944 research outputs found

    Topology, homogeneity and scale factors for object detection: application of eCognition software for urban mapping using multispectral satellite image

    Full text link
    The research scope of this paper is to apply spatial object based image analysis (OBIA) method for processing panchromatic multispectral image covering study area of Brussels for urban mapping. The aim is to map different land cover types and more specifically, built-up areas from the very high resolution (VHR) satellite image using OBIA approach. A case study covers urban landscapes in the eastern areas of the city of Brussels, Belgium. Technically, this research was performed in eCognition raster processing software demonstrating excellent results of image segmentation and classification. The tools embedded in eCognition enabled to perform image segmentation and objects classification processes in a semi-automated regime, which is useful for the city planning, spatial analysis and urban growth analysis. The combination of the OBIA method together with technical tools of the eCognition demonstrated applicability of this method for urban mapping in densely populated areas, e.g. in megapolis and capital cities. The methodology included multiresolution segmentation and classification of the created objects.Comment: 6 pages, 12 figures, INSO2015, Ed. by A. Girgvliani et al. Akaki Tsereteli State University, Kutaisi (Imereti), Georgi

    Object-Based Greenhouse Classification from GeoEye-1 and WorldView-2 Stereo Imagery

    Get PDF
    Remote sensing technologies have been commonly used to perform greenhouse detection and mapping. In this research, stereo pairs acquired by very high-resolution optical satellites GeoEye-1 (GE1) and WorldView-2 (WV2) have been utilized to carry out the land cover classification of an agricultural area through an object-based image analysis approach, paying special attention to greenhouses extraction. The main novelty of this work lies in the joint use of single-source stereo-photogrammetrically derived heights and multispectral information from both panchromatic and pan-sharpened orthoimages. The main features tested in this research can be grouped into different categories, such as basic spectral information, elevation data (normalized digital surface model; nDSM), band indexes and ratios, texture and shape geometry. Furthermore, spectral information was based on both single orthoimages and multiangle orthoimages. The overall accuracy attained by applying nearest neighbor and support vector machine classifiers to the four multispectral bands of GE1 were very similar to those computed from WV2, