSRN [184] †† 28.88 27.10 19.97 29.76 24.79 26.10
†Results based on author-provided code.
∗Results obtained with oracle stopping.
††Results provided by [187].

the output image is quite sensitive to the number of optimization iterations, which is hard
to control. By contrast, our method is able to manipulate the smoothness of the output
image by tuning λ in Eq. (2.5). Thus, we obtain the smoothed images with different λ,
by optimizing the network in a fixed iteration of 5, 000. The smaller the λ, the higher
the smoothness of the output images and the more enhancement to the image details, as
shown in Fig. 23.

2.5.6 Success and failure cases

We return to the denoising task to analyze a success and failure case or our approach in
Fig. 19. The goal is to remove additive Gaussian noise from a natural image. Our method
performs well when the noise level is modest, as shown in Fig. 19(b). However, with
higher noise levels, the proposed method fails to remove the noise, as shown in Fig. 19(d).
We attribute this to the fact that in the frequency domain, additive Gaussian noise has
equal intensity at different frequencies. By contrast, the power spectrum of a natural
image decays rapidly from low frequencies to high frequencies [157]. Consequently,
when the noise level is low, noise is usually dominant at high frequencies and the natural
signal is more dominant at lower frequencies. However, the noise can also be more
dominant at lower frequencies with higher level. In this case, separating low-frequencies
from high-frequencies through spectral bias fails to remove the noise.

38

2.6 C O N C L U S I O N

(a) Clean image (b) σ = 25 (c) σ = 50 (d) σ = 100

Figure 19: Success and failure case of our method for image denoising on image ‘F16’.
Our method performs well when the noise level is modest (σ=25), while it fails to
remove noise when the noise level is too high (σ=100).

2.6 C O N C L U S I O N

In this chapter, we show the spectral bias leads inverse imaging networks to capture the
deep image prior during optimization, independent of their architectures. We do so by
introducing a metric, the Frequency Band Correspondence, which offers a spectral mea-
surement of the deep image prior, revealing the low frequency natural image signals are
learned faster and better than high-frequency noise signals. We also introduce Lipschitz
normalization and Gaussian upsampling that allow to manipulate and adjust the spectral
bias for inverse imaging problems. Besides these methods for controlling spectral bias,
we further introduce a simple automatic stopping criterion to avoid superfluous compu-
tation. The experiments show that our method does not suffer from the performance
degradation over iterations with controlled spectral bias and enables stopping the opti-
mization automatically at an appropriate moment using the proposed stopping criterion.
Our method also obtains favorable performance compared to current approaches for
denoising, deblocking, inpainting, super-resolution and detail enhancement.

39

3

U N S H A R P M A S K G U I D E D F I LT E R I N G

3.1 I N T RO D U C T I O N

Image filtering has been widely used to suppress unwanted signals (e.g. noise) while
preserving the desired ones (e.g. edges) in image processing tasks like image restoration
[7, 13, 44], boundary detection [77, 84, 120], texture segmentation [42, 152, 202], and
image detail enhancement [8, 56, 136]. Standard filters, such as Gaussian filters and box
mean filters, swiftly process input imagery but suffer from content-blindness, i.e., they
treat noise, texture, and structure identically. To mitigate content-blindness, guided
filters [52, 60, 90, 112, 147, 204], have received a great amount of attention from the
community. The key idea of guided filtering is to leverage an additional guidance image
as a structure prior and transfer the structure of the guidance image to a target image.
By doing so, it strives to preserve salient features, such as edges and corners, while
suppressing noise. The goal of this chapter is guided image filtering.

Classical guided filtering, e.g. [60, 91, 100, 183], performs structure-transferring by
relying on hand-designed functions. Nonetheless, it is known to suffer from halo artifacts
and structure inconsistency problems (see Fig. 20), and it may require a considerable
computational cost. In recent years, guided image filtering has advanced by deep
convolutional neural networks. Both Li et al. [96] and Hui et al. [71] demonstrate the
benefits of learning-based guided filtering over classical guided filtering. These works
and their follow-ups, e.g. [1, 97, 182], directly predict the filtered output by means of
feature fusion from the guidance and target images. Yet, this implicit way of structure-
transferring may fail to transfer the desired edges and may suffer from transferring
undesired content to the target image [97, 144].

Pan et al. [144] propose an alternative way to perform deep guided filtering. Rather
than directly predicting the filtered image, they leverage a shared deep convolutional
neural network to estimate the two coefficients of the original guided filtering formulation
[60]. While their approach obtains impressive filtering results in a variety of applications,
we observe their network has difficulty disentangling the representations of the two
coefficients, resulting in halo artifacts and structure inconsistencies, see Fig. 20. Building
on the work of Pan et al. [144], we propose a new guided filtering formulation, which
depends on a single coefficient and is therefore more suitable to be solved by a single
deep convolutional neural network.

We take inspiration from another classical structure-transferring filter: unsharp mask-
ing [35, 140, 148, 212]. From the original guided filter by He et al. [60] we first derive
a simplified guided filtering formulation by eliminating one of its two coefficients. So
there is only one coefficient left to be estimated for deciding how to perform edge

40

3.2 BAC K G RO U N D A N D R E L AT E D W O R K

Figure 20: Motivation of this chapter. We show an example of depth upsampling (16×)
using an RGB image as guidance. Both the conventional guided filter by He et al. [60]
and the state-of-the-art deep guided filter by Pan et al. [144] explicitly estimate two
coefficients, respectively (ā, b̄) and (fα, fβ). In their current formulation, however, both
methods are likely to over-smooth edges (compare edges in blue boxes) and transfer
unwanted textures (compare highlighted details in red boxes). Our proposed guided filter,
taking inspiration from unsharp masking, only requires learning a single coefficient fa
(notation details provided in Sections 2 and 3). As a result, we obtain a more desirable
upsampling result, free of undesirable structures and textures from the guidance image.

enhancement, akin to unsharp masking. To arrive at our formulation, we rely on the
filtering prior used in unsharp masking and perform guided filtering on the unsharp masks
rather than the raw target and guidance images themselves. The proposed formulation
enables us to intuitively understand how the guided filter performs edge-preservation and
structure-transferring, as there is only one coefficient in the formulation, rather than two
in [144]. The coefficient explicitly controls how structures need to be transferred from
guidance image to target image and we learn it adaptively by a single network. To that
end, we introduce a successive guided filtering network. The network obtains multiple
filtering results by training a single network. It allows a trade-off between accuracy
and efficiency by choosing different filtering results during inference. This leads to fast
convergence and improved performance. Experimental evaluation on seven datasets
shows the effectiveness of our proposed filtering formulation and network on multiple
applications, such as upsampling, denoising, and cross-modality filtering.

3.2 BAC K G RO U N D A N D R E L AT E D W O R K

In guided filtering, we are given an image pair (I, G), where the image pair has been
properly registered by default. Image I needs to be filtered, e.g. due to the presence
of noise or due to low resolution because it is captured by a cheap sensor. Guidance

41

U N S H A R P M A S K G U I D E D FI LT E R I N G

image G contains less noise and is of high resolution with sharp edges, e.g. because it
is captured by accurate sensors under good light conditions. The low-quality image I
can be enhanced by filtering under the guidance of high-quality image G. Such a guided
filtering process is defined as Î = F (I, G), where F (·) denotes the filter function and Î
denotes the filtered output image. Below, we first review the benefits and weaknesses
of classical guided filter functions and existing deep guided filter functions. We then
present how our proposal can be an improved guided filtering solution by establishing a
link to unsharp masking.

3.2.1 Classical guided filtering

The guided image filter [60] assumes that the filtered output image Î is a linear transform
of the guidance image G at a window wk centered at pixel k:

Îi = akGi + bk, ∀i ∈ wk, (3.1)

where ak and bk are two constants in window wk. Their values can be obtained by solving:

E(ak, bk) =
∑
i∈wk

((akGi + bk − Ii)
2 + ϵa2

k). (3.2)

Here, ϵ is a regularization parameter penalizing large values for ak. The optimal values
of ak and bk are computed as:

ak =

1
|w|
∑

i∈wk IiGi − ĪkḠk

σ2
k + ϵ

, (3.3)

bk = Īk − akḠk. (3.4)

Here, Ḡk and σ2
k are the mean and variance of G in wk, Īk is the mean of I in wk, and |w|

is the number of pixels in wk. For ease of analysis, the guidance image G and filtering
target image I are assumed to be the same [60], although the general case remains valid.
As a result, we can obtain:

ak = σ
2
k/(σ2

k + ϵ), bk = (1 − ak)Ḡk. (3.5)

Based on this, the regions and edges with variance (σ2
k) much larger than ϵ are preserved,

whereas those with variance (σ2
k) much smaller than ϵ are smoothed. Hence, ϵ takes

control of the filtering. However, the value of ϵ in the guided image filter [60] is
fixed. As such, halos are unavoidable when the filter is forced to smooth some edges
[60, 91, 100, 183]. An edge-aware weighted guided image filter is proposed in [100] to
overcome this problem, where ϵ varies spatially rather than being fixed:

ϵ =
λ

ΓG
, ΓG =

σ2
k + ε

1
N
∑N

k=1 σ
2
k + ε

, (3.6)

42

3.2 BAC K G RO U N D A N D R E L AT E D W O R K

where λ and ε are two small constants and σ2
k is the variance of G in a 3 × 3 window

centered at the pixel k. ΓG measures the importance of a pixel k with respect to the whole
guidance image. Kou et al. [91] propose a multi-scale edge-aware weighted guided image
filter, in which ΓG is computed by multiplying the variances of multiple windows. By
taking the edge direction into consideration, Sun et al. [183] further improve the filter’s
performance. However, predefined parameters still remain in all these three methods.

Another limitation of classical guided image filters is their assumption that the target
image and the guidance image have the same structure. In practice, there are also
situations conceivable where an edge appears in one image, but not in the other. To
address this issue, recent works [57, 59, 79, 164, 213] enhance guided image filters by
considering the mutual structure information in both the target and the guidance images.
These methods typically build on iterative algorithms that minimize global objective
functions. The guidance signals are updated at each iteration to enforce the outputs to
have similar structure as the target images. These global optimization methods generally
use hand-crafted objectives that usually involve fidelity and regularization terms. The
fidelity term captures the consistency between the filtering output and the target image.
The regularization term, typically modeled using a weighted L2 norm [47], encourages
the filtering output to have a similar structure as the guidance image. However, such
hand-crafted regularizers may not transfer the desired structures from the guidance image
to the filtering output [97, 144]. For this reason, we prefer a guided filtering solution
based on end-to-end deep representation learning.

3.2.2 Deep guided filtering

Li et al. [96, 97] introduce the concept of deep guided image filtering based on an end-to-
end trainable network. Two independent convolutional networks fI and fG first process
the target image and guidance image separately. Then their outputs from the last layers
are concatenated and forwarded to another convolutional network fIG to generate the
final output. We define the method as:

Î = fIG
(

fI(I) ⊕ fG(G)
)
, (3.7)

where ⊕ denotes the channel concatenation operator. Several works follow the same
definition but vary in their feature fusion strategies [1, 71, 182]. AlBahar et al. [1]
introduce a bi-directional feature transformer to replace the concatenation operation.
Su et al. [182] propose a pixel-adaptive convolution to fuse the outputs of networks
fI and fG adaptively on the pixel level. Hui et al. [71] propose to perform multi-
scale guided depth upsampling based on spectral decomposition, where low-frequency
components of the target images are directly upsampled by bicubic interpolation and
the high-frequency components are upsampled by learning two convolutional networks.
The high-frequency domain learning leads to an improved performance. Wu et al. [203]
alternatively combine convolutional networks and traditional guided image filters. Two
independent convolutional networks fI and fG first amend the target image and the
guidance image, and then feed their outputs into the traditional guided image filter
FIG [60]:

Î = FIG
(

fI(I), fG(G)
)
. (3.8)

43

U N S H A R P M A S K G U I D E D FI LT E R I N G

Rather than directly predicting the filtered image, Pan et al. [144] leverage deep neural
networks to estimate the two coefficients of the original guided filtering formulation [60]
based on a spatially-variant linear representation model, leading to impressive filtering
results. It is defined as:

Î = fα(I, G) ⊙G + fβ(I, G), (3.9)

where fα and fβ are two convolutional networks, and ⊙ denotes element-wise multipli-
cation. To reduce the complexity of learning, in the implementation Pan et al. [144]
learn a single network and predict an output with two channels, one channel for fα and
another channel for fβ. However, we observe that the shared network has difficulty
disentangling the representations of the two coefficients, resulting in halo artifacts and
structure inconsistencies. Differently, we propose a new guided filtering formulation,
which depends on a single coefficient only and is therefore more suitable to be solved by
a single deep convolutional neural network.

The aforementioned existing deep guided filtering works implicitly perform structure-
transferring by learning a joint filtering network, usually resulting in undesired filtering
performance [37,129,144]. Recent works [36,37,126–130] take inspiration from coupled
dictionary learning [179], and incorporate sparse priors into their deep networks for
explicit structure-transferring. Marivani et al. [126–129] propose a learned multimodal
convolutional sparse coding network with a deep unfolding method for explicitly fusing
information from the target and guidance image modalities. Deng et al. propose a
deep coupled ISTA network with a multimodal dictionary learning algorithm [36], and a
common and unique information splitting network with multi-modal convolutional sparse
coding [37], for the sake of explicitly modeling the knowledge from the guidance image
modality. Most of these works focus on guided image super-resolution. In this chapter,
we propose an explicit structure-transferring method for general guided filtering problems.
In particular, we propose a guided filtering formulation with a single coefficient, and
we learn to estimate the coefficient to explicitly decide how to transfer the desirable
structures from guidance image to target image. As we will demonstrate, this leads to
more desirable filtering results.

3.2.3 Unsharp masking

Our formulation is inspired by the classical sharpness enhancement technique of unsharp
masking [35, 140, 148, 212], which can be described by the equation:

Î = λ(I −FL(I)) + I, (3.10)

where an enhanced image is represented by Î, an original image by I, an unsharp mask by
(I −FL(I)) where FL denotes a low-pass filter like Gaussian filters or box mean filters,
and an amount coefficient by λ which controls the volume of enhancement achieved at
the output. Essentially, guided filtering shares the same function of edges enhancement
as unsharp masking by means of the structure-transferring from an additional guidance
image. Based on this viewpoint, we derive a simplified guided filtering formulation
from the original guided filter [60], with only one coefficient to be estimated, akin to the
formulation of unsharp masking in Eq. (3.10).

44

3.3 FI LT E R I N G F O R M U L AT I O N

3.3 FI LT E R I N G F O R M U L AT I O N

Here, we outline our new guided filtering formulation, in which only one coefficient
needs to be estimated. Compared to estimating two coefficients (a, b) as in the original
guided filtering formulation and subsequent deep learning variants, our formulation is
more suitable to be solved with one single deep network. We start the derivation of
our guided filtering formulation from the classical guided filter [60], summarized in Eq.
(3.1), Eq. (3.3) and Eq. (3.4). In Eq. (3.1), Î is a linear transform of G in a window wk
centered at the pixel k. When we apply the linear model to all local windows in the entire
image, a pixel i is involved in all the overlapping windows wk that covers i. In this case,
the value of Îi in Eq. (3.1) is not identical when it is computed in different windows. So
after computing (ak, bk) for all windows wk in the image, we compute the filtered output
image Îi by averaging all the possible values of Îi with:

Îi =
1
|w|

∑
k∈wi

(akGi + bk). (3.11)

Similar in spirit to unsharp masking, summarized in Eq. (3.10), we want to maintain
only the coefficient a to control the volume of structure to be transferred from guidance
G to the filtered output image Î. Thus, we put Eq. (3.4) into Eq. (3.11) to eliminate b,
and obtain:

Îi =
1
|w|

∑
k∈wi

akGi +
1
|w|

∑
k∈wi

(Īk − akḠk). (3.12)

Next, we rewrite the formulation as:

Îi =
1
|w|

∑
k∈wi

ak(Gi − Ḡk) + Ĩi, (3.13)

where Ĩi =
1
|w|
∑

k∈wi Īk. Since Ḡk is the output of a mean filter, it’s assumed that Ḡk is
close to its mean in the window wi. Next we rewrite Eq. (3.13) as follows

Îi = āi(Gi − G̃i) + Ĩi, (3.14)

where āi =
1
|w|
∑

k∈wi ak, and G̃i =
1
|w|
∑

k∈wi Ḡk. For convenience, we will omit subscript
i in the following.

The formulation in Eq. (3.14) enables us to intuitively understand how the guided filter
performs edge-preservation and structure-transferring. Specifically, the target image I is
first smoothed to remove unwanted components like noise/textures, and the smoothing
result is denoted by Ĩ. However, the smoothing process usually suffers from the loss of
sharp edges, leading to a blurred output. To enhance the edges, an unsharp mask (G − G̃)
with fine edges generated from the guidance image G is added to Ĩ under the control
of the coefficient a, leading to the structure being transferred from the guidance image
to the filtered output image Î. Finally, we rewrite Eq. (3.14) to obtain a more general
formulation for deep guided filtering:

Î = fa(Im, Gm) ⊙Gm + FL(I), (3.15)

45

U N S H A R P M A S K G U I D E D FI LT E R I N G

where Im = I − FL(I) and Gm = G − FL(G) denote the unsharp masks of the target
image and the guidance image, which contain the structures of the guidance and the
target images. FL denotes a linear shift-invariant low-pass filter like the Gaussian filter
or the box mean filter. fa denotes the amount function, which controls the volume of
structure to be transferred from the guidance image to the filtered output image. Next,
we will elaborate on this function.

Amount function fa. The output of fa is the volume of the structure to be transferred
from the guidance image to the filtered output image. Thus, the input of fa should
involve the structure of both the target and the guidance image, which together determine
the output, i.e., fa(Im, Gm). Ideally, fa should determine the structure-transferring in a
pixel-adaptive fashion. It can be a manually designed function, as the function a of the
guided filter in Eq. (3.3). It also can be estimated by learning a deep neural network.
Compared to hand-crafted functions, learnable functions are more flexible and allow for
a better generalization to various image conditions.

Successive filtering. Successive operations of the same filter generally result in a more
desirable output, thus we develop a successive guided filtering based on our formulation
in Eq. (3.15). Instead of directly iterating the filtering output Î, we iterate the outputs of
fa as the function decides the effect of filtering. Let f⋆a be a composition of a set of basic
functions { f (l)a }

L
l=1:

f⋆a = f (L)a ◦ f (L−1)
a ◦ · · · ◦ f (1)a (3.16)

in which ◦ denotes the function composition operation, such as
(

f ◦ u
)
(·) = f (u(·)).

With f⋆a we obtain a successive filtering formulation from Eq. (3.15),

Î = f⋆a (Im, Gm) ⊙Gm + FL(I). (3.17)

In the next section we will detail how to implement our filters with deep convolutional
neural networks.

3.4 FI LT E R I N G N E T W O R K

There is a function fa in our formulation, which governs a guided filtering coefficient.
We propose to solve this function with a single convolutional neural network.

Network for amount function fa. The function fa decides how to transfer the
structure of the guidance image to the filtered output image. There are two inputs Gm and
Im for this function. Two options are available for the network architecture. Like [71,97],
we can separately process these two inputs with two different sub-networks at first, and
then fuse their outputs with another sub-network. Alternatively, we can concatenate these
two inputs together and forward the concatenation into a single network, similar to the
framework of [144]. Empirically, we find that the second option is easily implemented
and achieves a desirable filtering accuracy and efficiency. Thus, we design the network
of fa with the second option in this chapter.

In our approach the unsharp masks, rather than the raw images themselves, are used
as the inputs of the network. The unsharp mask is more sparse than the raw image itself,
since most regions in the unsharp mask are close to zero. The learning of spatially-
sparse data usually requires a large receptive field. The dilated convolution is a popular

46

3.5 E X P E R I M E N T S

technique to enlarge the receptive fields in convolutional networks [25, 215]. We design
our network by cascading four dilated convolutional layers with increasing dilation
factors, where all the dilated convolutional layers have the same channel number of 24
and the same kernel size of 3 × 3. Their dilation factors are set to {1, 2, 4, 8}. Leaky
ReLU with a negative slope of 0.1 is used as an activation function after each dilated
convolutional layer. Finally, a 1 × 1 convolution layer generates the target output for fa.

Network for successive filtering. To develop a network for the successive filtering
formulation in Eq. (3.17), we consider the network of the basic functions { f (l)a }

L
l=1 as a

convolutional block, as shown in Fig. 21 (a). Then stacking this block multiple times
results in a deep network for f⋆a . There are two outputs in the block. By concatenating its
input and its feature maps from the last layer results in the first output. The concatenation
output allows feeding the previous multi-level outputs to the following blocks, leading to
improved performance. We develop the second output by using a convolutional layer on
top of the last layer of the block, for the sake of balancing accuracy and efficiency.

Stacking more blocks results in higher accuracy at the expense of an increased com-
putational complexity. To allow users to choose between accuracy and computational
complexity, we generate filtering outputs from each block. If users want to obtain filtering
results fast, the filtering results from the first blocks can be used. When the accuracy
is more important, the filtering results from the later blocks can be used. In short, we
obtain multiple filtering results while training one single network. The overall network
architecture is visualized in Fig. 21 (b).

Optimization. During training, we are given N samples {(In, Gn, Zn)}Nn=1, with In ∈ I

the target image, Gn ∈ G the guidance image and Zn ∈ Z the task-dependent ground-truth
output image. Our goal is to learn the parameters θ of the network for fa. Two types of
loss, L1 loss and L2 loss, have been widely used in deep guided filtering works. Early
works, like [71, 96], have adopted a L2 loss, while recent works, like [1, 144], prefer a L1
loss because it is less sensitive to outliers and leads to less blurry results compared to
a L2 loss [15, 75]. Following these recent works, we minimize the difference between
filtered output image Î and its ground-truth Z using the L1 loss, which is defined as:

L(I, G, Z; θ) =
1
N

N∑
n=1

∥ În(In, Gn; θ) − Zn ∥1 . (3.18)

3.5 E X P E R I M E N T S

In this section, we provide extensive experimental evaluations. Section 3.5.1 introduces
the experimental setup. Sections 3.5.2, 3.5.3, 3.5.4, and 3.5.5 emphasize ablations,
comparisons and analysis. Sections 3.5.6, 3.5.7, and 3.5.8 show further qualitative and
quantitative results, and state-of-the-art comparisons on various applications, including
upsampling, denoising, and cross-modality filtering.

47

U N S H A R P M A S K G U I D E D FI LT E R I N G

24, 3x3 Conv
Dilation: 1x1

24, 3x3 Conv
Dilation: 2x2

24, 3x3 Conv
Dilation: 4x4

24, 3x3 Conv
Dilation: 8x8

+
C, 3x3 Conv
Dilation: 1x1

(a) Amount block

(𝐼!, 𝐺!)

𝑓"
($)

.

ℒ($)

+ℱ𝐿(𝐼)

𝐺! 𝑓"
(&)

.
+ℱ𝐿(𝐼)

𝐺! .
+ℱ𝐿(𝐼)

𝐺! 𝑓"
('($)

.
+ℱ𝐿(𝐼)

𝐺! 𝑓"
(')

.
+ℱ𝐿(𝐼)

𝐺!

Amount
Block

Amount
Block

Amount
Block

Amount
Block

𝑓"
(…)

……

)𝐼($)

ℒ(&)
)𝐼(&)

ℒ(…)
)𝐼(…)

ℒ('($)
)𝐼('($)

ℒ(')
)𝐼(')

(b) Successive guided filtering network

Figure 21: Network architecture for unsharp-mask guided filtering. a) Dilated
convolutional block for amount function fa; b) Network architecture for successive
unsharp-mask guided filtering. Here, ⊙ denotes the element-wise product, ⊕ denotes
the concatenation operation, + denotes the element-wise sum. Leaky ReLU is used as
activation function after each convolutional layer. There are (L − 4) amount blocks in
the box, indicated with dots. L denotes the loss function in Eq. (3.18). Here, Gm and
FL(I) are shared by { f (l)a }

L
l=1.

3.5.1 Experimental setup

Image upsampling datasets. We perform upsampling experiments on NYU Depth
V2 [173], and Sintel optical flow [19]. For NYU Depth V2 we follow [97]. We use
the first 1000 RGB/depth pairs for training and the remaining 449 pairs for testing,
where each low-resolution depth image is generated by applying a nearest-neighbor
interpolation. For Sintel, following [182], 908 samples, and 133 samples from clean pass
are used for training, and testing, where each low-resolution flow image is generated by
applying a bilinear interpolation.

Image denoising datasets. We perform denoising experiments also on NYU Depth
V2 [173], as well as on BSDS500 [132]. For NYU Depth V2, we use the same split as
for upsampling. BSDS500 contains 500 natural images. We train on the training set (200
images) and the validation set (100 images). We evaluate on the provided test set (200
images). Following [223], to train a blind Gaussian denoiser, random Gaussian noise is
added to the clean training depth images in NYU Depth V2 and the clean RGB images
in BSDS500, with a noise level σ ∈ [0, 55]. For testing, we consider three noise levels,
σ = {15, 25, 50}. Thus, three separate noisy test images are generated for each original
test image.

Pre-processing. For all datasets, we normalize the input images by scaling their pixel
values to the range [0, 1]. According to Eq. (3.15), the guidance image G and target
image I should have the same number of channels. In the depth/RGB dataset, the target
is the 1-channel depth image. Thus, rgb2gray operation is used to transform a 3-channel
RGB image into a 1-channel grayscale image as guidance. During training, we augment

48

3.5 E X P E R I M E N T S

the images by randomly cropping 256 × 256 patches. No cropping is performed during
testing.

Network and optimization. The proposed network is optimized in an end-to-end
manner. We implement the network with TensorFlow on a machine with a single GTX
1080 Ti GPU. The optimizer is Adam with a mini-batch of 1. We set β1 to 0.9, β2 to
0.999, and the initial learning rate to 0.0001. Optimization is terminated after 1000
epochs.

Evaluation metrics. To evaluate the quality of the predicted images we report four
standard metrics: RMSE (Root Mean Square Error) for depth upsampling, EPE (End-
Point-Error) for flow upsampling, PSNR (Peak Signal-to-Noise Ratio) for denoising, and
SSIM (Structural Similarity Index Measure) for all applications.

3.5.2 Unsharp-mask guided filtering without learning.

The goal of the first experiment is to validate our formulation as a valid guided filter. Here
we do not rely on any deep learning for estimating fa. Instead, we use the function a of
the guided filter [60] and the weighted guided filter (WGF) [100] as fa. FL(G) and FL(I)
are generated by cascaded box mean filters. Using our formulation as a conventional
guided filter, we provide qualitative and quantitative results to demonstrate that our filter
performs as good as, or even better than the guided filter [60] and the weighted guided
filter [100].

Qualitative results. The first example performs edge-preserving smoothing on a
gray-scale image. The second example is about detail enhancement. For both, the target
image and guided image are identical. Fig. 22 and Fig. 23 show the results of filtering,
where we can see that our filter performs as good as the guided filter [60] in preserving
structures. In the third example, we denoise a no-flash image under the guidance of its
flash version to verify the effect of structure-transferring. The denoising results of our
filter and the guided filter [60] in Fig. 24 are consistent and don’t have gradient reversal
artifacts.

Quantitative results. Next, we compare our filter with the guided filter (GF) [60] and
the weighted guided filter (WGF) [100] for natural image denoising on BSDS500 and
depth upsampling on NYU Depth V2. There are two hyperparameters, r and ϵ in GF and
WGF. Grid-search is used to find the optimal hyperparameters. The results in Table 6
show that our filter performs at least as good as the guided filter [60] and the weighted
guided filter [100], indicating that our formulation makes sense as a guided filter.

3.5.3 Unsharp-mask guided filtering with learning

Next, we assess the benefit of our formulation when fa is learned by a neural network.
We compare to four baselines: (i) DMSG [71], (ii) DGF [203] (iii) DJF [97], and (iv)
SVLRM [144]. The experiments are performed on NYU Depth V2 [173] for depth
upsampling (16×) and depth denoising (σ = 50). We compare these baselines separately.
For each comparison, the network for fa is the same as the network used in the compared
method. We use a box mean filter with radius r = 8 to obtain FL(I) and FL(G). For
depth upsampling (16×), we first upsample the low-resolution depth image by bicubic

49

U N S H A R P M A S K G U I D E D FI LT E R I N G

(a) Input I(G) (b) Gm (c) fa(Im, Gm)

(d) FL(I) (e) GF [60] (f) Ours

Figure 22: Edge-preserving filtering. a) Target and guidance image I = G; b) Gm
containing the important structures. c) fa(Im, Gm) estimated by Eq. (3.3) with ϵ = 0.052;
d) FL(I) obtained by a cascade of two box filters with radius r = 8; e) The smoothing
result obtained by the guided filter [60]; f) Our smoothing result. Both our filter and
guided filter [60] can preserve good edges while removing noise.

interpolation to obtain the target resolution for FL(I). We also use the upsampled
depth image as the input of the network, following [97, 144, 203]. One exception is the
comparison with DMSG [71] which uses the original low-resolution depth image as the
input of the network.

Comparison with DMSG [71]. Fig. 25 (a) demonstrates our approach achieves
better upsampling results than DMSG [71] in terms of RMSE. DMSG performs depth
upsampling based on spectral decomposition. Specifically, a low-resolution depth image
is first decomposed into low-frequency components and high-frequency components.
The low-frequency components are directly upsampled by bicubic interpolation. The
high-frequency components are upsampled by learning two convolutional networks. The
first network is used to obtain multi-scale guidance. The other one performs multi-scale
joint upsampling. The difference between our method and DMSG mainly lies in two

50

3.5 E X P E R I M E N T S

(a) Target I (b) GF [60] (c) Ours

Figure 23: Detail enhancement. The parameters are r = 16, ϵ = 0.12. Our filter without
learning, as defined in Eq. (3.14), performs as good as the guided filter [60].

(a) Target I (b) Guidance G (c) GF [60] (d) Ours

Figure 24: Flash/no-flash denoising. The parameters are r = 8, ϵ = 0.22. Our filter
without learning, as defined in Eq. (3.14), performs as good as the guided filter [60].

Epoch (training)
0 200 400 600 800 1000

R
M

S
E

 (
te

st
in

g)

6

8

10

12

14

16

18
DMSG
 This paper

(a) Upsampling

(b) Guidance image

(c) GT depth

(d) DMSG depth

(e) Our depth

(f) DMSG (wl ∗ Dl)
↑

(g) Our FL(I)

Figure 25: Comparison with DMSG [71]. Compared to DGF, our approach better
recovers finer edges as shown in the regions marked by the red boxes, and avoids
producing artifacts as shown in the regions marked by the black boxes.

aspects. First, we don’t use the first network and just use the second network for amount
function fa to explicitly perform structure transfer instead of directly predicting the

51

U N S H A R P M A S K G U I D E D FI LT E R I N G

Table 6: Quantitative results for image denoising on BSDS500 and depth upsampling
on NYU Depth V2. When the functions a of the guided filter [60] and the weighted
guided filter [100] are used for fa, our filter is denoted by “Ours + GF” and “Ours +
WGF”, respectively. Our filters perform at least as good as the baselines.

Denoising (PSNR) ↑ Upsampling (RMSE) ↓

σ = 15 σ = 25 σ = 50 4× 8× 16×
Bicubic/Input 24.61 20.17 14.15 8.21 14.03 22.48
GF [60] 29.16 26.47 23.82 7.25 12.38 19.86
Ours + GF 29.24 26.59 23.84 7.18 12.28 19.75
WGF [100] 29.40 26.92 23.98 7.17 12.33 19.79
Ours + WGF 29.35 26.96 23.99 7.18 12.30 19.76

filtered output image. We find that our approach avoids halo effects more successfully,
as shown in Fig. 25 (d) and (e). Second, Hui et al. use a Gaussian filter to smooth the
low-resolution target depth image when generating its low-frequency components. After
that, they upsample the low-frequency components by bicubic interpolation. However,
this step is likely to produce artifacts, as shown in Fig. 25 (f). Since the network learning
focuses on upsampling high-frequency components, the artifacts still remain in the final
upsampling output, as shown in Fig. 25 (d). By contrast, we first upsample the low-
resolution target depth image before smoothing. By doing so, the artifacts generated by
bicubic interpolation can be removed by smoothing, as shown in Fig. 25 (g).

Epoch (training)
0 200 400 600 800 1000

R
M

S
E

 (
te

st
in

g)

6

8

10

12

14

16
DGF
 This paper

(a) Upsampling
Epoch (training)

0 100 200 300 400 500

P
S

N
R

 (
te

st
in

g)

36

37

38

39

40

41

42

(b) Denoising

(c) Guidance image

(d) GT depth

(e) DGF depth

(f) Our depth

(g) DGF ā

(h) Our fa

Figure 26: Comparison with DGF [203]. The parameters of the guided filter [60]
used in DGF are r = 4, ϵ = 0.12. Our learned amount function performs better on
structure-transferring than the manually designed one as shown in the region marked by
red boxes of (g) and (e). Thus, our filter reduces the over-smoothing of important edges
as shown in the region marked by black boxes of (e) and (f).

Comparison with DGF [203]. Wu et al. [203] learn two networks to amend the
guidance and target images before feeding them to the guided filter [60]. The learned
guidance and target images fit the guided filter [60] better than the original ones. However,
DGF still suffers from the halo problem since its final filtering output is generated by the
guided filter [60]. Our approach performs better than DGF [203] for both upsampling and

52

3.5 E X P E R I M E N T S

Epoch (training)
0 200 400 600 800 1000

R
M

S
E

 (
te

st
in

g)

8

9

10

11

12

13

14
DJF
 This paper

(a) Upsampling
Epoch (training)

0 100 200 300 400 500

P
S

N
R

 (
te

st
in

g)

35

36

37

38

39

40

(b) Denoising

(c) Guidance image

(d) GT depth

(e) DJF depth

(f) Our depth

Figure 27: Comparison with DJF [97]. Our approach avoids unwanted structures
transferred from the guidance image to the target image as shown in the regions marked
by the black boxes, leading to more desirable filtering results than DJF.

denoising tasks, as demonstrated in Fig. 26 (a) and (b). As shown in Fig. 26 (e) and (g),
the important edges are unavoidable to be smoothed because the structure-transferring
is performed in an undesirable fashion. By contrast, our approach performs better on
preserving and transferring important structures, as shown in 26 (f) and (h), as the amount
function fa is learned in a pixel-adaptive way through a deep neural network instead of
designed manually.

Comparison with DJF [97]. The network in our method directly uses the unsharp
masks of the target image and the guided image as inputs, and learns to estimate the
amount function fa for explicitly deciding how to transfer the desired structure from the
guidance image to the target image. By contrast, the network in DJF [97] uses the original
guidance image and target image as inputs, and directly predicts filtered output relying
on feature fusion. The implicit structure transfer is likely to cause slow convergence and
the unwanted contents to be transferred from guidance image to target image, as shown
in Fig. 27. From Fig. 27 (a) and (b), we can see our approach convergences faster and
achieves better filtering performance than DJF [97] on both upsampling and denoising
tasks.

Comparison with SVLRM [144]. Lastly, we compare to the state-of-the-art in
deep guided filtering, namely SVLRM [144]. Here, we analyze two drawbacks of
SVLRM [144], as illustrated in Fig. 28 (c-e). First, fα(I, G) and fβ(I, G) is likely to learn
similar structure information. This is because they share the same training dependencies;
such as input, network architecture and objective function. As a result, fα(I, G) can’t
transfer the desired structure from guidance G to the output image of fβ(I, G). Second,
SVLRM behaves like DJF [97] when the filtering performance is determined by fβ(I, G).
The implicit joint filtering causes slow convergence and the unwanted structures are
transferred. By contrast, our approach focuses on estimating the amount function fa
for explicit structure transfer, leading to more desirable filtering results, as illustrated in

53

U N S H A R P M A S K G U I D E D FI LT E R I N G

Epoch (training)
0 200 400 600 800 1000

R
M

S
E

 (
te

st
in

g)

6

8

10

12

14

16

18
SVLRM
 This paper

(a) Upsampling
Epoch (training)

0 100 200 300 400 500

P
S

N
R

 (
te

st
in

g)

34

35

36

37

38

39

40

41

(b) Denoising

(c) Guidance image

(d) SVLRM depth

(e) SVLRM fα

(f) SVLRM fβ

(g) GT depth

(h) Our depth

(i) Our fa

(j) Our FL(I)

Figure 28: Comparison with SVLRM [144]. In SVLRM, fα and fβ are likely to learn
the same structure information. In this case, fα can’t transfer the structure desired by
fβ, resulting from over-smoothing of edges, as shown in the regions marked by the blue
boxes of (d) and (e). When the filtering output is determined by fβ, SVLRM behaves like
DJF [97], causing the transfer of unwanted contents from guidance image to target image
as shown in the regions marked by the red boxes of (c-e). By contrast, our approach
resolve the problems of SVLRM by explicitly learning structure-transferring, leading to
more desirable filtering results as shown in regions marked by the blue and red boxes of
(h-j).

Fig. 28 (h-j). Fig. 28 (a) and (b) demonstrate the better performance of our approach
compared to SVLRM [144], for both upsampling and denoising.

Amount function fa. When we estimate the amount function fa through a convo-
lutional neural network, the network architecture plays an important role in filtering
performance. We have compared our filtering formulation with several baselines when
fa is estimated by different networks used in these baselines. Generally, we found deep
networks perform better than shallow networks, e.g. the network of SVLRM with a
depth of 12 achieves an RMSE of 7.23 for upsampling (16×) and a PSNR of 40.27 for
denoising (σ = 50), better than the RMSE of 8.19 and the PSNR of 39.59 obtained by
the network of DJF with a depth of 6. One explanation for this is the fact that the deep
network has more ability to express complex functions than shallow ones.

In Eq.(3.15), we use the unsharp masks of the target image and guidance image as the
input of the amount function network fa. The raw target image and guidance image can
also be the input. Next, we perform an experiment to study which input performs better.
The network of DJF [97] is used for fa. On NYU Depth V2, using the unsharp mask as
input achieves an RMSE of 8.19 for upsampling (16×) and a PSNR of 39.59 for denoising
(σ = 50), better than the RMSE of 8.64 and the PSNR of 39.31 obtained by using the

54

3.5 E X P E R I M E N T S

Filter size r/ <
4 8 16

R
M

S
E

2

4

6

8

Bilteral Filter Gaussian Filter Box Filter

Figure 29: The effect of smoothing filter FL on NYU Depth V2 for depth upsampling
(16×). Our method is robust across smoothing filter type and size.

raw image as input. We find that using the unsharp mask as input not only achieves better
filtering performance, but also convergences faster because network learning can focus
on extracting the desired structure without the interference of redundant signals from the
smooth basis of the image.

Smoothing filter FL. To obtain the unsharp masks Gm and Im, we need a smoothing
filter for FL(I) and FL(G). Next, we explore how the smoothing process affects the
final filtering performance, we compare three different smoothing filters with different
hyper-parameters on NYU Depth V2 for 16× depth upsampling. The hyper-parameter
is the filtering size r for the box filter, or the Gaussian variance σ for the Gaussian and
bilateral filters. We use three different values: (4, 8, 16). The network of DJF [96] is
used for fa. As shown in Fig. 29, our method is robust across filter type and size. We
opt for the box filter with a filtering size of 8 throughout our experiments because it is
simple, efficient and effective.

3.5.4 Successive filtering network

Next, we investigate the effect of the network we designed for our successive filtering
formulation. There are multiple amount blocks used in the successive filtering network.
We explore how the number of amount blocks L affects the filtering performance on
NYU Depth V2 for depth upsampling (16×) and depth denoising (σ = 50). FL is a
box mean filter with radius r = 8. For depth upsampling (16×), we first upsample the
low-resolution depth image by bicubic interpolation to obtain the target resolution for
FL(I) and network learning. We make two observations from the results shown in Table

55

U N S H A R P M A S K G U I D E D FI LT E R I N G

Table
7:A

blation
studiesfor

our
netw

ork
on

N
Y

U
D

epth
V

2
fordepth

upsam
pling

(16
×

,R
M

SE
)and

denoising
(σ

=
50,PSN

R
).ourm

odel’s
filtering

perform
ance

is
consistently

im
proved

w
hen

increasing
L

from
1

to
5.

L
=1

L
=2

L
=3

L
=4

L
=5

U
psam

pling
↓

D
enoising

↑
U

psam
pling

↓
D

enoising
↑

U
psam

pling
↓

D
enoising

↑
U

psam
pling

↓
D

enoising
↑

U
psam

pling
↓

D
enoising

↑

Î
(1)

7.97
40.08

8.03
39.95

8.05
39.92

8.09
39.87

8.16
39.81

Î
(2)

n.a.
n.a.

6.76
40.93

6.75
40.87

6.77
40.85

6.87
40.79

Î
(3)

n.a.
n.a.

n.a.
n.a.

6.33
41.27

6.28
41.25

6.32
41.21

Î
(4)

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

6.07
41.53

6.09
41.49

Î
(5)

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

6.02
41.61

56

3.5 E X P E R I M E N T S

7. First, our model’s filtering performance is consistently improved when increasing L
from 1 to 5. Second, we can obtain multiple (L) filtering results by training a single
network. Each filtering result is as good as the result obtained by an independently
trained network. The model’s filtering performance doesn’t improve a lot when L is
increased from 4 to 5. Thus, we opt for L = 4 in the following experiments.

3.5.5 Performance analysis.

Next, we analyze the performance of different deep guided filtering methods from
three aspects: run-time performance, model parameters and filtering accuracy. For our
methods, we use the successive filtering network with L = 4. Thus, we can obtain
four filtering models by training a single network, indicated by Ours(Î(1)), Ours(Î(2)),
Ours(Î(3)) and Ours(Î(4)). We perform upsampling (16×) with all methods on the testing
datasets (499 RGB/depth pairs) of NYU Depth V2. We perform all the testings on the
same machine with an Intel Xeon E5-2640 2.20GHz CPU and an Nvidia GTX 1080
Ti GPU. The average run-time performance on 499 images with the size of 640 × 480
is reported in GPU mode with TensorFlow. From Table 8, we can see that Ours(Î(1))
has the fewest parameters (17 k), and Ours(Î(4)) achieves the best filtering accuracy
(6.07 RMSE). Ours(Î(1)) achieves a competitive average run-time performance (31 ms)
compared to the best one achieved by DJF [96] (29 ms).

Table 8: Performance analysis. on NYU Depth V2 for depth upsampling (16×). Our
filtering models achieve competitive performance in terms of run-time, model parameters
and filtering accuracy.

Run-time (ms) ↓ Parameters (k)↓ Accuracy (RMSE)↓
DMSG† 36 534 8.21
DJF† 29 40 9.05
DGF† 34 32 7.82
SVLRM† 47 371 7.58

Ours(Î(1)) 31 17 8.09
Ours(Î(2)) 45 38 6.77
Ours(Î(3)) 58 59 6.28
Ours(Î(4)) 66 85 6.07
†Results from our reimplementation.

3.5.6 Depth and flow upsampling

Tables 9 and 10 show results for upsampling a depth image or optical flow image, under
the guidance of its RGB image. We have noted that the existing works use different
training settings and evaluation protocols. For fair comparison, we reimplement the main
baseline methods under our experimental settings. Our filter performs well, especially
on Sintel and the larger upsampling scales on NYU Depth. Different from the related
works [1, 71, 97, 144, 182, 203], our model learns an amount function fa to explicitly
decide how to transfer the desired structure from guidance image to target image. Thus,

57

U N S H A R P M A S K G U I D E D FI LT E R I N G

Table 9: Depth upsampling for 2×, 4×, 8× and 16× on NYU Depth V2. The depth values
are measured in centimeter, and a boundary with 6 pixels is excluded for evaluation. We
outperform alternative filters for almost all settings.

2× 4× 8× 16×

RMSE ↓ SSIM ↑ RMSE ↓ SSIM ↑ RMSE ↓ SSIM ↑ RMSE ↓ SSIM ↑
DMSG [71] - - 3.78 - 6.37 - 11.16 -
DJF [97] - - 3.38 - 5.86 - 10.11 -
bFT [1] - - 3.35 - 5.73 - 9.01 -
PAC [182] - - 2.39 - 4.59 - 8.09 -
FWM [207] - - 2.16 - 4.32 - 7.66 -
SVLRM [144] - - 1.74 - 5.59 - 7.23 -
DMSG† 2.12 0.9957 3.43 0.9864 4.19 0.9814 8.21 0.9607
DGF† 2.29 0.9940 3.18 0.9897 4.78 0.9776 7.82 0.9568
DJF† 1.37 0.9972 2.85 0.9934 4.48 0.9801 9.05 0.9548
SVLRM† 1.28 0.9975 2.62 0.9946 3.96 0.9835 7.58 0.9616
Ours(Î(1)) 2.02 0.9963 2.90 0.9925 4.23 0.9839 8.09 0.9563
Ours(Î(2)) 1.65 0.9971 2.61 0.9938 3.82 0.9851 6.77 0.9657
Ours(Î(3)) 1.34 0.9974 2.40 0.9940 3.65 0.9857 6.28 0.9690
Ours(Î(4)) 1.21 0.9976 2.33 0.9949 3.58 0.9863 6.07 0.9706
†Results from our reimplementation.

(a) Guidance

(b) Ground truth

(c) DMSG [71]

(d) DGF [203]

(e) DJF [97]

(f) SVLRM [144]

(g) PAC [144]

(h) Ours

Figure 30: Optical flow upsampling (16×) on Sintel. We are able to maintain sharp and
thin edges.

our model can be more effective and efficient to learn the desired output. Fig. 30 show
our ability to better recover finer edges.

3.5.7 Depth and natural image denoising

Our formulation also allows for standard filtering without a guidance image by simply
making G identical to I in Eq. (3.17). Intuitively, such a setup defines a structure-
preservation filter, while the guided variant defines a structure-transfer filter. Next, we
evaluate the ability to remove Gaussian noise from depth and natural images. For depth
image denoising, its RGB image is used as guidance. For natural image denoising, the
target and guidance image are the same RGB image. The quantitative results are shown
in Tables 11 and 12. We obtain the best PSNR and SSIM scores on both datasets for all
three noise levels. Fig. 31 and Fig. 32 highlight our ability to better remove noise and
preserve finer edges compared to other filters.

58

3.5 E X P E R I M E N T S

Table 10: Flow upsampling for 2×, 4×, 8× and 16× on Sintel. We outperform alternative
filters for almost all settings.

2× 4× 8× 16×

EPE ↓ SSIM ↑ EPE ↓ SSIM ↑ EPE ↓ SSIM ↑ EPE ↓ SSIM ↑
DJF [97] - - 0.18 - 0.44 - 1.04 -
PAC [182] - - 0.11 - 0.26 - 0.59 -
FWM [207] - - 0.09 - 0.23 - 0.55 -
DMSG† 0.14 0.9928 0.24 0.9895 0.41 0.9811 0.96 0.9560
DGF† 0.11 0.9942 0.13 0.9934 0.31 0.9842 0.78 0.9692
DJF† 0.10 0.9951 0.17 0.9927 0.43 0.9837 1.04 0.9547
SVLRM† 0.09 0.9957 0.16 0.9921 0.36 0.9845 0.98 0.9567
Ours(Î(1)) 0.06 0.9988 0.11 0.9936 0.36 0.9851 0.86 0.9684
Ours(Î(2)) 0.05 0.9990 0.07 0.9942 0.29 0.9859 0.68 0.9734
Ours(Î(3)) 0.03 0.9991 0.05 0.9943 0.18 0.9864 0.52 0.9754
Ours(Î(4)) 0.03 0.9991 0.04 0.9947 0.16 0.9867 0.45 0.9773
†Results from our reimplementation.

(a) Guidance

(b) Target image

(c) Ground truth

(d) GF [60]

(e) DGF [203]

(f) DJF [97]

(g) SVLRM [144]

 (h) Ours(Î(4))

Figure 31: Depth denoising result (σ = 50) on NYU depth v2. Our filter better
preserves edges and removes noise.

3.5.8 Cross-modality filtering

Finally, we demonstrate that our models trained on one modality can be directly applied
to other modalities. Here, we use the models trained with RGB/depth image pairs for
the joint upsampling of bw/color and RGB/saliency image pairs, and the joint denoising
of RGB/NIR and flash/no-flash image pairs. For our method, we use the model of
Ours(Î(4)). Following [97], for the multi-channel target image, i.e., no-flash image, we
apply the trained models independently for each channel. For the single-channel guidance
image, i.e., NIR image, we replicate it three times to obtain a 3-channel guidance image.

Joint upsampling. To speed up the translation from one image to another image,
one strategy is to perform translation at a coarse resolution and then upsample the low-
resolution solution back to the original one with a joint image upsampling filter. Here,

59

U N S H A R P M A S K G U I D E D FI LT E R I N G

(a) Target image

(b) Ground truth

(c) GF [60]

(d) DGF [203]

(e) DnCNN [223]

(f) DJF [97]

(g) SVLRM [144]

(h) Ours

Figure 32: Denoising result (σ = 50) on BSDS500. Our filter better preserves finer
edges with fewer noise artifacts.

Table 11: Depth image denoising on NYU Depth V2. Our filter achieves the best results
for all settings.

σ = 15 σ = 25 σ = 50

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DGF† 45.52 0.9650 43.96 0.9579 40.15 0.9422
DJF† 46.06 0.9633 43.58 0.9462 39.24 0.8826
SVLRM† 47.35 0.9722 44.38 0.9524 39.84 0.8891
Ours(Î(1)) 46.02 0.9627 43.62 0.9474 39.87 0.9112
Ours(Î(2)) 46.92 0.9704 44.53 0.9586 40.85 0.9310
Ours(Î(3)) 47.30 0.9732 44.93 0.9635 41.25 0.9422
Ours(Î(4)) 47.45 0.9750 45.09 0.9664 41.53 0.9488
†Results from our reimplementation.

we demonstrate that our models act as joint upsampling filters well on bw/color and
RGB/saliency image pairs translation tasks. For bw/color translation, we use 68 bw
images from BSD68 dataset [156], and the colorization model proposed by Lizuka et
al. [73] is used as translation model. For RGB/saliency translation, we use 1000 RGB
image from ECSSD dataset [166], and the saliency region detection model proposed by
Hou et al. [69] as translation model. The input images, i.e., bw images and RGB images,
are first downsampled by a factor of 4× using nearest-neighbor interpolation, and then
are feed into the translation models to generate the output images. After that, we recover
the output images to the original resolution under the guidance of the original input
images by various joint upsamling methods. Table 13 shows the quantitative results, and
we can see that our model achieves the best performance for both two tasks. The joint
upsampling pipeline performs more than two times faster than direct translation on the
GPU mode. We also provide the qualitative results in Fig. 33 and 34 to show that the
proposed model better recovers finer details.

Joint denoising. We introduce two datasets for the joint denoising experiments.
Flash/no-flash [62] consists of 120 image pairs, where the no-flash image is used for
denoising under the guidance of its flash version [60, 97, 146, 209]. Nirscene1 [18]

60

3.5 E X P E R I M E N T S

Table 12: Natural image denoising on BSDS500. Our filter achieves the best results for
all settings.

σ = 15 σ = 25 σ = 50

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DnCNN† 33.12 0.9166 30.48 0.8618 27.10 0.7495
DGF† 31.89 0.9010 29.56 0.8409 26.31 0.7229
DJF† 33.10 0.9168 30.49 0.8646 27.09 0.7496
SVLRM† 33.01 0.9202 30.60 0.8712 27.37 0.7686
Ours(Î(1)) 33.41 0.9272 30.80 0.8758 27.43 0.7716
Ours(Î(2)) 33.65 0.9341 31.05 0.8868 27.73 0.7829
Ours(Î(3)) 33.76 0.9354 31.16 0.8890 27.87 0.7895
Ours(Î(4)) 33.79 0.9361 31.19 0.8906 27.91 0.7938
†Results from our reimplementation.

Table 13: Cross-modality filtering for joint upsampling (4×) on bw/color and
RGB/saliency pairs. Our filter achieves the best results for all settings.

bw/color RGB/saliency

RMSE ↓ SSIM ↑ F-measure ↑ SSIM ↑
GF† 11.51 0.6054 0.685 0.5365
DGF† 11.17 0.6041 0.701 0.5431
DJF† 10.96 0.6046 0.697 0.5378
SVLRM† 10.78 0.6074 0.699 0.4588
Ours 10.39 0.6095 0.705 0.6087
†Results from our reimplementation.

Table 14: Cross-modality filtering for joint denoising (σ = 25) on Flash/no-flash and
RGB/NIR pairs. Our filter achieves the best results for all settings.

Flash/no-flash RGB/NIR

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
GF† 29.43 0.7675 27.22 0.6971
DGF† 28.11 0.7246 26.40 0.6436
DJF† 29.53 0.7407 27.56 0.6826
SVLRM† 30.27 0.7584 28.33 0.7084
Ours 30.76 0.7699 28.95 0.7226
†Results from our reimplementation.

consists of 477 RGB/NIR image pairs in 9 categories, where the RGB image is used
for denoising under the guidance of its NIR version [97, 199, 209]. Table 14 shows that
our filter has a better denoising ability than alternatives. Fig. 35 and Fig. 36 provide
qualitative results, which shows that our model better preserves important structures
while removing noises.

61

U N S H A R P M A S K G U I D E D FI LT E R I N G

(a) Guidance image

(b) Target image

(c) Ground truth [73]

(d) GF [60]

(e) SVLRM [144]

(f) Ours

Figure 33: Joint upsampling result (4×) on bw/color. Our filter recovers more desirable
details.

(a) Guidance image

(b) Target image

(c) Ground truth [69]

(d) GF [60]

(e) SVLRM [144]

(f) Ours

Figure 34: Joint upsampling result (4×) on RGB/saliency. Our filter recovers sharper
edges.

3.6 C O N C L U S I O N

In this chapter, we have introduced a new and simplified guided filter. With inspiration
from unsharp masking, our proposed formulation only requires estimating a single coeffi-
cient, in contrast to the two entangled coefficients required in current approaches. Based
on the proposed formulation, we introduce a successive guided filtering network. Our
network allows for a trade-off between accuracy and efficiency by choosing different
filtering results during inference. Experimentally, we find that the proposed filtering
method better preserves sharp and thin edges, while avoiding unwanted structures trans-
ferred from guidance. We furthermore show that our approach is effective for various
applications such as upsampling, denoising, and cross-modal filtering.

62

3.6 C O N C L U S I O N

(a) Guidance image

(b) Target image

(c) Ground truth

(d) GF [60]

(e) SVLRM [144]

(f) Ours

Figure 35: Joint denoising result (σ = 25) on Flash/no-flash. Our filter better removes
noises with less blurring.

(a) Guidance image

(b) Target image

(c) Ground truth

(d) GF [60]

(e) SVLRM [144]

(f) Ours

Figure 36: Joint denoising result (σ = 25) on RGB/NIR. Our filter better preserves
finer details with fewer noises.

63

4

C O U N T I N G W I T H F O C U S F O R F R E E

4.1 I N T RO D U C T I O N

This chapter strives to count objects in images, whether they are people in crowds [211,
228], cars in traffic jams [54] or cells in petri dishes [131]. The leading approaches
for this challenging problem count by summing the pixels in a density map [94] as
estimated with a convolutional neural network, e.g. [20, 76, 98, 131]. While this line of
work has shown to be effective, the rich source of supervision from the point annotations
is only used to construct the density maps for training. The premise of this work is that
point annotations can be repurposed to further supervise counting optimization in deep
networks, for free.

The main contribution of this chapter is summarized in Figure 37. Besides creating
density maps, we show that points can be exploited as free supervision signal in two other
ways. The first is focus from segmentation. From point annotations, we construct binary
segmentation maps and use them in a separate network branch with an accompanying
segmentation loss to focus on areas of interest only. The second is focus from global
density. The relative amount of point annotations in images is used to focus on the
global image density through another branch and loss function. Both forms of focus
are integrated with the density estimation in a single network trained end-to-end with a
multi-level loss. Different from standard attention [24, 83, 105, 206], where a form of
focus needs to be learned for the task at hand and the learned weighing map implicitly
guides the network to focus on task-relevant features, our proposed focus learns weighing
maps with a specific supervision derived for free from point annotations. Focus for free
allows the counting network to explicitly emphasize meaningful features and suppress
undesired ones.

Overall, we make three contributions in this chapter: (i) We propose supervised focus
from segmentation, a network branch which guides the counting network to focus on
areas of interest. The supervision is obtained from the already provided point annotations.
(ii) We propose supervised focus from global density, a branch which regularizes the
counting network to learn a matching global density. Again the supervision is obtained
for free from the point annotations. (iii) We introduce a new kernel density estimator for
point annotations with non-uniform point distributions. For the deep network, we design
an improved encoder-decoder network to deal with varying object scales in images.
Experimental evaluation on four counting datasets shows the benefits of our focus for
free, kernel estimation, and end-to-end network architecture, resulting in state-of-the-art
counting accuracy. To further demonstrate the potential of our approach for counting

64

4.2 R E L AT E D W O R K

Focus from segmentation Non-uniform density map Focus from global density

Image Point annotations

Figure 37: Focus for free in counting. From point supervision, we learn to obtain a
focus from segmentation, a focus from global density, and an improved density maps.
Combined, they result in better counting estimation irrespective of the base network.

under varying object scales and crowding levels, we provide the first counting results on
WIDER FACE, normally used for large-scale face detection [211].

4.2 R E L AT E D W O R K

Density-based counting. Deep convolutional networks are widely adopted for counting
by estimating density maps from images. Early works, e.g. [143,176,222,228], advocate
a multi-column convolutional neural network to encourage different columns to respond
to objects at different scales. Despite their success, these types of networks are hard to
train due to structure redundancy [98] and conflicts resulting from optimization among
different columns [9, 165].

Due to their architectural simplicity and training efficiency, single column deep net-
works have received increasing interest e.g. [20, 98, 111, 117, 171]. Cao et al. [20] , for
example, propose an encoder-decoder network to predict high-resolution and high-quality
density maps using a scale aggregation module. Li et al. [98] combine a VGG network
with dilated convolution layers to aggregate multi-scale contextual information. Liu et
al. [117] rely on a single network by leveraging abundantly available unlabeled crowd
imagery in a learning-to-rank framework. Shi et al. [171] train a single VGG network
with a deep negative correlation learning strategy to reduce the risk of over-fitting. We
also employ single column networks, but rather than focusing solely on density map
estimation, we repurpose the point annotations in multiple ways to improve counting.

Recently, multi-task networks have shown to reduce the counting error [9, 105, 153,
160, 165, 172]. Sam et al. [160], for example, train a classifier to select the optimal
regressor from multiple independent regressors for particular input patches. Ranjan et
al. [153] rely on one network to predict a high resolution density map and a helper-
network to predict a density map at a low resolution. In this chapter, we also investigate
counting from a multi-task perspective, but from a different point of view. We posit that
the point annotations serve more purposes than just constructing density maps, and we

65

C O U N T I N G W I T H F O C U S F O R F R E E

propose network branches with supervised focus from segmentation and global density to
repurpose the point annotations for free. Our focus for free benefits counting regardless
of the base network, and is complementary to other state-of-the-art solutions.

Counting with attention. Attention mechanisms [206] have enabled progress in a
wide variety of computer vision challenges [24, 53, 99, 227, 230]. Soft attention is the
most widely used since it is differentiable and thus can be directly incorporated in an
end-to-end trainable network. The common way to incorporate soft attention is to add a
network branch with one or more hidden layers to learn an attention map which assigns
different weights to different regions of an image. Spatial and channel attention are two
well explored types of soft attention [24]. Spatial attention learns a weighting map over
the spatial coordinates of the feature map, while channel attention does so for the feature
channels of the map.

A few works have investigated density-based counting with spatial attention [68,
83, 105]. Liu et al. [105], for example, estimate the density of a crowd by generating
separate detection- and regression-based density maps. They fuse these two density maps
guided by an attention map, which is implicitly learned together with the density map
regression loss. While we share the notion of assisting the density-based counting with a
focus, we show in this chapter that such an attention does not need to be learned from
scratch and instead can be derived from the existing point annotations. More specifically,
we construct a segmentation map and a global density derived from the ground-truth
annotated points as two additional, yet free, supervision signals for better counting.

4.3 F O C U S F O R F R E E

We formulate the counting task as a density map estimation problem, see e.g. [94, 171,
228]. Given N training images {(Xi,Pi)}Ni=1, with Xi ⊂ X the input image and Pi a
set of point annotations, one for each object, we use the point annotations to create a
ground-truth density map by convolving the points with a Gaussian kernel,

Di(p) =
∑
P∈Pi

N(p|µ = P,σ2
P), (4.1)

where p denotes a pixel location, P denotes a single point annotation andN(p|µ = P,σ2
P)

is a normalized Gaussian kernel with mean P and an isotropic covariance σ2
P. The global

object count Ti of the image Xi can be obtained by summing all pixel values within the
density map Di, i.e., Ti =

∑
p∈Xi Di(p). Learning a transformation from input images

to density maps is done through deep convolutional networks. Let Ψ(X) : R3×W×H 7→

RW×H denote such a mapping given an arbitrary deep network Ψ for image X, with W
and H the width and height of the image. In this chapter, we investigate two ways that
repurpose the point annotations to help supervising the network Ψ from input images to
density maps. An overview of our approach, in which multiple branches are combined
on top of a base network, is shown in Figure 38.

66

4.3 F O C U S F O R F R E E

Base Network

C
(1

x
1

,2
)

FC
(C

x
C

)

V(cxhxw)

FC
(C

x
C

)

B
ilin

e
a
r

S
ig

m
o
id

S
o
ftm

a
x

S
o
ftm

a
x

.

C
(1

x
1

,1
)

V d
(c

xh
xw

)

Global Density

Density Map

Annotation Map

Segmentation Map

V
s (cxhxw

)

Figure 38: Overview of our approach. Top branch: focus from segmentation learns a
focus map Vs with the aid of a segmentation map (Section 4.3.1). Bottom branch: focus
from global density learns a focus map Vd with the aid of a global density (Section 4.3.2).
Both supervision signals are obtained from the same point-annotations, for which we
introduce an improved kernel estimator (Section 4.3.3). Both branches with focus for
free are integrated with the output of a base network by element-wise multiplication and
end-to-end optimized through a multi-level loss (Section 4.3.4).

4.3.1 Focus from segmentation

The first way to repurpose the point annotations is to provide a spatial focus. Intuitively,
pixels that are within a specific range of any point annotation should be of high focus,
while pixels in undesired regions should be mostly disregarded. In the standard setup
where the optimization is solely dependent on the density map, each pixel counts equally
to the network loss. Given that only a fraction of the pixels are near point annotations, the
loss will be dominated by the majority of irrelevant pixels. To overcome this limitation,
we reuse the point annotations to create a binary segmentation map and exploit this map
to provide the focused supervision through a stand-alone loss function.

Segmentation map. The binary segmentation map is obtained as a function of the
point annotations and their estimated variance. The binary value for each pixel p in
training image i is determined as:

S i(p) =

1 if ∃P∈Pi

(
||p − P||2 ≤ σ2

P

)
,

0 otherwise.
(4.2)

Equation 4.2 states that a pixel p obtains a value of one if at least one point P is within
its variance range σP as specified by a kernel estimator.

Segmentation focus. Let V ∈ RC×W×H denote the output of the base network. We
add a new branch on top of the network denoted as Fs with network parameters θs.
Furthermore, let θn denote the parameters of the base network. We propose a per-pixel
weighted focal loss [102] to obtain a supervised focus from segmentation for input image
X:

Ls(X; θn, θs) =
∑

l∈{0,1}

−αlS l

(1 −Fs(X; θn, θs))γslog(Fs(X; θn, θs)),
(4.3)

where αl = 1 − |S
l|
|S | . The focal parameter γs is set to 2 throughout this network, as

recommended by [102]. The segmentation branch is visualized at the top of Figure 38.

67

C O U N T I N G W I T H F O C U S F O R F R E E

Network details. After the output of the base network, we perform a 1× 1 convolution
layer with parameters θs ∈ RC×2×1×1, followed by a softmax function δ to generate
a per-pixel probability map Pi = δ(θsV) ∈ R2×W×H. From this probability map, the
second value along the first dimension represents the probability of each pixel being
part of the segmentation foreground. We furthermore tile this slice C times to construct
a separate output tensor Vs ∈ RC×W×H, which will be used in the density estimation
branch itself.

4.3.2 Focus from global density

Next to a spatial focus, point annotations can also be repurposed by examining their
context. It is well known that low density crowds exhibit coarse texture patterns while
high density crowds exhibit very fine texture patterns [125]. Here, we exploit this
knowledge for the task of counting. Given a network output V ∈ RW×H×C , we employ a
bilinear pooling layer [51, 103] to capture the feature statistics in a global context, which
is known to be particularly suitable for texture and fine-grained recognition [51, 103]. In
this chapter, we match global contextual patterns to the distribution of points in training
images to obtain a supervised focus from global density.

Global density. For patch j in training image i, its global density is given as:

G j,i =
|P j,i|

L
, (4.4)

where |P j,i| denotes the number of point annotations in patch j and L denotes the global
density step size, which is computed for a dataset as:

L =

⌊
max

i=1,..,N

(
|Pi|

Zi
· Z j,i

)
/M
⌋
+ 1, (4.5)

with Zi and Z j,i the number of pixels in image i and patch j respectively. Intuitively, the
step size computes the maximum global density over image patches and M states how
many global density levels are used overall.

Global density focus. With V ∈ RC×W×H again the output of the base network, we
add a second new branch Fc with network parameters θc. We propose the following
global density loss function:

Lc(X;θn, θc) =
∑

l∈{0,1,..,M}

−Gl

(1 −Fc(X; θn, θc))γclog(Fc(X; θn, θc)),
(4.6)

where γc is set to 2 as well. The above loss function aims to match the global density of
the estimated density map with the global density of the ground truth density map. The
corresponding global density branch is visualized at the bottom of Figure 38.

Network details. For network output V , we first perform an outer product B =
VVT ∈ RC×C , followed by a mean pooling along the second dimension to aggregate
the bilinear features over the image, i.e. B̂ = 1

C
∑C

i=1 B[:, i] ∈ RC×1. The bilinear vector
B̂ is ℓ2-normalized, followed by signed square root normalization, which has shown

68

4.3 F O C U S F O R F R E E

to be effective in bilinear pooling [103]. Then we use a fully connected layer with
parameters θc ∈ RC×M followed by a softmax function δc to make individual prediction
C = δc(θcB̂) ∈ RM×1 for the global density. Furthermore, another fully-connected layer
with parameters θd ∈ RC×C followed by sigmoid function δd also on top of the bilinear
pooling layer is added to generate global density focus output D = δd(θd B̂) ∈ RC×1. We
note that this results in a focus over the channel dimensions, complementary to the focus
over the spatial dimensions from segmentation. Akin to the focus from segmentation,
we tile the output vector into Vd ∈ RC×W×H, also to be used in the density estimation
branch.

4.3.3 Non-uniform kernel estimation

Both the density estimation itself and the focus from segmentation require a variance
estimation for each point annotation, where the variance corresponds to the size of the
object. Determining the variance σP for each point P is difficult because of object-size
variations caused by perspective distortions. A common solution is to estimate the size
(i.e. the variance) of an object as a function of the K nearest neighbour annotations,
e.g. the Geometry-Adaptive Kernel of Zhang et al. [228]. However, this kernel is
effective only under the assumption that objects in images are uniformly distributed,
which typically does not happen in counting practice. As such, we introduce a simple
kernel that estimates the variance of a point annotation P by splitting an image into local
regions:

σP =
1

|R(w,h)|

∑
a∈R(w,h)

βd̄a, d̄a =
1
K

K∑
k=1

dk,a (4.7)

where w and h are the hyper-parameters which determine the range of point annotation
P-centered local region R, and we set their value to one-eighth of image size in our
experiments. a denotes an arbitrary point annotation located in R. |R(w,h)| means the
number of p. d̄p indicates the average distance between annotated point p and its k
nearest neighbors, and β is a user-defined hyper-parameter. By estimating the variance
of point annotations locally, we no longer have to assume that points are uniformly
distributed over the whole image.

4.3.4 Architecture and optimization

Network. To maximize the ability to focus and use the most accurate kernel estimation,
we want the network output to be of the same width and height as the input image.
Recently, encoder-decoder networks have been transferred from other visual recognition
tasks [101, 216] to counting [20, 153, 165, 226]. We found that to make the encoder-
decoder architectures better suited for counting, the wide variation in object-scale under
perspective distortions needs to be addressed. As such, in our encoder-decoder architec-
ture a distiller module is added between the step from encoder to decoder. The purpose
of this module is to aggregate multi-level information from the encoder by distilling the
most vital information for counting.

69

C O U N T I N G W I T H F O C U S F O R F R E E

For the encoder, we make the original dilated residual network [216] suitable for
our task by changing the channel of the feature maps after level 4 from 256/512 to 96
to reduce the model’s parameters for the sake of avoiding over-fitting, given the low
amount of training examples in counting. After the encoder, the distiller module fuses
the features from level 4, 5, 7 and 8 in the encoder module by using skip connections
and a concatenation operation. Then four convolution layers are used to further process
the fused features to obtain a more compact representation. The reason why we do not
fuse the features from level 6 is that level 6 comprises convolution layers with large
dilation rates, which is prone to cause gridding artifacts [197, 216]. Compared to other
works which fuse multiple networks with different kernels to deal with object-scale
variations [143, 176, 228], the proposed network aggregates the features from different
layers which have different receptive fields, and is much more efficient and easy to train.
The decoder module uses 3 deconvolution layers with a kernel size of 4 × 4 and a stride
size of 2 × 2 to progressively recover the spatial resolution. To avoid the checkerboard
artifact problem caused by regular deconvolutional operation [141, 197], we add two
convolution layers after each deconvolution layer. We provide a detailed ablation on the
encoder-distiller-decoder network in Appendix 4.6.

Multi-level loss. The final counting network with a focus for free contains three
branches, Fr for the pixel-wise density estimation, Fs for the binary segmentation, and
Fc for the global density prediction. Let (θn, θr, θs, θc, θd) denote the network parameters
for the base network and the branches. For the density estimation, we first combine the
outputs of the base network V with the tiled outputs Vs and Vd from the focus for free.
We fuse the three sources of information by element-wise multiplication and feed the
fusion to a 1× 1 convolution layer with parameters θr ∈ RC×1×1×1, resulting in an output
density map.

For the density estimation, the L2 loss is a common choice, but it is also known to be
sensitive to outliers, which hampers generalization [15]. We prefer to learn the density
estimation branch by jointly optimizing the L2 and L1 loss, which adds robustness to
outliers:

Lr(X; θn, θr, θd) =
1
2
∥ Fr(X; θn, θr, θd) − Y ∥22 +

∥ Fr(X; θn, θr, θd) − Y ∥1,
(4.8)

where Y denotes the ground truth density map. The loss functions of the three branches
are summed to obtain the final objective function:

L(X; θn, θr, θs, θc, θd) = λrLr(X; θn, θr, θd)+

λsLs(X; θn, θs) + λcLc(X; θn, θc),
(4.9)

where (λr, λs, λc) denote the weighting parameters of the different loss functions. Through-
out this work these parameters are set to (1, 10, 1), since the loss values of the segmenta-
tion branch are typically an order of magnitude lower than the others.

70

4.4 E X P E R I M E N T S A N D R E S U LT S

4.4 E X P E R I M E N T S A N D R E S U LT S

4.4.1 Experimental setup

DATA S E T S . ShanghaiTech [228] consists of 1198 images with 330,165 people. This
dataset is divided into two parts: Part A with 482 images in which crowds are mostly
dense (33 to 3139 people), and Part B with 716 images, where crowds are sparser (9 to
578 people). Each part is divided into a training and testing subset as specified in [228].
TRANCOS [54] contains 1,244 images from different roads to count vehicles, varying
from 9 to 105. We train on the given training data (403 images) and validation data (420
images) without any other datasets, and we evaluate on the test data (421 images). Dublin
Cell Counting (DCC) [131] is a cell microscopy dataset, consisting of 177 images, with
a cell count from 0 to 100. For training 100 images are used, the remaining 77 form the
test set. WIDER FACE [211] is a recent large-scale face detection benchmark. In this
chapter, we reuse this data for counting as a complementary crowd dataset. Compared to
the existing crowd dataset like ShanghaiTech [228], WIDER FACE is more challenging
due to large variations in scale, occlusion, pose, and background clutter. Moreover, it
contains more images, in total 32, 203, divided in 40% training, 10% validation and 50%
testing. The ground truth of the test set is unavailable, so we use the validation set for
testing. Each face is annotated by a bounding box, instead of a point annotation, which
enables us to evaluate our kernel estimator and allows for ablation under varying object
scales and crowding levels.

P R E - P RO C E S S I N G . For all datasets, we normalize the input RGB images by dividing
all values by 255. During training, we augment the images by randomly cropping
128 × 128 patches. No cropping is performed during testing.

N E T W O R K . We implement the proposed method with TensorFlow on a machine with
a single GTX 1080 Ti GPU. The network is trained using Adam with a mini-batch of
16. We set the β1 to 0.9, β2 to 0.999 and the initial learning rate to 0.0001. Training is
terminated after a maximum of 1000 epochs. Code and networks will be released.

K E R N E L C O M P U TAT I O N . For datasets with dense objects, i.e. ShanghaiTech Part A
and TRANCOS, we use our proposed kernel with β = 0.3 and k = 5. For ShanghaiTech
Part B and DCC, we set the Gaussian kernel variance to σ = 5 and σ = 10 respectively,
following [98, 171]. For WIDER FACE, we obtain the Gaussian kernel variance by
leveraging the box annotations. For the focus from global density, we use M = 8 density
levels for ShanghaiTech Part A and 4 for the other datasets.

E VA L UAT I O N M E T R I C S . Following We report the standardized Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) metrics given count estimates and
ground truth counts [171,222,228]. Since these global metrics ignore where objects have
been counted, we also report results using the Grid Average Mean absolute Error (GAME)
metric. [54]. GAME aggregates count estimates over local regions as: GAME(L) =
1
N ·
∑N

n=1(
∑4L

l=1 |(y
l
n − ỹl

n)|), with N the number of images and yl
n and ỹl

n the ground
truth and the estimated counts in a region l of the nth image. 4L denotes the number

71

C O U N T I N G W I T H F O C U S F O R F R E E

Table 15: Effect of focus from segmentation in terms of MAE on ShanghaiTech
Part A and WIDER FACE. Across both datasets and across multiple object scales (small,
medium, large), our approach outperforms the base network, even when adding spatial
attention.

Part A WIDER FACE

overall small medium large overall
Base network 74.8 9.2 2.7 2.2 4.7
w/ Spatial attention [24] 84.5 8.7 2.6 3.1 4.8
w/ Segmentation focus 72.3 8.6 2.3 2.0 4.3

of grids, non-overlapping regions which cover the full image. When L is set to 0 the
GAME is equivalent to the MAE. Finally, we report two standard metrics, PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural Similarity in Image [200]), to evaluate the
quality of the predicted density maps. We only report these two metrics on ShanghaiTech
Part A because they are not commonly reported on the other datasets.

4.4.2 Focus from segmentation

We first analyze the effect of the proposed focus from segmentation. This experiment
is performed on both ShanghaiTech Part A and WIDER FACE. We compare to two
baselines. The first performs counting using the base network, where the loss is only
optimized with respect to the density map estimation. Unless stated otherwise, the
encoder-distiller-decoder network is used as base network by default in the following
experiments. The second baseline adds a spatial attention on top of this base network, as
proposed in [24]. The results are shown in Table 15.

For ShanghaiTech Part A, the base network obtains an MAE of 74.8 and the addition
of spatial-attention actually increases the count error to 84.5 MAE, as it fails to emphasize
relevant features. In contrast, our proposed focus from segmentation can explicitly guide
the network to focus on task-relevant regions and it reduces the count error from 74.8 to
72.3 MAE.

For WIDER FACE, the box annotations allow us to perform an ablation study on the
accuracy as a function of the object scale. We define the scale levels of each image as
Iscale =

Fs
Fn

, where Fs and Fn denote face size and face number. We sort the test images
in ascending order according to their scale level. Finally, the test images are divided
uniformly into three sets: small, medium and large. In Table 15, we provide the results
across multiple object scales. We observe that across all object scales, our approach is
preferred, reducing the MAE from 4.7 (base network) and 4.8 (with spatial attention) to
4.3. The ablation study also reveals why spatial attention is not very effective overall;
while improvements are obtained when objects are small, spatial attention performs
worse when objects are large. Our segmentation focus from reused point annotations
avoids such issues.

72

4.4 E X P E R I M E N T S A N D R E S U LT S

Table 16: Effect of focus from global density in terms of MAE on ShanghaiTech Part A
and WIDER FACE. Our approach is preferred for both datasets. The ablation study on
WIDER FACE shows our focus from global density is most effective when scenes are
sparse in number of objects.

Part A WIDER FACE

overall sparse medium dense overall
Base network 74.8 2.1 2.5 9.5 4.7
w/ Channel attention [24] 73.4 1.6 2.3 7.8 3.9
w/ Global-density focus 71.7 0.9 1.6 8.0 3.5

4.4.3 Focus from global density

Next, we demonstrate the effect of our proposed focus from global density. For this
experiment, we again compare to two baselines. Apart from the base network, we com-
pare to the channel attention of [24]. For fair comparison, we replace the mean pooling
used in the channel attention of [24] with bilinear pooling as used in our method for the
sake of better encoding global context cues. The counting results are shown in Table
16. Channel-attention can reduce the error (from 74.8 to 73.4 MAE) in ShanghaiTech
Part A compared to using the base network only, since the attention map is learned on
top of a bilinear pooling layer which encodes global context cues. Our focus from global
density reduces the count error further to 71.7 MAE due to more specific focus from free
supervision.

To demonstrate that our focus has a lower error on different crowding levels, we
perform a further ablation study on WIDER FACE. We define the crowding levels of
each image as Icrowding = Fs

Is
∗

Fn
Is

, where Fs, Is, and Fn denote face size, image size, and
face number respectively. Then we sort the test images in ascending order according to
their global density level. Finally, the test images are divided uniformly into three sets,
sparse, medium and dense. As shown in Table 16, our method achieves the lowest error
especially when scenes are sparse. This result highlights the potential complementary
nature of the two forms of focus.

4.4.4 Combined focus for free

In the aforementioned experiments, we have shown that each focus matters for counting.
In this experiment, we combine these two focuses for more accurate counting, in view
that these two focuses aid density map estimation respectively from a local and global
perspective, complementing each other. The results are shown in Table 17. The combina-
tion achieves a reduced count error of 67.9 MAE on ShanghaiTech Part A, and obtains
a reduced MAE of 3.2 on WIDER FACE. We compare our combined approach to an
alternative combined attention baseline from Chen et al. [24]. While the combination
of attentions achieves a better result than using the base network alone, our approach is
preferred across datasets, object scales, and crowding levels.

The focus for free is agnostic to the base network and to demonstrate this capability,
we have applied our approach to four different base networks. Apart from our base

73

C O U N T I N G W I T H F O C U S F O R F R E E

Table 17: Effect of combined focus in terms of MAE on ShanghaiTech Part A and
WIDER FACE. Across dataset, object scale, and crowding level our approach outperforms
the base network and a combined spatial and channel attention variant.

Part A WIDER FACE

overall small medium large sparse medium dense overall
Base network 74.8 9.2 2.7 2.2 2.1 2.5 9.5 4.7
w/ Spatial- & channel-attention [24] 71.6 8.3 2.0 2.3 1.8 2.6 8.2 4.2
w/ Our combined focus 67.9 7.7 1.3 0.6 0.9 1.4 7.3 3.2

Table 18: Focus for free across base networks on ShanghaiTech Part A and WIDER
FACE. Base network results based on our reimplementations. Regardless of the base
network, our combined focus from segmentation and global density lowers the count
error.

Part A WIDER FACE

Network from base w/ our focus base w/ our focus

Zhang et al. [228] 114.5 110.1 7.1 6.1
Cao et al. [20] 75.2 72.7 8.5 8.2
Li et al. [98] 74.0 72.4 4.3 3.9
Ours 74.8 67.9 4.7 3.2

network, we consider the multi-column network of Zhang et al. [228], the deep single
column network of Li et al. [98] and the encoder-decoder network of Cao et al. [20]. We
have re-implemented these networks and use the same experimental settings as in our
base network. The results in Table 18 show that our focus for free lowers the count error
for all these networks on ShanghaiTech Part A and WIDER FACE.

4.4.5 Non-uniform kernel estimation

Next, we study the benefit of our proposed kernel for generating more reliable ground-
truth density maps. For this experiment, we compare to the Geometry-Adaptive Kernel
(GAK) of Zhang et al. [228]. For WIDER FACE, the spatial extent of objects is provided
by the box annotations and we use this additional information to measure the variance
quality of our kernel compared to the baseline. The counting and variance results are
shown in Table 22. The proposed kernel has a lower count error than the commonly used
GAK on both ShanghaiTech Part A and WIDER FACE. To show that this improvement
is due to the better estimation of the object size of interest, we compare the estimated
variances σ obtained by different methods with the ground truth variance obtained by
leveraging the box annotations of WIDER FACE. Our kernel reduces the MAE of σ
from 2.6 to 2.2 compared to GAK.

4.4.6 Comparison to the state-of-the-art

Global count comparison. Table 20 shows the proposed approach outperforms all other
models in terms of MAE on all five datasets. The proposed method achieves a new state

74

4.4 E X P E R I M E N T S A N D R E S U LT S

Table 19: Benefit of our kernel on ShanghaiTech Part A and WIDER FACE. Our
network with our kernel obtains lower count error than with GAK [228], shown in the
columns MAE (n). To show that this improvement is due to better object size estimation,
we compare our kernel to the ground-truth on WIDER FACE, shown in the column
MAE(σ), which indicates a lower size error than with GAK.

Part A WIDER FACE

Kernel from MAE (n) MAE (n) MAE (σ)
GAK [228] 67.9 4.2 2.6
Ours 65.2 3.6 2.2

Ground-truth n.a. 3.2 n.a.

Table 20: Comparison to the state-of-the-art for global count error on ShanghaiTech
Part A, Part B, TRANCOS, DCC, and WIDER FACE. Results on WIDER FACE based
on our reimplementations. Our results set a new state-of-the-art on all five datasets for
almost all metrics.

Part A Part B TRANCOS DCC WIDER FACE

MAE RMSE PSNR SSIM MAE RMSE MAE MAE MAE NMAE
Zhang et al. [228] 110.2 173.2 21.4 0.52 26.4 41.3 - - 7.1 1.10
Marsden et al. [131] 85.7 131.1 - - 17.7 28.6 9.7 8.4 - -
Shen et al. [165] 75.7 102.7 - - 17.2 27.4 - - - -
Sindagi & Patel [176] 73.6 106.4 21.7 0.72 20.1 30.1 - - - -
Ranjan et al. [153] 68.5 116.2 - - 10.7 16.0 - - - -
Issam et al. [76] - - - - 13.1 - 3.6 - - -
Li et al. [98] 68.2 115.0 23.8 0.76 10.6 16.0 3.6 - 4.3 0.53
Cao et al. [20] 67.0 104.5 - - 8.4 13.6 - - 8.5 1.10
Ours 65.2 109.4 25.4 0.78 7.2 12.2 2.0 3.2 3.2 0.40

of the art on ShanghaiTech Part B, and a competitive result on ShanghaiTech Part A in
terms of RMSE. Shen et al. [165] achieve the lowest RMSE on ShanghaiTech Part A, but
their approach is not competitive on Part B. Moreover, they rely on four networks with
a total of 4.8 million parameters, while our proposal just needs a single network with
2.6 million parameters. On TRANCOS our method reduces the count error from 3.6 (by
Issam et al. [76] and Li et al. [98]) to 2.0. A considerable reduction. For the challenging
DCC dataset proposed by Marsden et al. [131], we predict a more accurate global count
without any post-processing, reducing the error rate from 8.4 to 3.2. For WIDER FACE,
we evaluate using MAE and a normalized variant (NMAE). For NMAE, we normalize
the MAE of each test image by the ground-truth face count. This additional metric is
because counts in WIDER FACE vary from 1 to 1965. Again, our method achieves best
results on both MAE and NMAE compared to the existing methods.

Local count comparison. Figure 39 shows the results obtained by various methods
in terms of the commonly used GAME metric on TRANCOS. The higher the GAME
value, the more counting methods are penalized for local count errors. For all GAME
settings, our method sets a new state-of-the-art. Furthermore, the difference to other
methods increases as the GAME value increases, indicating our method localizes and
counts extremely overlapping vehicles more accurately compared to alternatives.

75

C O U N T I N G W I T H F O C U S F O R F R E E

L
0 1 2 3

G
A

M
E

(L
)

0

5

10

15

20

25
This paper
Issam et al.
Li et al.
Rubio et al.
Ricardo et al.

Figure 39: Comparison to the state-of-the-art for local count error on TRANCOS.
Note that the difference to other methods increases as the GAME value increases,
indicating that our method localizes and counts extremely overlapping vehicles more
accurately.

Density map quality. To demonstrate that our method also generates better quality
density maps, we provide comparative results on ShanghaiTech Part A in terms of the
PSNR and SSIM metrics. In agreement with the results in MAE and RMSE, our proposed
method also achieves a better performance along this dimension. Compared to counting
methods such as [98], which produces a density map with a reduced resolution and
recovers the resolution by bilinear interpolation, our method directly learns the full
resolution density maps with higher quality.

Success and failure cases. Finally, we show qualitatively some success and failure
results in Figure 40. Even in challenging scenes with relatively sparse small objects or
relatively dense large objects, our method is able to achieve an accurate count, as shown
in the first two rows of Figure 40. Our approach fails when dealing with extremely dense
scenes where individual objects are hard to distinguish, or where objects blend with
the context, as shown in the last two rows of Figure 40. Such scenarios remain open
challenges in counting, where further focus is required.

4.5 C O N C L U S I O N

This chapter introduces two ways to repurpose the point annotations used as supervision
for density-based counting. Focus from segmentation guides the counting network to
focus on areas of interest, and focus from global density regularizes the counting network
to learn a matching global density. Our focus for free aids density estimation from a
local and global perspective, complementing each other. This chapter also introduces
a non-uniform kernel estimator. Experiments show the benefits of our proposal across
object scales, crowding levels and base networks, resulting in state-of-the-art counting
results on five benchmark datasets. The gap towards perfect counting and our qualitative

76

4.6 A P P E N D I X

(a) (b) (c)

Figure 40: Density map quality. (a) Sample images from WIDER FACE, (b) predicted
density map, and (c) the ground truth. When objects are individually visible, we can
count them accurately. Further improvements are required for dense settings where
objects are hard to distinguish from each other and their context.

analysis shows that counting in extremely dense scenes remains an open problem. Further
boosts are possible when counting is able to deal with this extreme dense scenario.

4.6 A P P E N D I X

In this section, we provide the architecture and ablation study of encoder-distiller-decoder
network, the benefit of non-uniform kernel estimation across counting networks, and
additional qualitative examples of (i) our encoder-distiller-decoder network, (ii) the
effect of focus from segmentation, focus from global density and our combined focus.
Encoder-distiller-decoder network. The proposed encoder-distiller-decoder network
(Section 3.4) is visualized in Fig. 41, and an ablation study on it is elaborated next.

We perform an ablation study on ShanghaiTech Part A to analyze the encoder-distiller-
decoder network configuration. We vary the architecture by including and excluding
the distiller and decoder. When relying on the encoder and distiller only, the predicted

77

C O U N T I N G W I T H F O C U S F O R F R E E

D
(4

x
4
,6

4
,2

,1
)

C
(3

x
3

,6
4
,1

,1
)

C
(3

x
3

,6
4
,1

,1
)

D
(4

x
4
,3

2
,2

,1
)

C
(3

x
3

,3
2
,1

,1
)

C
(3

x
3

,3
2
,1

,1
)

D
(4

x
4
,1

6
,2

,1
)

C
(3

x
3

,1
6
,1

,1
)

C
o

n
c
a
te

n
a
tio

n

C
(7

x
7
,1

6
,1

,1
)

R
(3

x
3
,1

6
,1

,1
)

R
(3

x
3
,3

2
,2

,1
)

R
(3

x
3
,6

4
,2

,1
)

R
(3

x
3
,6

4
,1

,1
)

R
(3

x
3

,9
6
,2

,1
)

R
(3

x
3
,9

6
,1

,1
)

R
(3

x
3

,9
6
,1

,2
)

R
(3

x
3
,9

6
,1

,4
)

R
(3

x
3
,9

6
,1

,2
)

R
(3

x
3
,9

6
,1

,1
)

R
(3

x
3
,9

6
,1

,2
)

R
(3

x
3
,9

6
,1

,4
)

R
(3

x
3

,9
6
,1

,2
)

R
(3

x
3
,9

6
,1

,1
)

C
(3

x
3

,9
6
,1

,1
)

C
(3

x
3

,9
6
,1

,1
)

C
(3

x
3

,9
6
,1

,1
)

C
(3

x
3

,9
6
,1

,1
)

Level 1 2 3 4 5 6 7 8 9 10 11 12

Encoder Distiller Decoder

Density Map

V (C,H,W)

Figure 41: Encoder-distiller-decoder network. The network consists of convolution
layers (C), residual blocks (R) and deconvolution layers (D) with parameters (k ×
k, c, s, d), where k × k is the kernel size, c is the number of channels, s is the stride size
and d is the dilation size. Each convolution layer is followed by a ReLU activation layer
and a batch normalization layer. The network is divided into several levels, such that
all layers within a level have the same dilation and spatial resolution. The bottom row
visualizes the mean feature map from different levels. The distiller module integrates the
features from several encoder levels by attending to different parts of the image content
for a better overall representation.

Table 21: Ablation study of encoder-distiller-decoder network on ShanghaiTech
Part A. Incorporating the proposed distiller module improves the performance of both an
encoder-only network and an encoder-decoder network.

Encoder-distiller-decoder Metrics

Encoder Distiller Decoder MAE RMSE
✓ 114.8 178.2
✓ ✓ 82.5 140.6
✓ ✓ 78.8 137.4
✓ ✓ ✓ 74.8 131.0

density maps are upsampled to full resolution using bilinear interpolation. Results are
in Table 21. Adding a distiller module on top of the encoder reduces the MAE from
114.8 to 82.5. The distiller module fuses different features from multiple convolution
layers with varying dilation rates, which is beneficial when counting multiple objects
which appear in multiple scales in the image. A traditional encoder-decoder network
gives a better count than just encoder and an encoder-distiller network. An encoder-only
network would compress the target objects to smaller size resulting in loss of fine details.
Moreover, it produces density maps with a reduced resolution due to the downsample
strides in the convolution operations. The distiller can compete with the decoder to some
extent, but it cannot recover the spatial resolution and important details as well as the
decoder. Incorporating the distiller in between an encoder and decoder into a single
network gives the best counting results on all metrics due to the merits of both scale
invariance and detail-preserving density maps. In Fig. 42 we show qualitatively that the
network obtains a lower count error and generates higher quality density maps with less
noise.

Benefit of non-uniform kernel across counting networks. Next, we study the benefit
of our non-uniform kernel estimation for existing counting methods. Apart from our
own network, we also evaluate the benefit on two other counting networks, i.e. [228]

78

4.6 A P P E N D I X

423

86

496 475 446

265 112 85

568 1043 825 786

(a) (b) (c) (d) (e)

Figure 42: Ablation study of encoder-distiller-decoder network. (a) Sample images
from ShanghaiTech Part A and (b) predicted density map by encoder. Effect of (c)
encoder-distiller and (d) encoder-distiller-decoder. For comparison, we show the ground
truth for each sample in (e).

Table 22: Benefit of non-uniform kernel estimation on ShanghaiTech Part A. Relying
on a ground truth density map generated by the proposed kernel, rather than GAK [228],
lowers the counting error for our method as well as alternatives.

Zhang et al. [228] Shi et al. [171] Ours

MAE RMSE MAE RMSE MAE RMSE

GAK [228] 110.2 173.2 73.5 112.3 67.9 115.6
Ours 107.0 156.5 71.7 109.5 65.2 109.4

and [171], for which code is available. Results in Table 22 demonstrate the proposed
kernel has a better MAE and RMSE performance than the commonly used geometry-
adaptive kernel [228] for all three networks. It demonstrates our non-uniform kernel is
independent of the counting model.

Qualitative results for segment-, density- & combined-focus. To illustrate the
beneficial effect of the proposed focuses for reducing the counting error and suppressing
background noise, we refer to Fig. 43. As shown in Fig. 43 (c) and Fig. 43 (d) compared
to Fig. 43 (b), both segmentation focus and global-density focus show the ability to
suppress noise and reduce the counting error. The combination of these two focuses
leads to the lowest counting error and higher quality density maps with less noise as
shown in Fig. 43 (e).

79

C O U N T I N G W I T H F O C U S F O R F R E E

215 2256

182 1430

1633

225

215 1847

1577 210

568

786

630

654

600

(a)

(b)

(c)

(d)

(e)

(f)

Figure 43: Effect of segment-, density- & combined-focus (a) Sample images from
ShanghaiTech Part A and (b) predicted density map without focus. Effect of (c) focus
from segmentation, (d) focus from global density, and (e) our combined focus. For
comparison, we show the ground truth for each sample in (f).

80

5

T H R E E T H I N G S F O R I M P ROV I N G D E N S I T Y- BA S E D
C O U N T I N G

5.1 I N T RO D U C T I O N

This paper considers the problem of counting arbitrary entities in images by learning
from density maps, as posed by Lempitsky and Zisserman [94]. For each training image,
the entities to count are annotated with points, which are convolved with Gaussian kernels
to obtain density maps. By doing so, counting becomes an image-to-image translation
problem; from an input image to a continuous density map. Given a trained image-to-
image model, the final count for a test image is obtained by summing over all pixel values
in the predicted density map. Since its inception, density-based counting has witnessed
immense progress, with success achieved through, amongst others, improvements in
network architectures [12, 70, 80, 98, 110, 113, 114, 116, 177, 220, 221], improved ways
of leveraging auxiliary tasks [10, 115, 167, 170, 210, 229] or data [115, 118, 198], and
advances in loss functions [20,108,122,171,190,225]. As a direct quantifiable result, the
average counting error on the leading ShanghaiTech benchmark [228] has been reduced
from 110.2 [228] to 54.6 [195] in just five years.

Despite amazing progress, several works have identified inherent limitations with
Gaussian density maps for counting. Examples include ambiguity regarding object
size [121,189,194] and noise caused by occlusions [12,205]. Due to the persistent nature
of these limitations, recent approaches have even investigated bypassing Gaussian density
maps in favor of point-based counting [180, 191, 194]. Motivated by these uncovered
limitations and inspired by similar investigations for other computer vision challenges [2],
we take a closer look at density-based counting and identify three things that limit every
counting approach, and for each we propose a simple network plug-in as a mitigation:

I. Do not count on the background. Through an oracle experiment we find in Section 5.8
that confusion with the background makes up over half the error rate(!) across approaches
and datasets. A key towards better counting lies in not counting on background pixels
in the first place. To limit the effect of counting on the background, we cascade a
segmentation and density network to reduce the hefty effect of background pixels on the
counting performance.

II. Create occlusion to handle occlusion. Common in counting is dealing with con-
gested scenes with high levels of occlusion. Occlusions, however, appear not often
enough in training imagery to properly learn to handle occlusions. We show in Sec-
tion 5.8 that occlusions can be simulated through augmentation on both the input image
and density maps.

81

T H R E E T H I N G S F O R I M P ROV I N G D E N S I T Y- BA S E D C O U N T I N G

III. Gaussians are not ground-truth. Gaussian convolutions on point annotations were
introduced to decrease sparsity and increase spatial robustness. However, as indicated
numerous times, Gaussian densities are inherently ambiguous regarding object size
and sensitive to occlusions. In Section 5.8 we propose to distill learned density maps
from an initial counting network trained on images with blacked-out backgrounds. The
discovered maps from distillation are smoother and more noise-robust than their Gaussian
counterparts, and can be used in any counting network.

For each finding, the proposed solution is simple, yet provides considerable reduction
in counting error. The findings are generic, can be plugged into any existing approach,
and are complimentary. Upon combining our proposals with the canonical counting
framework HRNet [22, 196] in Section 5.6, we obtain state-of-the-art results on Shang-
haiTech Part A and Part B, JHU-Crowd++, and TRANCOS, with the first MAE scores
below 50 on ShanghaiTech Part A.

Before elaborating on the three things that everyone working on density-based counting
should know, we first discuss in Section 5.2 the evaluation, datasets, and networks used
during our studies. We will release all code and plug-in modules to the counting
community.

5.2 E VA L UAT I O N , DATA S E T S , A N D N E T W O R K S

Evaluation. The counting performance of density-based approaches is evaluated on stan-
dard and publicly available image datasets. We report the standardized Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) metrics given count estimates and
their ground-truth.

Datasets. We consider five counting datasets in this paper, as also commonly used in
the recent literature, e.g., [12, 116, 121, 180, 191, 195]. ShanghaiTech [228] consists of
1,198 images with 330,165 pedestrians. This dataset is divided into two parts: Part A
with 482 images in which crowds are mostly dense, and Part B with 716 images, where
crowds are sparser. Each part is divided into a training and testing subset as specified
in [228]. UCF-QNRF [72] consists of 1,535 images, with the count ranging from 49
to 12,865. For training 1,201 images are available, the remaining 334 form the test
set. JHU-CROWD++ [178] consists of 4,372 images with a total of 1.51 million point
annotations. The dataset is split into a training set of 2,272 images, a validation set of
500 images and a testing set of 1,600 images. TRANCOS [54] contains 1,244 images
from different roads to count vehicles, varying from 9 to 105. The dataset is split into
a training set of 403 images, a validation set of 420 images and a testing set of 421
images. For all datasets, we augment the images by randomly performing horizontal
flipping, and randomly cropping 256×256 patches for ShanghaiTech, JHU-CROWD++
and TRANCOS and 416×416 patches for UCF-QNRF. For ground-truth density map
generation, we follow the previously suggested dataset settings from [72, 170, 178, 228].

Networks. We follow the standard in density-based counting by deep convolutional
networks. As our two baseline networks, we use CSRNet [98] and HRNet [196]. CSRNet
is the most widely-used architecture in the literature, e.g., [121, 122, 190, 191, 194, 229].
HRNet has very recently shown excellent counting ability [22]. Following [12], our
implementation of CSRNet has batch normalization layers, which perform better than

82

5.3 D O N OT C O U N T O N T H E BAC K G RO U N D

ShanghaiTech Part A ShanghaiTech Part B UCF QNRF JHU-CROWD+

CSRNet HRNet CSRNet HRNet CSRNet HRNet CSRNet HRNet
Standard 61.9 59.7 12.3 10.7 93.6 90.4 72.4 70.9
w/o background 29.8 28.3 3.1 2.8 57.0 55.4 26.7 25.9

Table 23: Impact of background interference. Removing the background pixels with
an oracle before density prediction reduces the count error (MAE) considerably across
datasets and networks.

the original CSRNet in [98]. Our implementation of HRNet is based on HRNetv2-W48.
Both networks are initialized by their ImageNet pre-trained models and trained using
Adam with batches of 10. By default, we use an ℓ1 loss function. The learning rate is
fixed to 1e-4.

5.3 D O N OT C O U N T O N T H E BAC K G RO U N D

Density-based approaches for counting learn a density prediction network by optimizing
a loss function L=ℓp(f (I) − D), where f the network, I the input image, D the ground-
truth density map and ℓp the Lp norm loss function. Not every pixel in this loss function,
however, should be treated equally. We divide the density map into two parts, one
corresponding to the background of the input image and the other one corresponding to
the foreground of the input image with the actual objects to count. The loss function
then becomes: L=ℓp(f (I)bg) + ℓp(f (I) f g − D f g). Naturally, Dbg is omitted as every
single element in Dbg is zero. Based on this reformulation, we analyze two problems of
current approaches. First, they are likely to mistakenly predict the background as objects
(densities) when ℓp(f (I)bg) is not optimized perfectly. Second, they cannot exploit
all their capacity for learning to transform objects to densities because they predict
densities (f (I) f g) not only on the objects, but also on the background. Our hypothesis
is therefore straightforward: density-based counting should only optimize for non-zero
density regions, the background should be ignored from the start.

Since the ground-truth density map is generated based on annotated points on objects, it
is invariant to the background of the input image. From this point of view, the background
of the input image is not useful for density prediction. If we could remove all background
pixels from the input image, f (I)bg would naturally be zero. Then the loss function
becomes: L=ℓp(f (Ĩ) f g −D f g) with Ĩ the image with zeros for background pixels. With
this loss the network fits densities only on the objects. Here, we seek to investigate two
questions: (i) how much can we gain in counting with perfect awareness of foreground
and background in images and (ii) how can we learn to reduce the background for
density-based counting networks?

Impact of background interference. We first quantify how much the background
hinders counting performance. We do so by generating oracle segmentation maps based
on the ground-truth density map; all non-zero density pixels are set to 1, the rest to 0.
We then mask the input image based on the oracle segmentation map. On this masked
image, we predict the density map with a baseline counting network. We emphasize that

83

T H R E E T H I N G S F O R I M P ROV I N G D E N S I T Y- BA S E D C O U N T I N G

PartA UCF QNRF

BG FG Overall BG FG Overall
Standard 3.4 61.5 61.9 8.7 91.3 93.6
w/ background reduction 3.0 55.3 56.1 3.4 83.6 84.4

Table 24: Learning to reduce the background. Compared to a standard CSRNet base
network, which predicts density maps on the background, our simple cascade model with
background reduction reduces the overall count error (MAE), for both background (BG)
and foreground (FG). Same conclusion for an HRNet, see supplementary materials.

the original input image and its background-free equivalent share the same ground-truth
density map.

In Table 23, we provide results based on two counting networks and four datasets. The
results across all experiments are consistent: counting without background reduces the
MAE considerably. On ShanghaiTech PartA, CSRNet reduces the MAE from 61.9 to
29.8 simply by predicting the density map not on the background; a number far lower
than the current state-of-the-art on this dataset. Depending on the dataset and network,
background interference is responsible for most of the counting error. From this oracle
experiment, we conclude that density-based counting can be significantly improved by
avoiding predicting densities on the background.

Learning to reduce the background. Motivated by the oracle experiment, we propose
a simple approach toward counting by learning to reduce the impact of background pixels
from the start. Specifically, we predict a segmentation map with a model such as DeepLab
v3+ [26] or HRNet [196]. Our counting model then cascades a segmentation network
and a density prediction network. Let I be the input image, D̂ be the predicted density
map, Ŝ be the predicted segmentation map, fs be the segmentation network, fd be the
density network. Then Ŝ= fs(I), and D̂= fd(I ⊙ Ŝ) where ⊙ denotes the element-wise
product. We first train the segmentation network with a cross-entropy loss and then fix
it to train the density network with a ℓ1 loss. Throughout this paper, we use HRNetv2-
W48 [196] as the segmentation network. We show the effect of learning to reduce
the background through cascading in Table 29. On ShanghaiTech PartA our approach
provides a reduction of 5.8 in the overall MAE. On UCF QNRF, the overall MAE even
goes down by 9.2. Even though our proposed cascade is simple, the direct effect for
counting is evident, emphasizing the importance of removing the background in the
input image for counting. We find that a learned background reduction improves both
background and foreground errors, with a special focus on the foreground error. We also
provide qualitative results in Figure 48. We observe that our predicted segmentation
masks remove many background pixels and the density prediction network is able to
count well on the remaining pixels. Overall, we recommend learning to remove the
background from the input image for density-based counting. The gap towards oracle
performance does highlight that big gains should be feasible with more advanced image
segmentation tactics.

Related work. Several works have investigated count errors that come from the
background, e.g., [139, 170, 229]. Zhao et al. [229] handle the cluttered background
with an auxiliary segmentation loss. Shi et al. [170] and Modolo et al. [139] reduce the

84

5.4 C R E AT E O C C L U S I O N T O H A N D L E O C C L U S I O N

(a) Input image (b) Cascaded image

(c) Predicted density

(d) Ground-truth

Figure 44: Learning to reduce the background. Segmentation and density prediction
results by our cascade model. While by no means perfect, the predicted segmentation
masks already reduce the background pixels considerably. The density prediction network
is then able to count correctly on the remaining amount of background pixels, as masked
in the green regions.

background error by learning a segmentation attention map for the output density map.
However, these approaches still predict the density map on the background. Differently,
our approach learns a segmentation mask to reduce the background from the input image
and then predicts the density map on a background-reduced input image. Cheng et
al. [29] also propose a two-stage counting approach. They first regress a probability map
to identify possible object regions, and then predict a density map on the probability
map to count the objects. The probability map does not contain information about the
occluded objects in the input image, however, resulting in underestimation. Differently,
we predict the density map based on the background-reduced input image, which hardly
misses information about the occluded objects. To emphasize that the key is to remove the
background from the input image altogether, we have performed additional experiments
where we employ the recent approaches of Modolo et al. [139] and Cheng et al. [29]
on top of the same counting network from Table 29. While both improve over the base
network, neither work as well as our simple cascade (PartA: 59.3 [139], 57.5 [29], and
56.1 for ours - UCF QNRF: 89.4 [139], 85.6 [29], and 84.4 for ours). The full comparison
is provided in the supplementary material.

5.4 C R E AT E O C C L U S I O N T O H A N D L E O C C L U S I O N

Another key challenge for counting is occlusion, as it often happens in congested scenes.
For counting approaches, one possible solution to handle various occlusion levels is
to learn a network with sufficient number of training samples for each occlusion level.
However, the occlusion level presents a long-tailed distribution in all benchmarks [54,
72, 178, 228]. In other words, there are simply not enough images in current datasets to
properly learn from natural occlusions. As a remedy, we propose to simulate various
occlusion levels through augmentation.

Occlusion simulation. Given a training sample (I, {Pi}
N
i=1), with I the input image

and {Pi}
N
i=1 a set of 2D point annotations, one for each object, we create the ground-truth

density map D by convolving each annotated point with a Gaussian kernel. Then an

85

T H R E E T H I N G S F O R I M P ROV I N G D E N S I T Y- BA S E D C O U N T I N G

object Oi in the image I can be represented by (xi, yi, 2σi) where xi, yi is the coordi-
nate of the corresponding annotated point Pi, and σi is the standard deviation of the
corresponding Gaussian kernel. Here, we assume that the object Oi is circular, and its
radius is approximately equal to 2σi following [94]. We randomly select an object which
will be occluded, denoted by Oocc, and then we randomly select one of its neighboring
objects. This object denoted by Ocopy will be copied and pasted to a specific position to
occlude the object Oocc. The pasted position of Ocopy decides how the object Oocc will
be occluded, defined as:

xpaste = ⌊r · cos(θ)⌋+ xocc,

ypaste = ⌊r · sin(θ)⌋+ yocc,
(5.1)

where r=2σcopy + 2σoccϵr and θ=2πϵθ. ϵr and ϵθ are randomly sampled fromU(0, 1).
⌊·⌋ is the floor operator. r and θ decide how much and where Oocc will be occluded.

Blending. Directly pasting objects on an image creates boundary artifacts, which may
affect the network’s learning ability. To handle boundary artifacts, we perform blending
to smooth out the boundary artifacts. Specifically, we first copy and paste the object
Ocopy to the position (xpaste, ypaste) of the image I, generating a new image Î. Then,
we compute the binary mask α of the pasted object Opaste, which can be represented
by (xpaste, ypaste, 2σpaste) where σpaste=σcopy. To smooth out the edges of the pasted
object, we apply a Gaussian filter to the binary mask α and obtain a smoothed mask α̃.
Then we use α̃ to construct the occluded image Iocc and its corresponding ground-truth
density map:

Iocc = (1 − α̃) ⊙ I + α̃ ⊙ Î,

Docc = D +G(Opaste),
(5.2)

where D denotes the ground-truth density map of the image I, G(Opaste) denotes the
density map of the pasted object Opaste, and G denotes the Gaussian kernel. Equation 5.2
states that the pixels to be occluded in the original image are replaced by the pixels of
the pasted object to obtain the occluded image. The corresponding occluded density map
is obtained by adding the density map of the pasted object to the original density map.

Occluding adaptively. For a training image, we need to decide how many of its objects
will be occluded with our approach. A simple way is to set a fixed ratio. However, the
training image may already have naturally occluded objects. Thus, we should create new
occlusion for the training image according to its current occlusion level. Intuitively, the
lower the occlusion level, the higher the amount of occlusions that should be simulated.
To compute the occlusion level, we create an occlusion map M for the training image by,

M(x, y) =
N∑

i=1

S (x, y;Oi), where

S (x, y;Oi) = 1(||x − xi||
2 + ||y − yi||

2 ≤ (2σi)
2).

(5.3)

Here (x, y) denotes a pixel location, Oi=(xi, yi, 2σi) denotes an object, and 1(·) is a
binary indicator function, which states that a pixel obtains a value of one if it is within
an object region. Hence, each pixel value in the occlusion map M indicates the amount
of object regions it belongs to. The occlusion level M̄ is computed as the average value

86

5.5 G AU S S I A N S A R E N OT G RO U N D - T RU T H

PartA UCF QNRF

Low High Overall Low High Overall
Standard 39.2 95.9 61.9 18.7 106.5 93.6
w/ occlusion creation 37.8 91.2 59.1 18.3 99.3 87.4

Table 25: Create occlusion to handle occlusion. Compared to a standard CSRNet base
network, our occlusion augmentation reduces the count error (MAE) for the entire test
set, the low occlusion set, and especially for the high occlusion set. Same conclusion for
an HRNet, see supplementary materials.

of non-zero pixels in the occlusion map M. Then the percentage of the objects to be
occluded can be adaptively obtained by β/M̄ where β is the upper boundary. We have
empirically found that β=0.3 performs well.

Analysis. To demonstrate the potential of our simple occlusion handling augmentation,
we apply a similar setup as the previous Section. To highlight effectiveness in highly
occluded images, we divide the test images into two sets according to their occlusion
level, as computed by Eq. 5.3. The test images are grouped into the low occlusion set if
their occlusion level is lower than 1.5, the remaining images are grouped into the high
occlusion set. For ShanghaiTech PartA, we obtain 109 low and 73 high occlusion images
and for UCF QNSF, we obtain 49 low and 285 high occlusion images. The results
are shown in Table 30. Compared to the base counting network, our simple occlusion
augmentation reduces the MAE on both datasets and the occlusion subsets. Especially
when occlusion levels are high, the occlusion augmentation is effective. This experiment
solidifies our point: occlusions weight heavily on the counting error, and there are not
enough natural occlusions to learn from. Instead, by simulating occlusions, we can easily
reduce the MAE by 2.8 (PartA) and 6.2 (UCF QNRF).

The simulated occlusions take the form of an augmentation approach, which can be
employed by any counting approach. To highlight that the key here is occlusions, not
just the augmentation, we have additionally investigated the effect of adding well-known
image augmentation approaches such as Cutout [38] and CutMix [218]. On both datasets,
such augmentations also reduce the counting error, but cannot compete with our occlusion
simulation (PartA: 61.2 [38], 60.6 [218], and 59.1 for ours - UCF QNRF: 91.8 [38],
90.6 [218], and 87.4 for ours). The full comparison is in the supplementary materials.
We conclude that to handle occlusions in density-based counting, it pays off to create the
occlusions by augmentation.

5.5 G AU S S I A N S A R E N OT G RO U N D - T RU T H

At the core of density-based counting approaches are the Gaussian density maps. These
are obtained by spatially convolving point annotations with Gaussian kernels and then
using the obtained density map as the learning target. The Gaussian density targets make
the optimization less sparse and increase spatial robustness. However, these maps are
imperfect and tend to be sensitive to occlusion and perspective distortions. Occlusions
between objects result in overlapping Gaussian blobs. By design, the overlapping
regions of the Gaussian densities are accumulated, even though this accumulation is no

87

T H R E E T H I N G S F O R I M P ROV I N G D E N S I T Y- BA S E D C O U N T I N G

(a) Original image (b) Our image (c) Original density (d) Our density

Figure 45: Occlusion creation. Illustrative examples for creating new occlusions on
images and corresponding density maps. Our occlusion-augmented image and density
look quite natural, as masked in the green regions.

longer visible in the image itself, resulting in noisy local maxima [12, 205]. Moreover,
perspective distortions result in large variations in object size. Since we are only given
points and no ground-truth information about local object size, there is no direct way to
correctly match Gaussian densities to all objects [170, 189, 228]. We therefore seek to go
beyond Gaussian density maps as the final ground-truth for counting.

Density maps from distillation. We have a simple proposal to improve the Gaussian
density maps that we optimize on: we learn new density maps from the original Gaussian
density maps through distillation. According to [4], deep networks are capable of
memorizing noisy data, but learn simple patterns first. Inspired by this observation, we
propose to learn an auxiliary network to capture the mapping patterns between objects
and densities, and avoid memorizing the noisy densities. Since the auxiliary network
focuses on capturing the mapping patterns between objects and densities, we train the
auxiliary network on images with background areas blacked-out, as recommended in
Section 5.8. The training loss is La=ℓ1(fa(Ĩ) − D), where fa the auxiliary network, Ĩ
the image, and D the original Gaussian density map. The optimization of the auxiliary
network will be stopped when it achieves maximum accuracy on the validation set. Then
we distill the knowledge of the trained auxiliary network to the density prediction network
with the loss Ld=ℓ1(fd(I) − fa(Ĩ)). Different from the standard distillation [66] that
aims for compression, our distillation seeks to improve the ground-truth density map.
Thus, our distillation loss is not combined with the ground-truth loss. In fact, we found
combining with the ground-truth loss degrades the counting performance.

In Table 31, we show the effect of counting on distilled density maps over Gaussian
density maps. We use the same base network for auxiliary distillation and density
prediction. On ShanghaiTech PartA our approach provides a reduction of 5.2 in MAE.
On UCF QNRF, the MAE goes down by 7.1. This simple distillation is an easy schema
that can operate on any network and provides a direct reduction in counting error. In
Figure 50, we provide some examples of Gaussian and distilled density maps. We
observe that distilled densities better match the observed objects, especially the occluded
objects in the image, compared to the Gaussian densities. Thus, distillation provides a
more natural relation between images and density maps.

88

5.5 G AU S S I A N S A R E N OT G RO U N D - T RU T H

PartA UCF QNRF
Gaussian density map 61.9 93.6
Distilled density map 56.7 86.5

Table 26: Effect of our distillation in terms of MAE on ShanghaiTech Part A and
UCF QNRF. Compared to Gaussian density, our distilled density reduces the count error
(MAE) considerably. All results based on CSRNet base network. Same conclusion for
an HRNet, see supplementary materials.

(a) Training image (b) Gaussian density (c) Distilled density (d) Density difference

Figure 46: Density generation with distillation. Illustrative examples of Gaussian and
distilled density maps. Compared to Gaussian densities, distilled densities reduce the
local noisy maxima (yellow color region) and better match the objects in the image,
especially the occluded objects. Also, the density difference shows that distilled densities
changes Gaussian densities mostly from the occluded region.

Related work. Several works have noted limitations of Gaussian densities for count-
ing, e.g. [72, 122, 170, 189, 205, 228]. Rather than using fixed and uniform Gaussian
densities [94], numerous attempts have been made to improve the Gaussian densities.
Zhang et al. [228] and Shi et al. [170] compute locally adaptive Gaussians as a function
of the K nearest neighbor annotations. Xu et al. [205] address the Gaussian scale problem
by rescaling the Gaussian densities into similar scale levels. Wan et al. [189] learn an
attention-based network to adaptively fuse multi-scale Gaussian densities. Bai et al. [12]
introduce a self-correction approach to improve Gaussian density. Rather than adapting
the Gaussian kernels to construct density maps, we propose to move beyond Gaussian
densities through distillation. To highlight the benefits of improving a density map with
distillation, we have performed additional experiments where we employ the recent
approach of Wan et al. [189] on top of the same counting network from Table 31. While
this approach also improves over the base network, it does not work as well as our simple
distillation (PartA: 59.6 [189], and 56.7 for ours - UCF QNRF: 91.1 [189], and 86.5 for
ours). The full comparison is provided in the supplementary materials. Lastly, we note
that our approach is inherently different from the counting distillation approach of Liu
et al. [107]. Their distillation seeks to compress the network, while we seek to obtain a
more desirable density maps.

89

T H R E E T H I N G S F O R I M P ROV I N G D E N S I T Y- BA S E D C O U N T I N G

5.6 C O M PA R AT I V E E VA L UAT I O N

For the final experiments, we first show the effect of combining the three solutions
we propose for dealing with the three error sources together. Then we compare to the
state-of-the-art in counting.

Combining the three solutions. So far, we have shown that each solution matters for
counting by itself. In this experiment, we evaluate whether they are also complementary.
The results are shown in Table 27 using both CSRNet and HRNet as backbones. Com-
pared to standard counting with just the base networks, we reduce the MAE considerably
by reducing background inference with cascading (Section 5.8). By combining back-
ground reduction with ground-truth distillation (5.8) or occlusion creation (Section 5.8)),
the MAE is further reduced. Combining all three solutions achieves the lowest count
error across datasets and base networks.

Comparison to the state-of-the-art. As the ultimate test, we draw a comparison
to the state-of-the-art in counting on five datasets. We report our results using both
CSRNet [98] and HRNet [196] as backbones. Table 28 shows the comparative evaluation
over all datasets and metrics. The results show that despite using canonical counting
backbones, which on their own can not compete with the state-of-the-art, we obtain the
best density-based counting results on 8 of the 10 metrics. This highlights the potential
of our simple solutions. We also compare to recent point-based counting alternatives
and find that we maintain the best results for 6 of the 10 metrics. On ShanghaiTech
Part A, we score below 50 in terms of MAE for the first time. The results on TRANCOS
(1.4 MAE versus 2.6 for Bai et al. [12] and 2.1 RMSE versus 3.9) also indicate that our
approach is not limited to person-centric counting and generalizes to vehicle counting.
We conclude that with our proposed solutions, we can make density-based optimization
the most effective way to count again. We show some success and failure results in
Figure 47. Even in challenging scenes with relatively sparse small objects or relatively

Table 27: Effect of combining our solutions for the three error sources in terms of
MAE on ShanghaiTech Part A and UCF QNRF. With each new addition, the counting
error decreases, showing their complementary nature.

Three solutions for error sources

Background Ground-truth Occlusion Part A UCF QNRF
CSRNet

61.9 93.6
✓ 56.1 84.4
✓ ✓ 54.7 82.2
✓ ✓ 54.3 81.6
✓ ✓ ✓ 52.7 80.1

HRNet
59.7 90.4

✓ 55.4 83.6
✓ ✓ 53.4 81.5
✓ ✓ 52.1 80.7
✓ ✓ ✓ 49.3 78.4

90

5.7 C O N C L U S I O N

Table 28: Comparison to the state-of-the-art on ShanghaiTech Part A, Part B,
UCF QNRF, JHU-CROWD++ and TRANCOS. We combine our three simple solu-
tions with CSRNet [98] and HRNet [196] to obtain counting results which are either
competitive or better than the current state-of-the-art, highlighting their potential for
density-based counting. Bold indicates the best density-based counting results, and
underline indicates the best overall counting approach.

Part A Part B UCF QNRF JHU-CROWD++ TRANCOS

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Density-based counting
Wan et al. [192] 63.8 99.2 7.8 12.7 99.5 173.0 69.7 268.3 - -
Wan et al. [190] 61.9 99.6 7.4 11.3 85.8 150.6 67.7 258.5 - -
Jiang et al. [81] 57.8 90.1 - - 91.6 159.7 - - - -
Hu et al. [70] 56.7 93.4 6.7 10.2 101.8 163.2 - - - -
Liu et al. [109] 55.9 97.1 7.3 11.3 88.1 143.7 - - - -
Cheng et al. [29] 57.2 93.0 6.3 10.7 81.7 137.9 - - - -
Bai et al. [12] 55.4 97.7 6.4 11.3 71.3 132.5 - - 2.6 3.9
Wang et al. [195] 54.6 91.2 6.4 10.9 81.1 131.7 - - - -
Ma et al. [121] 52.9 87.3 - - 79.5 140.7 57.4 251.6 - -
CSRNet [98] + three solutions 52.7 86.4 6.9 11.5 80.1 129.6 59.4 253.7 2.1 3.4
HRNet [196] + three solutions 49.3 83.7 6.2 10.6 78.4 127.3 57.1 254.3 1.4 2.1

Point-based counting
Wang et al. [194] 59.7 95.7 7.4 11.8 85.6 148.3 68.4 283.3 - -
Wan et al. [191] 61.3 95.4 7.3 11.7 84.3 147.5 59.9 259.5 - -
Liu et al. [116] 55.4 91.3 6.9 10.3 76.2 121.5 59.9 259.5 - -
Song et al. [180] 52.7 85.1 6.3 9.9 85.3 154.5 - - - -

dense large objects, our method is able to achieve an accurate count (first three rows).
Our approach fails when dealing with extremely dense scenes where individual objects
are hard to distinguish, or where objects blend with the context (last two rows). Such
scenarios remain open counting challenges.

Complexity analysis. The distilled density maps and occlusion simulations do not
change inference time. Only the segmentation cascade adds complexity and increases
the inference time, e.g., from 0.27s to 0.53s per image for the UCF QNRF dataset.

5.7 C O N C L U S I O N

This chapter dives into density-based counting, the most widely-used approach for
counting entities in images. Motivated by recent work that identifies limitations in
counting with Gaussian density maps, this chapter seeks to uncover which persistent
issues are common and shared amongst all current approaches. We take a closer look at
three error sources, including background, ground-truth, and occlusion, that should be
aware of in density-based counting. For each error source, we provide a simple proposal
to tackle them. We evaluate our three solutions over a number of datasets (ShanghaiTech
Part A and Part B, UCF QNRF, JHU-Crowd++, and TRANCOS) and demonstrate
substantial improvements in counting performance. Upon integrating them in canonical
counting networks, we obtain state-of-the-art counting performance, highlighting their
potential as general tools to use in density-based counting.

91

T H R E E T H I N G S F O R I M P ROV I N G D E N S I T Y- BA S E D C O U N T I N G

(a) Input image (b) Cascaded image

Count:1348

Count:4183

Count: 3127

Count:3948

(c) predicted density

Count:1712

Count:383

Count:212

Count:1357

Count:4196

Count:2702

Count:4539

(d) Ground-truth

Figure 47: Success and failure cases. Illustrative examples of success and failure cases.
When objects are individually visible, we can count them accurately (first two rows).
Further improvements are required for extremely dense scenes where individual objects
are hard to distinguish, or where objects blend with the context (last two rows).

5.8 A P P E N D I X

This supplementary file provides additional quantitative and qualitative results for: 1) do
not count on the background, 2) create occlusion to handle occlusion, and 3) Gaussians
are not ground-truth.

Do not count on the background We provide additional results on multiple datasets
with baselines to show the effect of learning to reduce the background through cascading
in Table 29, which is a supplement to the Table 2 in the main paper. We compare our
approach with the segmentation attention approach [139] and the two-stage approach [29].
For fair comparison, we implement our approach and the compared approaches on top of
CSRNet and HRNet. Compared to the base networks, all three approaches further reduce
the background, foreground, and overall count error in terms of MAE. Our approach
performs better than the segmentation attention approach and the two-stage approach.
We also provide more qualitative results in Figure 48.

Create occlusion to handle occlusion Table 30 is a supplement to the Table 3
in the main paper, which shows the effect of creating occlusion to handle occlusion.
We compare our approach with Cutout [38] and CutMix [218]. Compared to these
approaches, our occlusion augmentation reduces the overall count error (MAE) the
most, the low occlusion set, and especially for the high occlusion set. Cutout randomly
zero-outs a region in the training images and their corresponding ground-truth labels.
Instead of simply removing pixels, CutMix replaces the removed regions with a patch

92

5.8 A P P E N D I X

CSRNet HRNet

PartA UCF QNRF PartA UCF QNRF

BG FG Overall BG FG Overall BG FG Overall BG FG Overall
Base network 3.4 61.5 61.9 8.7 91.3 93.6 3.2 59.1 59.7 8.2 89.9 90.4
w/ segmentation attention [139]† 2.9 58.9 59.3 4.5 88.3 89.4 2.8 57.9 58.3 4.3 88.1 88.6
w/ two-stage [29]† 3.1 57.1 57.5 3.5 84.8 85.6 2.9 55.8 56.7 4.1 83.6 84.2
w/ background reduction (ours) 3.0 55.3 56.1 3.4 83.6 84.4 2.9 54.2 55.4 4.8 82.7 83.6
†Results based on our reimplementation.

Table 29: Learning to reduce the background on ShanghaiTech Part A and UCF QNSF.
Compared to the baselines, which predicts density maps on the background, our simple
cascade model with background reduction reduces the overall count error (MAE), for
both background (BG) and foreground (FG).

CSRNet HRNet

PartA UCF QNRF PartA UCF QNRF

Low High Overall Low High Overall Low High Overall Low High Overall
Base network 39.2 95.9 61.9 18.7 106.5 93.6 36.5 94.3 59.7 17.2 103.0 90.4
w/ Cutout [38]† 38.6 95.0 61.2 16.5 104.7 91.8 35.6 93.5 58.8 15.4 101.5 88.5
w/ CutMix [218]† 38.0 94.3 60.6 17.8 103.1 90.6 35.2 92.8 58.3 16.3 99.8 87.6
w/ CutOcc (ours) 37.8 91.2 59.1 18.3 99.3 87.4 34.7 90.5 57.1 16.8 98.1 86.2
†Results based on our reimplementation.

Table 30: Create occlusion to handle occlusion on ShanghaiTech Part A and
UCF QNSF. Compared to the baselines, our occlusion augmentation better reduces
the count error (MAE) for the entire test set, the low occlusion set, and especially for the
high occlusion set.

CSRNet HRNet

Part A UCF QNRF Part A UCF QNRF
Gaussian density map 61.9 93.6 59.7 90.4
Multiscale Gaussian density map [189]† 59.6 91.1 58.1 88.2
Distillated density map (ours) 56.7 86.5 55.9 85.6
†Results based on our reimplementation.

Table 31: Effect of our distillation in terms of MAE on ShanghaiTech Part A and
UCF QNSF. Compared to Gaussian density and multiscale Gaussian density, our distilled
density reduces the count error (MAE) considerably.

from another image. Cutout and CutMix create new training samples, but they do not
create new occluded samples. Differently, our approach creates a variety of occluded
samples by explicitly simulating the occlusion in real world. Therefore, our approach
better handles occlusion. We also provide more examples of our created occluded images
and corresponding density maps in Figure 49.

Gaussians are not ground-truth In Table 31, we show the effect of counting on
distilled density maps over Gaussian density maps and multiscale Gaussian density
maps [189]. This table is a supplement to Table 4 in the main paper. We use the
same base network for auxiliary distillation and density prediction. Compared to using
Gaussian densities and multiscale Gaussian densities, our distilled densities reduce the
count error (MAE) considerably across networks and datasets. In Figure 50, we provide
more examples of Gaussian and distilled density maps.

93

T H R E E T H I N G S F O R I M P ROV I N G D E N S I T Y- BA S E D C O U N T I N G

(a) Input image

(b) Cascaded image

(c) Predicted density

(d) Ground-truth

Figure 48: Learning to reduce the background. Segmentation and density prediction
results by our cascade model. While by no means perfect, the predicted segmentation
masks already reduce the background pixels considerably. The density prediction network
is then able to count correctly on the remaining amount of background pixels.

94

5.8 A P P E N D I X

(a) Original image

(b) Our image

(c) Original density

(d) Our density

Figure 49: Occlusion creation. Illustrative examples for creating new occlusions on
images and corresponding density maps. Our occlusion-augmented image and density
look quite natural.

95

T H R E E T H I N G S F O R I M P ROV I N G D E N S I T Y- BA S E D C O U N T I N G

(a) Training image (b) Gaussian density

(c) Distilled density (d) Density difference

Figure 50: Density generation with distillation. Illustrative examples of Gaussian and
distilled density maps. Compared to Gaussian densities, distilled densities reduce the
local noisy maxima (yellow color region) and better match the objects in the image,
especially the occluded objects. Also, the density difference shows that distilled densities
changes Gaussian densities mostly from the occluded region.

96

6

S U M M A RY A N D C O N C L U S I O N S

6.1 S U M M A RY

This thesis is dedicated to exploring inductive biases for pixel representation learning.
Specifically, this thesis focuses on the research question: How to uncover and exploit
inductive biases for pixel representation learning? We first uncovered three inductive
biases and revealed their importance for different pixel-level tasks, including spectral
bias for the deep image prior, salience bias for guided filtering, and attentional bias for
object counting. Beyond uncovering different inductive biases, we then seek to develop
new inductive biases by exploiting prior knowledge. We developed three inductive biases
for best-in-class object counting by discovering new knowledge. A brief summary of
each chapter is provided as follows:

Chapter 2: Spectral Bias of the Deep Image Prior. The deep image prior showed
that a randomly initialized network with a suitable architecture can be trained to solve
inverse imaging problems by simply optimizing it’s parameters to reconstruct a single
degraded image. However, it suffers from two practical limitations. First, it remains
unclear how to control the prior beyond the choice of the network architecture. Second,
training requires an oracle stopping criterion as during the optimization the performance
degrades after reaching an optimum value. To address these challenges we introduce a
frequency-band correspondence measure to characterize the spectral bias of the deep
image prior, where low-frequency image signals are learned faster and better than high-
frequency counterparts. Based on our observations, we propose techniques to prevent the
eventual performance degradation and accelerate convergence. We introduce a Lipschitz-
controlled convolution layer and a Gaussian-controlled upsampling layer as plug-in
replacements for layers used in the deep architectures. The experiments show that with
these changes the performance does not degrade during optimization, relieving us from
the need for an oracle stopping criterion. We further outline a stopping criterion to
avoid superfluous computation. Finally, we show that our approach obtains favorable
results compared to current approaches across various denoising, deblocking, inpainting,
super-resolution and detail enhancement tasks.

Chapter 3: Unsharp Mask Guided Filtering. The goal of this chapter is guided
image filtering, which emphasizes the importance of structure transfer during filtering
by means of an additional guidance image. Where classical guided filters transfer
structures using hand-designed functions, recent guided filters have been considerably
advanced through parametric learning of deep networks. The state-of-the-art leverages
deep networks to estimate the two core coefficients of the guided filter. In this work, we
posit that simultaneously estimating both coefficients is suboptimal, resulting in halo

97

S U M M A RY A N D C O N C L U S I O N S

artifacts and structure inconsistencies. Inspired by unsharp masking, a classical technique
for edge enhancement that requires only a single coefficient, we propose a new and
simplified formulation of the guided filter. Our formulation enjoys a filtering prior from
a low-pass filter and enables explicit structure transfer by estimating a single coefficient.
Based on our proposed formulation, we introduce a successive guided filtering network,
which provides multiple filtering results from a single network, allowing for a trade-off
between accuracy and efficiency. Extensive ablations, comparisons and analysis show the
effectiveness and efficiency of our formulation and network, resulting in state-of-the-art
results across filtering tasks like upsampling, denoising, and cross-modality filtering.

Chapter 4: Counting with Focus for Free. This chapter aims to count arbitrary
objects in images. The leading counting approaches start from point annotations per
object from which they construct density maps. Then, their training objective transforms
input images to density maps through deep convolutional networks. We posit that the
point annotations serve more supervision purposes than just constructing density maps.
We introduce ways to repurpose the points for free. First, we propose supervised focus
from segmentation, where points are converted into binary maps. The binary maps are
combined with a network branch and accompanying loss function to focus on areas of
interest. Second, we propose supervised focus from global density, where the ratio of
point annotations to image pixels is used in another branch to regularize the overall density
estimation. To assist both the density estimation and the focus from segmentation, we
also introduce an improved kernel size estimator for the point annotations. Experiments
on six datasets show that all our contributions reduce the counting error, regardless of the
base network, resulting in state-of-the-art accuracy using only a single network. Finally,
we are the first to count on WIDER FACE, allowing us to show the benefits of our
approach in handling varying object scales and crowding levels.

Chapter 5: Three Things for Improving Density-Based Counting. This paper
considers the problem of counting arbitrary entities in images by learning from density
maps. Leading approaches start from point annotations per object from which they
construct the density maps. Their training objective then transforms images to density
maps through neural networks. In this work, we take a closer look at density-based
counting and identify three things that limit every counting approach, and for each we
propose a simple network plug-in module as a mitigation. Specifically, (i) we find that
predicting densities on the background induces over half the error rate in counting and we
outline a cascade to limit the effect of counting on background pixels; (ii) occlusions are
persistent in counting, yet do not occur often enough in training images to learn to handle
them properly. We propose an augmentation on both input and density images to learn
to be more robust to occlusions; (iii) constructing density maps from point annotations
with Gaussian convolutions is suboptimal for counting. We propose an alternative that
learns to distill density maps from an auxiliary density prediction network. Such distilled
maps are smoother and more robust to noise than their Gaussian counterparts. All three
proposals are simple, can be plugged into any density-based counting network and when
combined achieves state-of-the-art results on ShanghaiTech Part A and Part B, JHU-
Crowd++, and TRANCOS, with the first mean average error below 50 on ShanghaiTech
Part A.

98

6.2 C O N C L U S I O N S

6.2 C O N C L U S I O N S

This thesis has shown the importance of uncovering and exploiting inductive biases for
pixel representation learning. The focus of this thesis has been on three inductive biases
for three specific pixel-level tasks. As such, a logical next step involves to uncover and
exploit more inductive biases for different tasks. For example, the frequency bias for
generative models needs to be explored to better learn the high-frequency distribution.
Another interesting direction is about exploring how the inductive biases human’s exploit
can be used as priors in representation learning. For example, we humans pay attention
to what moves while current video representation learning models rely on still image
domain to recognize actions in videos. Exploiting the motion bias of the human mind
would be promising for deep learning to better understand the activities in videos.

99

B I B L I O G R A P H Y

[1] B. AlBahar and J.-B. Huang. Guided image-to-image translation with bi-directional feature
transformation. In ICCV, 2019.

[2] R. Arandjelović and A. Zisserman. Three things everyone should know to improve object retrieval.
In CVPR, 2012.

[3] P. Arias, G. Facciolo, V. Caselles, and G. Sapiro. A variational framework for exemplar-based
image inpainting. International Journal of Computer Vision, 93(3):319–347, 2011.

[4] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer,
A. Courville, Y. Bengio, et al. A closer look at memorization in deep networks. In ICML, 2017.

[5] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb. Solving inverse problems using data-driven
models. Acta Numerica, 28:1–174, 2019.

[6] M. Asim, F. Shamshad, and A. Ahmed. Patchdip exploiting patch redundancy in deep image prior
for denoising. In NeurIPS Workshop on Solving Inverse Problems with Deep Networks, 2019.

[7] S. P. Awate and R. T. Whitaker. Unsupervised, information-theoretic, adaptive image filtering for
image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(3):364–376,
2006.

[8] T. C. Aysal and K. E. Barner. Quadratic weighted median filters for edge enhancement of noisy
images. IEEE Transactions on Image Processing, 15(11):3294–3310, 2006.

[9] D. Babu Sam, N. N. Sajjan, R. Venkatesh Babu, and M. Srinivasan. Divide and grow: Capturing
huge diversity in crowd images with incrementally growing cnn. In CVPR, 2018.

[10] D. Babu Sam, S. Surya, and R. Venkatesh Babu. Switching convolutional neural network for crowd
counting. In CVPR, 2017.

[11] K. Bahrami and A. C. Kot. A fast approach for no-reference image sharpness assessment based on
maximum local variation. IEEE Signal Processing Letters, 21(6):751–755, 2014.

[12] S. Bai, Z. He, Y. Qiao, H. Hu, W. Wu, and J. Yan. Adaptive dilated network with self-correction
supervision for counting. In CVPR, 2020.

[13] M. R. Banham and A. K. Katsaggelos. Spatially adaptive wavelet-based multiscale image restoration.
IEEE Transactions on Image Processing, 5(4):619–634, 1996.

[14] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[15] V. Belagiannis, C. Rupprecht, G. Carneiro, and N. Navab. Robust optimization for deep regression.
In ICCV, 2015.

[16] M. Bertero and P. Boccacci. Introduction to inverse problems in imaging. IOP Publishing, 1998.

[17] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding. In BMVC, 2012.

[18] M. Brown and S. Süsstrunk. Multispectral SIFT for scene category recognition. In CVPR, 2011.

[19] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical
flow evaluation. In ECCV, 2012.

[20] X. Cao, Z. Wang, Y. Zhao, and F. Su. Scale aggregation network for accurate and efficient crowd
counting. In ECCV, 2018.

101

Bibliography

[21] P. Chakrabarty and S. Maji. The spectral bias of the deep image prior. In NeurIPS Workshop on
Bayesian Deep Learning, 2019.

[22] B. Chen, Z. Yan, K. Li, P. Li, B. Wang, W. Zuo, and L. Zhang. Variational attention: Propagating
domain-specific knowledge for multi-domain learning in crowd counting. In ICCV, 2021.

[23] D. Chen, Q. Fan, J. Liao, A. Aviles-Rivero, L. Yuan, N. Yu, and G. Hua. Controllable image
processing via adaptive filterbank pyramid. IEEE Transactions on Image Processing, 29:8043–
8054, 2020.

[24] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and T.-S. Chua. Sca-cnn: Spatial and
channel-wise attention in convolutional networks for image captioning. In CVPR, 2017.

[25] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(4):834–848, 2017.

[26] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In ECCV, 2018.

[27] Y. Chen and T. Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and
effective image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(6):1256–1272, 2016.

[28] Y.-C. Chen, C. Gao, E. Robb, and J.-B. Huang. Nas-dip: Learning deep image prior with neural
architecture search. In ECCV, 2020.

[29] J. Cheng, H. Xiong, Z. Cao, and H. Lu. Decoupled two-stage crowd counting and beyond. IEEE
Transactions on Image Processing, 30:2862–2875, 2021.

[30] Z. Cheng, M. Gadelha, S. Maji, and D. Sheldon. A bayesian perspective on the deep image prior.
In CVPR, 2019.

[31] F. Crete, T. Dolmiere, P. Ladret, and M. Nicolas. The blur effect: Perception and estimation with a
new no-reference perceptual blur metric. In SPIE HVEI, 2007.

[32] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080–2095, 2007.

[33] T. Dai, Y. Feng, D. Wu, B. Chen, J. Lu, Y. Jiang, and S.-T. Xia. DIPDefend: Deep image prior
driven defense against adversarial examples. In ACM MM, 2020.

[34] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear in-
verse problems with a sparsity constraint. Communications on Pure and Applied Mathematics,
57(11):1413–1457, 2004.

[35] G. Deng. A generalized unsharp masking algorithm. IEEE Transactions on Image Processing,
20(5):1249–1261, 2010.

[36] X. Deng and P. L. Dragotti. Deep coupled ista network for multi-modal image super-resolution.
IEEE Transactions on Image Processing, 29:1683–1698, 2019.

[37] X. Deng and P. L. Dragotti. Deep convolutional neural network for multi-modal image restoration
and fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[38] T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks with cutout.
arXiv preprint arXiv:1708.04552, 2017.

[39] C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression artifacts reduction by a deep convolutional
network. In ICCV, pages 576–584, 2015.

[40] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2):295–307, 2015.

[41] W. Dong, G. Shi, Y. Ma, and X. Li. Image restoration via simultaneous sparse coding: Where
structured sparsity meets gaussian scale mixture. International Journal of Computer Vision,
114(2):217–232, 2015.

102

Bibliography

[42] D. Dunn and W. E. Higgins. Optimal gabor filters for texture segmentation. IEEE Transactions on
Image Processing, 4(7):947–964, 1995.

[43] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In ICCV, 1999.

[44] M. Elad and A. Feuer. Superresolution restoration of an image sequence: adaptive filtering approach.
IEEE Transactions on Image Processing, 8(3):387–395, 1999.

[45] M. Elad, M. A. Figueiredo, and Y. Ma. On the role of sparse and redundant representations in
image processing. Proceedings of the IEEE, 98(6):972–982, 2010.

[46] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375. Springer
Science & Business Media, 1996.

[47] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-preserving decompositions for multi-
scale tone and detail manipulation. ACM Transactions on Graphics, 27(3):1–10, 2008.

[48] A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shape-adaptive dct for high-quality deblocking
of compressed color images. In ESPC, pages 1–5, 2006.

[49] J. Fu, H. Zheng, and T. Mei. Look closer to see better: recurrent attention convolutional neural
network for fine-grained image recognition. In CVPR, 2017.

[50] Y. Gandelsman, A. Shocher, and M. Irani. Double-dip: Unsupervised image decomposition via
coupled deep-image-priors. In CVPR, 2019.

[51] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact bilinear pooling. In CVPR, 2016.

[52] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand. Deep bilateral learning for
real-time image enhancement. ACM Transactions on Graphics, 36(4):1–12, 2017.

[53] R. Girdhar and D. Ramanan. Attentional pooling for action recognition. In NeurIPS, 2017.

[54] R. Guerrero-Gómez-Olmedo, B. Torre-Jiménez, R. López-Sastre, S. Maldonado-Bascón, and
D. Onoro-Rubio. Extremely overlapping vehicle counting. In IbPRIA, 2015.

[55] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. Characterizing implicit bias in terms of optimization
geometry. In ICML, pages 1832–1841. PMLR, 2018.

[56] X. Guo, Y. Li, and H. Ling. Lime: Low-light image enhancement via illumination map estimation.
IEEE Transactions on Image Processing, 26(2):982–993, 2016.

[57] X. Guo, Y. Li, J. Ma, and H. Ling. Mutually guided image filtering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(3):694–707, 2020.

[58] J. Hahn, X.-C. Tai, S. Borok, and A. M. Bruckstein. Orientation-matching minimization for image
denoising and inpainting. International Journal of Computer Vision, 92(3):308–324, 2011.

[59] B. Ham, M. Cho, and J. Ponce. Robust guided image filtering using nonconvex potentials. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(1):192–207, 2018.

[60] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(6):1397–1409, 2012.

[61] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In ICCV, 2015.

[62] S. He and R. W. Lau. Saliency detection with flash and no-flash image pairs. In ECCV, 2014.

[63] R. Heckel and P. Hand. Deep decoder: Concise image representations from untrained non-
convolutional networks. In ICLR, 2019.

[64] R. Heckel and M. Soltanolkotabi. Denoising and regularization via exploiting the structural bias of
convolutional generators. In ICLR, 2020.

[65] F. Heide, W. Heidrich, and G. Wetzstein. Fast and flexible convolutional sparse coding. In CVPR,
2015.

103

Bibliography

[66] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[67] K. Ho, A. Gilbert, H. Jin, and J. Collomosse. Neural architecture search for deep image prior.
ArXiv:2001.04776, 2020.

[68] M. Hossain, M. Hosseinzadeh, O. Chanda, and Y. Wang. Crowd counting using scale-aware
attention networks. In WACV, 2019.

[69] Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. H. Torr. Deeply supervised salient object
detection with short connections. In CVPR, 2017.

[70] Y. Hu, X. Jiang, X. Liu, B. Zhang, J. Han, X. Cao, and D. Doermann. Nas-count: Counting-by-
density with neural architecture search. In ECCV, 2020.

[71] T.-W. Hui, C. C. Loy, and X. Tang. Depth map super-resolution by deep multi-scale guidance. In
ECCV, 2016.

[72] H. Idrees, M. Tayyab, K. Athrey, D. Zhang, S. Al-Maadeed, N. Rajpoot, and M. Shah. Composition
loss for counting, density map estimation and localization in dense crowds. In ECCV, 2018.

[73] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color! joint end-to-end learning of global
and local image priors for automatic image colorization with simultaneous classification. ACM
Transactions on Graphics, 35(4):1–11, 2016.

[74] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

[75] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial
networks. In CVPR, 2017.

[76] H. L. Issam, R. Negar, O. P. Pedro, V. David, and S. Mark. Where are the blobs: Counting by
localization with point supervision. In ECCV, 2018.

[77] M. Jacob and M. Unser. Design of steerable filters for feature detection using canny-like criteria.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):1007–1019, 2004.

[78] V. Jain and S. Seung. Natural image denoising with convolutional networks. In NeuIPS, 2008.

[79] R. J. Jevnisek and S. Avidan. Co-occurrence filter. In CVPR, 2017.

[80] X. Jiang, Z. Xiao, B. Zhang, X. Zhen, X. Cao, D. Doermann, and L. Shao. Crowd counting and
density estimation by trellis encoder-decoder networks. In CVPR, 2019.

[81] X. Jiang, L. Zhang, M. Xu, T. Zhang, P. Lv, B. Zhou, X. Yang, and Y. Pang. Attention scaling for
crowd counting. In CVPR, 2020.

[82] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. Deep convolutional neural network for inverse
problems in imaging. IEEE Transactions on Image Processing, 26(9):4509–4522, 2017.

[83] D. Kang and A. B. Chan. Crowd counting by adaptively fusing predictions from an image pyramid.
In BMVC, 2018.

[84] Y. Kang, C. Roh, S.-B. Suh, and B. Song. A lidar-based decision-making method for road boundary
detection using multiple kalman filters. IEEE Transactions on Industrial Electronics, 59(11):4360–
4368, 2012.

[85] A. K. Katsaggelos. Iterative image restoration algorithms. Optical Engineering, 28(7):287735,
1989.

[86] A. Kattamis, T. Adel, and A. Weller. Exploring properties of the deep image prior. In NeurIPS
Workshop on Solving Inverse Problems with Deep Networks, 2019.

[87] Y. Katznelson. An introduction to harmonic analysis. Cambridge University Press, 2004.

[88] S. Kindermann, S. Osher, and P. W. Jones. Deblurring and denoising of images by nonlocal
functionals. Multiscale Modeling & Simulation, 4(4):1091–1115, 2005.

104

Bibliography

[89] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[90] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele. Joint bilateral upsampling. ACM
Transactions on Graphics, 26(3):96, 2007.

[91] F. Kou, W. Chen, C. Wen, and Z. Li. Gradient domain guided image filtering. IEEE Transactions
on Image Processing, 24(11):4528–4539, 2015.

[92] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative adversarial
network. In CVPR, 2017.

[93] S. Lefkimmiatis. Universal denoising networks: a novel cnn architecture for image denoising. In
CVPR, 2018.

[94] V. Lempitsky and A. Zisserman. Learning to count objects in images. In NeurIPS, 2010.

[95] J. Li, S. You, and A. Robles-Kelly. A frequency domain neural network for fast image super-
resolution. In IJCNN, 2018.

[96] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep joint image filtering. In ECCV, 2016.

[97] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Joint image filtering with deep convolutional
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8):1909–1923,
2019.

[98] Y. Li, X. Zhang, and D. Chen. Csrnet: dilated convolutional neural networks for understanding the
highly congested scenes. In CVPR, 2018.

[99] Z. Li, K. Gavrilyuk, E. Gavves, M. Jain, and C. G. M. Snoek. VideoLSTM convolves, attends and
flows for action recognition. Computer Vision and Image Understanding, 166:41–50, 2018.

[100] Z. Li, J. Zheng, Z. Zhu, W. Yao, and S. Wu. Weighted guided image filtering. IEEE Transactions
on Image Processing, 24(1):120–129, 2014.

[101] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie. Feature pyramid
networks for object detection. In CVPR, 2017.

[102] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In
ICCV, 2017.

[103] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn models for fine-grained visual recognition.
In ICCV, 2015.

[104] Z. Lin, J. He, X. Tang, and C.-K. Tang. Limits of learning-based superresolution algorithms.
International Journal of Computer Vision, 80(3):406–420, 2008.

[105] J. Liu, C. Gao, D. Meng, and A. G. Hauptmann. Decidenet: Counting varying density crowds
through attention guided detection and density estimation. In CVPR, 2018.

[106] J. Liu, Y. Sun, X. Xu, and U. S. Kamilov. Image restoration using total variation regularized deep
image prior. In ICASSP, 2019.

[107] L. Liu, J. Chen, H. Wu, T. Chen, G. Li, and L. Lin. Efficient crowd counting via structured
knowledge transfer. In ACM MM, 2020.

[108] L. Liu, H. Lu, H. Xiong, K. Xian, Z. Cao, and C. Shen. Counting objects by blockwise classification.
IEEE Transactions on Circuits and Systems for Video Technology, 30(10):3513–3527, 2019.

[109] L. Liu, H. Lu, H. Zou, H. Xiong, Z. Cao, and C. Shen. Weighing counts: Sequential crowd counting
by reinforcement learning. In ECCV, 2020.

[110] L. Liu, Z. Qiu, G. Li, S. Liu, W. Ouyang, and L. Lin. Crowd counting with deep structured scale
integration network. In ICCV, 2019.

[111] L. Liu, H. Wang, G. Li, W. Ouyang, and L. Lin. Crowd counting using deep recurrent spatial-aware
network. In IJCAI, 2018.

105

Bibliography

[112] M.-Y. Liu, O. Tuzel, and Y. Taguchi. Joint geodesic upsampling of depth images. In CVPR, 2013.

[113] N. Liu, Y. Long, C. Zou, Q. Niu, L. Pan, and H. Wu. Adcrowdnet: An attention-injective deformable
convolutional network for crowd understanding. In CVPR, 2019.

[114] W. Liu, M. Salzmann, and P. Fua. Context-aware crowd counting. In CVPR, 2019.

[115] W. Liu, M. Salzmann, and P. Fua. Estimating people flows to better count them in crowded scenes.
In ECCV, 2020.

[116] X. Liu, G. Li, Z. Han, W. Zhang, Y. Yang, Q. Huang, and N. Sebe. Exploiting sample correlation
for crowd counting with multi-expert network. In ICCV, 2021.

[117] X. Liu, J. van de Weijer, and A. D. Bagdanov. Leveraging unlabeled data for crowd counting by
learning to rank. In CVPR, 2018.

[118] X. Liu, J. van de Weijer, and A. D. Bagdanov. Leveraging unlabeled data for crowd counting by
learning to rank. In CVPR, 2018.

[119] A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos. Using deep neural networks for inverse
problems in imaging: beyond analytical methods. IEEE Signal Processing Magazine, 35(1):20–36,
2018.

[120] W.-Y. Ma and B. S. Manjunath. Edgeflow: a technique for boundary detection and image segmenta-
tion. IEEE Transactions on Image Processing, 9(8):1375–1388, 2000.

[121] Z. Ma, X. Hong, X. Wei, Y. Qiu, and Y. Gong. Towards a universal model for cross-dataset crowd
counting. In ICCV, 2021.

[122] Z. Ma, X. Wei, X. Hong, and Y. Gong. Bayesian loss for crowd count estimation with point
supervision. In ICCV, 2019.

[123] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image
restoration. In ICCV, 2009.

[124] X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder
networks with symmetric skip connections. In NeurIPS, 2016.

[125] A. Marana, L. da Costa, R. Lotufo, and S. Velastin. On the efficacy of texture analysis for crowd
monitoring. In SIBGRAPI, 1998.

[126] I. Marivani, E. Tsiligianni, B. Cornelis, and N. Deligiannis. Learned multimodal convolutional
sparse coding for guided image super-resolution. In ICIP, 2019.

[127] I. Marivani, E. Tsiligianni, B. Cornelis, and N. Deligiannis. Multimodal image super-resolution via
deep unfolding with side information. In EUSIPCO, 2019.

[128] I. Marivani, E. Tsiligianni, B. Cornelis, and N. Deligiannis. Joint image super-resolution via
recurrent convolutional neural networks with coupled sparse priors. In ICIP, 2020.

[129] I. Marivani, E. Tsiligianni, B. Cornelis, and N. Deligiannis. Multimodal deep unfolding for guided
image super-resolution. IEEE Transactions on Image Processing, 29:8443–8456, 2020.

[130] I. Marivani, E. Tsiligianni, B. Cornelis, and N. Deligiannis. Designing cnns for multimodal image
super-resolution via the method of multipliers. In EUSIPCO, 2021.

[131] M. Marsden, K. McGuinness, S. Little, C. E. Keogh, and N. E. O’Connor. People, penguins and
petri dishes: adapting object counting models to new visual domains and object types without
forgetting. In CVPR, 2018.

[132] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV,
2001.

[133] G. Mataev, P. Milanfar, and M. Elad. Deepred: Deep image prior powered by red. In ICCV
Workshop on Learning for Computational Imaging, 2019.

106

Bibliography

[134] M. T. McCann, K. H. Jin, and M. Unser. Convolutional neural networks for inverse problems in
imaging: A review. IEEE Signal Processing Magazine, 34(6):85–95, 2017.

[135] P. Mianjy, R. Arora, and R. Vidal. On the implicit bias of dropout. In ICML, pages 3540–3548.
PMLR, 2018.

[136] D. Min, J. Lu, and M. N. Do. Depth video enhancement based on weighted mode filtering. IEEE
Transactions on Image Processing, 21(3):1176–1190, 2011.

[137] T. M. Mitchell. The need for biases in learning generalizations. Department of Computer Science,
Laboratory for Computer Science Research . . . , 1980.

[138] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversar-
ial networks. In ICLR, 2018.

[139] D. Modolo, B. Shuai, R. R. Varior, and J. Tighe. Understanding the impact of mistakes on
background regions in crowd counting. In WACV, 2021.

[140] K. Morishita, S. Yamagata, T. Okabe, T. Yokoyama, and K. Hamatani. Unsharp masking for image
enhancement, Dec. 27 1988. US Patent 4,794,531.

[141] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and checkerboard artifacts. Distill, 1(10),
2016.

[142] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381(6583):607–609, 1996.

[143] D. Onoro-Rubio and R. J. López-Sastre. Towards perspective-free object counting with deep
learning. In ECCV, 2016.

[144] J. Pan, J. Dong, J. S. Ren, L. Lin, J. Tang, and M.-H. Yang. Spatially variant linear representation
models for joint filtering. In CVPR, 2019.

[145] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: feature
learning by inpainting. In CVPR, 2016.

[146] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama. Digital photography
with flash and no-flash image pairs. ACM Transactions on Graphics, 23(3):664–672, 2004.

[147] C. C. Pham, S. V. U. Ha, and J. W. Jeon. Adaptive guided image filtering for sharpness enhancement
and noise reduction. In PSIVT, 2011.

[148] A. Polesel, G. Ramponi, and V. J. Mathews. Image enhancement via adaptive unsharp masking.
IEEE Transactions on Image Processing, 9(3):505–510, 2000.

[149] J. Portilla. Image restoration through l0 analysis-based sparse optimization in tight frames. In ICIP,
2009.

[150] M. Protter, M. Elad, H. Takeda, and P. Milanfar. Generalizing the nonlocal-means to super-resolution
reconstruction. IEEE Transactions on image processing, 18(1):36–51, 2008.

[151] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville.
On the spectral bias of neural networks. In ICML, 2019.

[152] T. Randen and J. H. Husoy. Texture segmentation using filters with optimized energy separation.
IEEE Transactions on Image Processing, 8(4):571–582, 1999.

[153] V. Ranjan, H. Le, and M. Hoai. Iterative crowd counting. In ECCV, 2018.

[154] B. Rasti, B. Koirala, P. Scheunders, and P. Ghamisi. Undip: Hyperspectral unmixing using deep
image prior. IEEE Transactions on Geoscience and Remote Sensing, 2021.

[155] A. Ribes and F. Schmitt. Linear inverse problems in imaging. IEEE Signal Processing Magazine,
25(4):84–99, 2008.

[156] S. Roth and M. J. Black. Fields of experts. International Journal of Computer Vision, 82(2):205,
2009.

107

Bibliography

[157] D. L. Ruderman. The statistics of natural images. Network: Computation in Neural Systems,
5(4):517–548, 1994.

[158] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

[159] S. R. Safavian and D. Landgrebe. A survey of decision tree classifier methodology. IEEE
Transactions on Systems, Man, and Cybernetics, 21(3):660–674, 1991.

[160] D. B. Sam, S. Surya, and R. V. Babu. Switching convolutional neural network for crowd counting.
In CVPR, 2017.

[161] D. H. Schenk. Exploiting the salience bias in designing taxes. Yale J. on Reg., 28:253, 2011.

[162] S. C. Segerstrom. Optimism and attentional bias for negative and positive stimuli. Personality and
social psychology bulletin, 27(10):1334–1343, 2001.

[163] H. R. Sheikh, M. F. Sabir, and A. C. Bovik. A statistical evaluation of recent full reference image
quality assessment algorithms. IEEE Transactions on image processing, 15(11):3440–3451, 2006.

[164] X. Shen, C. Zhou, L. Xu, and J. Jia. Mutual-structure for joint filtering. In ICCV, 2015.

[165] Z. Shen, Y. Xu, B. Ni, M. Wang, J. Hu, and X. Yang. Crowd counting via adversarial cross-scale
consistency pursuit. In CVPR, 2018.

[166] J. Shi, Q. Yan, L. Xu, and J. Jia. Hierarchical image saliency detection on extended cssd. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 38(4):717–729, 2015.

[167] M. Shi, Z. Yang, C. Xu, and Q. Chen. Revisiting perspective information for efficient crowd
counting. In CVPR, 2019.

[168] Z. Shi, Y. Chen, E. Gavves, P. Mettes, and C. G. M. Snoek. Unsharp mask guided filtering. IEEE
Transactions on Image Processing, 30:7472–7485, 2021.

[169] Z. Shi, P. Mettes, S. Maji, and C. G. M. Snoek. On measuring and controlling the spectral bias of
the deep image prior. International Journal of Computer Vision, 2021.

[170] Z. Shi, P. Mettes, and C. G. M. Snoek. Counting with focus for free. In ICCV, 2019.

[171] Z. Shi, L. Zhang, Y. Liu, X. Cao, Y. Ye, M.-M. Cheng, and G. Zheng. Crowd counting with deep
negative correlation learning. In CVPR, 2018.

[172] Z. Shi, L. Zhang, Y. Sun, and Y. Ye. Multiscale multitask deep netvlad for crowd counting. IEEE
Transactions on Industrial Informatics, 14(11):4953–4962, 2018.

[173] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012.

[174] E. P. Simoncelli and B. A. Olshausen. Natural image statistics and neural representation. Annual
Review of Neuroscience, 24(1):1193–1216, 2001.

[175] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[176] V. A. Sindagi and V. M. Patel. Generating high-quality crowd density maps using contextual
pyramid cnns. In ICCV, 2017.

[177] V. A. Sindagi and V. M. Patel. Multi-level bottom-top and top-bottom feature fusion for crowd
counting. In ICCV, 2019.

[178] V. A. Sindagi, R. Yasarla, and V. M. Patel. Jhu-crowd++: Large-scale crowd counting dataset and a
benchmark method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[179] P. Song, X. Deng, J. F. Mota, N. Deligiannis, P. L. Dragotti, and M. R. Rodrigues. Multimodal
image super-resolution via joint sparse representations induced by coupled dictionaries. IEEE
Transactions on Computational Imaging, 6:57–72, 2019.

108

Bibliography

[180] Q. Song, C. Wang, Z. Jiang, Y. Wang, Y. Tai, C. Wang, J. Li, F. Huang, and Y. Wu. Rethinking
counting and localization in crowds: A purely point-based framework. In ICCV, 2021.

[181] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. The implicit bias of gradient
descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878, 2018.

[182] H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, and J. Kautz. Pixel-adaptive convolutional
neural networks. In CVPR, 2019.

[183] Z. Sun, B. Han, J. Li, J. Zhang, and X. Gao. Weighted guided image filtering with steering kernel.
IEEE Transactions on Image Processing, 29:500–508, 2019.

[184] Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep recursive residual network. In CVPR,
pages 3147–3155, 2017.

[185] D. Titterington. General structure of regularization procedures in image reconstruction. Astronomy
and Astrophysics, 144:381, 1985.

[186] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. In CVPR, 2018.

[187] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. International Journal of Computer
Vision, 128(7), 2020.

[188] T. Vu, A. DiSpirito, D. Li, Z. Wang, X. Zhu, M. Chen, L. Jiang, D. Zhang, J. Luo, Y. S. Zhang,
Q. Zhou, R. Horstmeyer, and J. Yao. Deep image prior for undersampling high-speed photoacoustic
microscopy. Photoacoustics, 22:100266, 2021.

[189] J. Wan and A. Chan. Adaptive density map generation for crowd counting. In ICCV, pages
1130–1139, 2019.

[190] J. Wan and A. Chan. Modeling noisy annotations for crowd counting. In NeurIPS, 2020.

[191] J. Wan, Z. Liu, and A. B. Chan. A generalized loss function for crowd counting and localization. In
CVPR, 2021.

[192] J. Wan, Q. Wang, and A. B. Chan. Kernel-based density map generation for dense object counting.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[193] Z. Wan, B. Zhang, D. Chen, P. Zhang, D. Chen, J. Liao, and F. Wen. Bringing old photos back to
life. In CVPR, 2020.

[194] B. Wang, H. Liu, D. Samaras, and M. Hoai. Distribution matching for crowd counting. In NeurIPS,
2020.

[195] C. Wang, Q. Song, B. Zhang, Y. Wang, Y. Tai, X. Hu, C. Wang, J. Li, J. Ma, and Y. Wu. Uniformity
in heterogeneity: diving deep into count interval partition for crowd counting. In ICCV, 2021.

[196] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang, et al.
Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

[197] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell. Understanding convolution
for semantic segmentation. In WACV, 2018.

[198] Q. Wang, J. Gao, W. Lin, and Y. Yuan. Pixel-wise crowd understanding via synthetic data.
International Journal of Computer Vision, 129(1):225–245, 2021.

[199] X. Wang, F. Dai, Y. Ma, J. Guo, Q. Zhao, and Y. Zhang. Near-infrared image guided neural
networks for color image denoising. In ICASSP, 2019.

[200] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.

[201] S. Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

[202] T. P. Weldon, W. E. Higgins, and D. F. Dunn. Efficient gabor filter design for texture segmentation.
Pattern Recognition, 29(12):2005–2016, 1996.

109

Bibliography

[203] H. Wu, S. Zheng, J. Zhang, and K. Huang. Fast end-to-end trainable guided filter. In CVPR, 2018.

[204] J. Xie, R. S. Feris, and M.-T. Sun. Edge-guided single depth image super resolution. IEEE
Transactions on Image Processing, 25(1):428–438, 2015.

[205] C. Xu, K. Qiu, J. Fu, S. Bai, Y. Xu, and X. Bai. Learn to scale: Generating multipolar normalized
density maps for crowd counting. In ICCV, 2019.

[206] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio. Show,
attend and tell: Neural image caption generation with visual attention. In ICML, 2015.

[207] X. Xu, Y. Ma, and W. Sun. Learning factorized weight matrix for joint filtering. In ICML, 2020.

[208] Z.-Q. J. Xu, Y. Zhang, T. Luo, Y. Xiao, and Z. Ma. Frequency principle: Fourier analysis sheds
light on deep neural networks. Communications in Computational Physics, 2020.

[209] Q. Yan, X. Shen, L. Xu, S. Zhuo, X. Zhang, L. Shen, and J. Jia. Cross-field joint image restoration
via scale map. In ICCV, 2013.

[210] Z. Yan, Y. Yuan, W. Zuo, X. Tan, Y. Wang, S. Wen, and E. Ding. Perspective-guided convolution
networks for crowd counting. In ICCV, 2019.

[211] S. Yang, P. Luo, C. C. Loy, and X. Tang. Wider face: A face detection benchmark. In CVPR, 2016.

[212] W. Ye and K.-K. Ma. Blurriness-guided unsharp masking. IEEE Transactions on Image Processing,
27(9):4465–4477, 2018.

[213] H. Yin, Y. Gong, and G. Qiu. Side window filtering. In CVPR, 2019.

[214] D. Yu, J. Fu, T. Mei, and Y. Rui. Multi-level attention networks for visual question answering. In
CVPR, 2017.

[215] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. ICLR, 2015.

[216] F. Yu, V. Koltun, and T. A. Funkhouser. Dilated residual networks. In CVPR, 2017.

[217] T. Yu, S. Simoff, and T. Jan. Vqsvm: a case study for incorporating prior domain knowledge into
inductive machine learning. Neurocomputing, 73(13-15):2614–2623, 2010.

[218] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Regularization strategy to train
strong classifiers with localizable features. In ICCV, 2019.

[219] R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In ICCS,
2010.

[220] A. Zhang, J. Shen, Z. Xiao, F. Zhu, X. Zhen, X. Cao, and L. Shao. Relational attention network for
crowd counting. In ICCV, 2019.

[221] A. Zhang, L. Yue, J. Shen, F. Zhu, X. Zhen, X. Cao, and L. Shao. Attentional neural fields for
crowd counting. In ICCV, 2019.

[222] C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd counting via deep convolutional neural
networks. In CVPR, 2015.

[223] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian denoiser: Residual learning
of deep cnn for image denoising. Transactions on Image Processing, 26(7):3142–3155, 2017.

[224] K. Zhang, W. Zuo, and L. Zhang. Ffdnet: Toward a fast and flexible solution for cnn-based image
denoising. IEEE Transactions on Image Processing, 27(9):4608–4622, 2018.

[225] L. Zhang, Z. Shi, M.-M. Cheng, Y. Liu, J.-W. Bian, J. T. Zhou, G. Zheng, and Z. Zeng. Nonlinear
regression via deep negative correlation learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2019.

[226] S. Zhang, G. Wu, J. P. Costeira, and J. M. F. Moura. Understanding traffic density from large-scale
web camera data. In CVPR, 2017.

[227] S. Zhang, J. Yang, and B. Schiele. Occluded pedestrian detection through guided attention in cnns.
In CVPR, 2018.

110

Bibliography

[228] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Single-image crowd counting via multi-column
convolutional neural network. In CVPR, 2016.

[229] M. Zhao, J. Zhang, C. Zhang, and W. Zhang. Leveraging heterogeneous auxiliary tasks to assist
crowd counting. In CVPR, 2019.

[230] Z. Zhu, W. Wu, W. Zou, and J. Yan. End-to-end flow correlation tracking with spatial-temporal
attention. In CVPR, 2018.

[231] J. Zukerman, T. Tirer, and R. Giryes. Bp-dip: A backprojection based deep image prior. In
EUSIPCO, 2020.

111

C O M P L E T E L I S T O F P U B L I C AT I O N S

• Zenglin Shi, Pascal Mettes, Cees G. M. Snoek. “Three Things Everyone Should Know to
Improve Density-Based Counting”, in submission to European Conference on Computer
Vision, 2022.

• Zenglin Shi, Pascal Mettes, Subhransu Maji, Cees G. M. Snoek. “On Measuring and Con-
trolling the Spectral Bias of the Deep Image Prior”, International Journal of Computer
Vision, https://doi.org/10.1007/s11263-021-01572-7, 2022.

• Zenglin Shi, Yunlu Chen, Efstratios Gavves, Pascal Mettes, Cees G. M. Snoek. “Unsharp
Mask Guided Filtering”, IEEE Transactions on Image processing, vol. 30, pp. 7472-
7485, 2021.

• Zenglin Shi, Pascal Mettes, Guoyan Zheng, Cees G. M. Snoek. “Frequency-Supervised
MR-to-CT Image Synthesis”, MICCAI workshop on Deep Generative Models, 2021.

• Le Zhang*, Zenglin Shi*, Joey Tianyi Zhou, Ming-Ming Cheng, Yun Liu, Jia-Wang Bian,
Zeng Zeng, Chunhua Shen. “Ordered or Orderless: A Revisit for Video based Person
Re-ID”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp.
1460-1466, 2021. (* equal contributions)

• Le Zhang*, Zenglin Shi*, Ming-Ming Cheng, Yun Liu, Jia-Wang Bian, Joey Tianyi
Zhou, Guoyan Zheng, Zeng Zeng. “Nonlinear Regression via Deep Negative Correlation
Learning”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
pp. 982-998, 2021. (* equal contributions)

• Shuo Chen, Zenglin Shi, Pascal Mettes, Cees G. M. Snoek. “Social Fabric: Tubelet
Compositions for Video Relation Detection”, IEEE/CVF International Conference on
Computer Vision, 2021.

• Shizhe Hu, Zenglin Shi, Yangdong Ye. “DMIB: Dual-correlated Multivariate Information
Bottleneck for Multi-view Clustering”, IEEE Transactions on Cybernetics, vol. 41, pp.
1261-1273, 2020.

• Zenglin Shi, Pascal Mettes, Cees G. M. Snoek. “Counting with Focus for Free”, IEEE/CVF
International Conference on Computer Vision, 2019.

• Xiaofeng Cao, Baozhi Qiu, Xiangli Li, Zenglin Shi, Guandong Xu, Jianliang Xu. “Mul-
tidimensional Balance-Based Cluster Boundary Detection for High-Dimensional Data”,
IEEE Transactions on Neural Networks and Learning Systems, vol. 30, pp. 1867-1880,
2019.

• Zenglin Shi, Le Zhang, Yun Liu, Xiaofeng Cao, Yangdong Ye, Ming-Ming Cheng,
Guoyan Zheng. “Crowd Counting with Deep Negative Correlation Learning”, IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018.

• Zenglin Shi, Guodong Zeng, Le Zhang, Xiahai Zhuang, Lei Li, Guang Yang, Guoyan
Zheng. “Bayesian VoxDRN: A Probabilistic Deep Voxelwise Dilated Residual Network
for WholeHeart Segmentation from 3D MR Images”, MICCAI, 2018. (spotlight oral)

112

https://doi.org/10.1007/s11263-021-01572-7

Complete List of Publications

• Zenglin Shi, Le Zhang, Yibo Sun and Yandong Ye. “Multiscale Multitask Deep NetVLAD
for Crowd Counting”, IEEE Transactions on Industrial Informatics, vol. 14, pp. 4953-
4962, 2018.

• Yunpeng Wu, Yangdong Ye, Chenyang Zhao, Zenglin Shi. “Collective Density Clustering
for Coherent Motion Detection”, IEEE Transactions on MultiMedia, vol. 20, pp.
1418-1431, 2018.

• Zenglin Shi, Yangdong Ye, Yunpeng Wu. “Rank-based Pooling for Deep Convolutional
Neural Networks”, Neural Networks, vol. 83, pp. 21-31, 2016.

• Zenglin Shi, Yangdong Ye, Yunpeng Wu, Zhengzheng Lou. “Crowd Counting Using
Rank-based Spatial Pyramid Pooling Network”, Acta Automatica Sinica, vol. 42, pp.
866-874, 2016.

113

S A M E N VAT T I N G

Dit proefschrift is gewijd aan het onderzoeken van inductieve biases voor het leren van pixelrep-
resentaties. Dit proefschrift richt zich specifiek op de onderzoeksvraag: Hoe kunnen inductieve
biases voor het leren van pixelrepresentaties worden ontdekt en benut? We ontdekten eerst drie
inductieve biases en onthulden hun belang voor verschillende taken op pixelniveau, waaronder
spectrale bias voor de ‘deep image prior’, salience-bias voor begeleide filtering en aandachtsbias
voor het tellen van objecten. Naast het blootleggen van verschillende inductieve biases, proberen
we vervolgens nieuwe inductieve biases te ontwikkelen door gebruik te maken van voorkennis.
We hebben drie inductieve biases ontwikkeld voor het tellen van de beste objecten in hun klasse
door nieuwe kennis te ontdekken. Van elk hoofdstuk wordt als volgt een korte samenvatting
gegeven:

Hoofdstuk 2: Spectrale Bias van de Deep Image Prior. De ‘deep image prior’ toonde aan
dat een willekeurig geı̈nitialiseerd netwerk met een geschikte architectuur kan worden getraind
om inverse beeldvormingsproblemen op te lossen door simpelweg de parameters te optimaliseren
om een enkel verslechterd beeld te reconstrueren. Het heeft echter twee praktische beperkin-
gen. Ten eerste blijft het onduidelijk hoe de prior kan worden bediend buiten de keuze van de
netwerkarchitectuur om. Ten tweede vereist training een orakel-stopcriterium, omdat tijdens de
optimalisatie de prestatie afneemt nadat een optimale waarde is bereikt. Om deze uitdagingen
aan te gaan, introduceren we een maat voor de frequentieband correspondentie om de spectrale
bias van de ‘deep image prior’ te karakteriseren, waarbij laagfrequente beeldsignalen sneller en
beter worden geleerd dan hoogfrequente tegenhangers. Op basis van onze observaties stellen we
technieken voor om de uiteindelijke prestatievermindering te voorkomen en de convergentie te
versnellen. We introduceren een Lipschitz-gestuurde convolutielaag en een Gaussiaans-gestuurde
upsampling-laag als plug-in vervangers voor lagen die worden gebruikt in de diepe architecturen.
De experimenten laten zien dat met deze veranderingen de prestaties niet verslechteren tijdens
optimalisatie, waardoor we geen orakel-stopcriterium nodig hebben. We schetsen verder een
stopcriterium om overbodige berekeningen te vermijden. Ten slotte laten we zien dat onze
aanpak gunstige resultaten behaalt in vergelijking met de huidige benaderingen voor verschil-
lende taken op het gebied van ruisonderdrukking, deblokkering, inkleuring, superresolutie en
detailverbetering.

Hoofdstuk 3: Onscherpe Masker-Gestuurde Filterin. Het doel van dit hoofdstuk is ges-
tuurde beeldfiltering, die het belang van structuuroverdracht tijdens het filteren benadrukt door
middel van een extra begeleidingsbeeld. Waar klassiek gestuurde filters structuren overdragen
met behulp van met de hand ontworpen functies, zijn recente geleide filters aanzienlijk ver-
beterd door parametrisch leren van diepe netwerken. De state-of-the-art maakt gebruik van
diepe netwerken om de twee kerncoëfficiënten van het gestuurde filter te schatten. In dit werk
stellen we dat het gelijktijdig schatten van beide coëfficiënten suboptimaal is, wat resulteert in
halo-artefacten en structuurinconsistenties. Geı̈nspireerd door onscherp maskeren, een klassieke
techniek voor randverbetering die slechts een enkele coëfficiënt vereist, stellen we een nieuwe
en vereenvoudigde formulering voor van het gestuurde filter. Onze formulering geniet van een
filter prior van een laagdoorlaatfilter en maakt expliciete structuuroverdracht mogelijk door een
enkele coëfficiënt te schatten. Op basis van onze voorgestelde formulering introduceren we
een opeenvolgend gestuurd filternetwerk, dat meerdere filterresultaten biedt vanuit een enkel
netwerk, waardoor een afweging tussen nauwkeurigheid en efficiëntie mogelijk is. Uitgebreide

114

Samenvatting

ablaties, vergelijkingen en analyses tonen de effectiviteit en efficiëntie van onze formulering
en ons netwerk, wat resulteert in state-of-the-art resultaten voor filtertaken zoals upsamplen,
ruisonderdrukking en cross-modaliteitsfiltering.

Hoofdstuk 4: Gratis Tellen met Focus. Dit hoofdstuk heeft als doel om willekeurige objecten
in afbeeldingen te tellen. De leidende telbenaderingen beginnen met puntannotaties per object
waaruit ze dichtheidskaarten construeren. Vervolgens transformeert hun trainingsdoel input
afbeeldingen naar dichtheidskaarten via diepe convolutionele netwerken. We stellen dat de
puntannotaties meer toezichtdoeleinden dienen dan alleen het construeren van dichtheidskaarten.
We introduceren manieren om de punten gratis opnieuw te gebruiken. Ten eerste stellen we
gesuperviseerde focus voor vanuit segmentatie, waarbij punten worden omgezet in binaire kaarten.
De binaire kaarten worden gecombineerd met een netwerktak en bijbehorende loss functie om zich
te concentreren op relevante gebieden. Ten tweede stellen we gesuperviseerde focus van globale
dichtheid voor, waarbij de verhouding van puntannotaties tot beeldpixels in een andere tak wordt
gebruikt om de algehele dichtheidsschatting te regulariseren. Om zowel de dichtheidsschatting
als de focus van segmentatie te ondersteunen, introduceren we ook een verbeterde schatting voor
kernel-grootte voor de puntannotaties. Experimenten met zes datasets laten zien dat al onze
bijdragen de telfouten verminderen, ongeacht het basisnetwerk, wat resulteert in state-of-the-art
nauwkeurigheid met slechts een enkel netwerk. Ten slotte zijn we de eersten die tellen op
WIDER FACE, waardoor we de voordelen van onze aanpak kunnen laten zien bij het omgaan
met verschillende objectschalen en drukte niveaus.

Hoofdstuk 5: Drie Dingen Voor het Verbeteren van op Dichtheid Gebaseerd Tellen.
Drie dingen voor het verbeteren van op dichtheid gebaseerd tellen. Dit artikel gaat in op het
probleem van het tellen van willekeurige entiteiten in afbeeldingen door te leren van dichtheid-
skaarten. Toonaangevende benaderingen vertrekken van puntannotaties per object waaruit ze de
dichtheidskaarten construeren. Hun trainingsdoel transformeert vervolgens afbeeldingen naar
dichtheidskaarten via neurale netwerken. In dit werk bekijken we op dichtheid gebaseerd tellen
en identificeren we drie dingen die elke telbenadering beperken, en voor elk stellen we een
eenvoudige module als netwerk plug-in voor als een verbetering. Concreet, (i) we vinden dat het
voorspellen van dichtheden in de achtergrond meer dan de helft van het foutenpercentage bij het
tellen veroorzaakt en we schetsen een cascade om het effect van het tellen op achtergrondpixels
te beperken; (ii) occlusies zijn hardnekkig bij het tellen, maar komen niet vaak genoeg voor
in trainingsbeelden om te leren er goed mee om te gaan. We stellen een vergroting voor van
zowel invoer- als dichtheidsbeelden om te leren robuuster te zijn tegen occlusies; (iii) het con-
strueren van dichtheidskaarten van puntannotaties met Gaussiaanse convoluties is niet optimaal
voor het tellen. We stellen een alternatief voor dat leert om dichtheidskaarten te destilleren uit
een hulpdichtheidsvoorspellingsnetwerk. Dergelijke gedestilleerde kaarten zijn vloeiender en
robuuster tegen ruis dan hun Gaussiaanse tegenhangers. Alle drie de voorstellen zijn eenvoudig,
kunnen worden aangesloten op elk dichtheidsgebaseerd telnetwerk en leveren, wanneer ze worden
gecombineerd, de allernieuwste resultaten op ShanghaiTech Deel A en Deel B, JHU-Crowd++
en TRANCOS, met de eerste mean average fout onder de 50 op ShanghaiTech Deel A.

115

AC K N OW L E D G M E N T S

Completing a PhD is a beautiful thing, but there have been many challenges along the journey,
such as isolation, stress, failure, and pandemic. I could not have overcome these challenges
without the help and support of many great people beside me, and I therefore wish to express my
sincere gratitude.

First and foremost, I would like to thank my supervisor, Cees Snoek for his support and
guidance. Cees has taught me a good deal of research & communication knowledge and skills,
which made me grow up to be an independent and confident researcher. To name just a few, I
have learned how to write a paper, a rebuttal from a reader-based perspective, how to approach a
problem scientifically, and how to work smarter. He was always patient with my English, my
failure, and my negative emotions. He also was always there to encourage me and never lost
faith in my ability when I got rejected from a paper submission or an internship. I have a host of
memories of how kind and caring he’d been, for instance, he often came to my office to check if I
might feel isolated when I was sitting in a new office alone in the first few months of my PhD; He
called to comfort me when he heard I lost my backpack with my ID, passport, laptop and other
personal items, although he was attending a conference abroad. Cees, thank you so much for
everything that you have done for me.

I would also thank my co-supervisor, Pascal Mettes. He was always happy to listen, to
discuss, to give intelligent advice and suggestion whenever I needed him. Pascal, to be honest,
I felt sometimes frustrated because you always had better ideas on from structuring a paper to
drawing a figure. Whereas, I felt much more appreciated because this is how I learned a lot of
practical research skills from you. You always provided detailed feedbacks on my every Soos talk
presentation, and this is how I improved my presentation skills. You were also always there to
encourage and support me whenever I have been through rejections or other difficulties. Pascal, it
was an honor and pleasure working with you, and I truly appreciate you helping me get here.

Next, I thank the committee members for my Ph.D. defense: prof. Arnold Smeulders, prof.
Zeno Geradts, prof. Peter de With, dr. Subhransu Maji, and dr. Xiantong Zhen. Thanks for your
time in reading and commenting on my thesis. A special thanks goes to Arnold for his insightful
questions and suggestions provided during Soos talks. I also thank him for his kind to organize
New Year’s dinners for the whole group at his place. I’m also happy to have had the opportunity
to collaborate with Subhransu, and thank him for his great help in completing the Chapter 2.

Now I would like to thank all my great and cheerful friends for leaving me with numerous
beautiful memories by getting together to cook, cycling, travel, and enjoy the cozy life in
Amsterdam. Special thanks to Kong Xue, Song Wei, Liu Yuefeng, Huang Yifan, who were the
first few friends I made in Amsterdam and are still close and dear to me, thanks for teaching me
how to enjoy life. To William Thong, Sarah Ibrahimi, Riaan Zoetmulder, Sadaf Gulshad, Inske
Groenen, who are more of friends than colleagues, thanks for involving me in your personal life
and taking caring of me in the last four years. To Huang Jiahong, Chen Shuo, Zhang David, Shen
Yixian, Chen Yunlu, Wang Qi, Yang Pengwan, who were always there to share a drink, dinner
and holiday with me, thanks for your great friendship. To Wang Shihan, Wang Biwen, Hu Tao,
Zhao Jiaojiao, Zhang Yunhua, Wang Yuandou, Liu Jie, Liu Yongtuo, Liu Wenfeng, Shi Zeshun,
Zuo Qianru, Wang wei, Zhang Yahui, Yin Ruihong, Chu Wenjing, Guo Xiaotian, Feng Xiaoyi,
Xiao Jun, Sun Yiwei, Liu Hongyun, thanks for all the great moments shared. A big thanks also

116

Acknowledgments

goes to my Dutch friend Nancy Jurgens, who were always adding joy to my heart whenever we
had a chance to meet.

Furthermore, I would like to thank all great colleagues in VIS/ISIS Lab. I have been so
fortunate to join such a nice lab and work with many kind and intelligent people. A special thanks
goes to Dennis Koelma, you have been always helpful, cheerful, and enthusiastic to share your
opinions and stories with all of us. A big thanks to Virginie Mes and Petra Venema, who are
always there to lend a helping hand for all of us. I also thank Efstratios Gavves, Iris Groen, Yuki
M. Asano, Xiantong Zhen, Stevan Rudinac, and Nanne van Noord for setting good examples of
how to become a successful researcher for me. Cheers to Mehmet Altinkaya, Artem Moskalev,
Mina Ghadimiatigh, Sarah Rastegar, Clemens Georg Bartnik, Hazel Doughty, Mohammadreza
Salehi, Fida Thoker, Miltiadis Kofinas, Melika Ayoughi, Amber Brands, Andrew Brown, Gjorgji
Strezoski, Devanshu Arya, Tom van Sonsbeek for sharing your story, thought, value and culture
with me.

My final gratitude goes to my mother, father and younger brother for their incredible and
unconditional love and support, for enduring my absence in the past few years, and for always
being there for me. I dedicate this thesis to them.

Zenglin

117

	1 Introduction
	2 Spectral Bias of the Deep Image Prior
	2.1 Introduction
	2.2 Related work
	2.2.1 Inverse problems in imaging
	2.2.2 Deep image prior

	2.3 Measuring spectral bias
	2.3.1 Frequency-band correspondence metric
	2.3.2 Spectral measurement of deep image prior

	2.4 Controlling spectral bias
	2.4.1 Lipschitz-controlled spectral bias
	2.4.2 Gaussian-controlled spectral bias
	2.4.3 Automatic stopping criterion
	2.4.4 Performance analysis

	2.5 Applications
	2.5.1 Image denoising
	2.5.2 JPEG image deblocking
	2.5.3 Image inpainting
	2.5.4 Super-resolution
	2.5.5 Image enhancement
	2.5.6 Success and failure cases

	2.6 Conclusion

	3 Unsharp Mask Guided Filtering
	3.1 Introduction
	3.2 Background and related work
	3.2.1 Classical guided filtering
	3.2.2 Deep guided filtering
	3.2.3 Unsharp masking

	3.3 Filtering formulation
	3.4 Filtering network
	3.5 Experiments
	3.5.1 Experimental setup
	3.5.2 Unsharp-mask guided filtering without learning.
	3.5.3 Unsharp-mask guided filtering with learning
	3.5.4 Successive filtering network
	3.5.5 Performance analysis.
	3.5.6 Depth and flow upsampling
	3.5.7 Depth and natural image denoising
	3.5.8 Cross-modality filtering

	3.6 Conclusion

	4 Counting with Focus for Free
	4.1 Introduction
	4.2 Related work
	4.3 Focus for free
	4.3.1 Focus from segmentation
	4.3.2 Focus from global density
	4.3.3 Non-uniform kernel estimation
	4.3.4 Architecture and optimization

	4.4 Experiments and results
	4.4.1 Experimental setup
	4.4.2 Focus from segmentation
	4.4.3 Focus from global density
	4.4.4 Combined focus for free
	4.4.5 Non-uniform kernel estimation
	4.4.6 Comparison to the state-of-the-art

	4.5 Conclusion
	4.6 Appendix

	5 Three Things for Improving Density-Based Counting
	5.1 Introduction
	5.2 Evaluation, datasets, and networks
	5.3 Do not count on the background
	5.4 Create occlusion to handle occlusion
	5.5 Gaussians are not ground-truth
	5.6 Comparative evaluation
	5.7 Conclusion
	5.8 Appendix

	6 Summary and Conclusions
	6.1 Summary
	6.2 Conclusions

	Bibliography
	Complete List of Publications
	Samenvatting
	Acknowledgments

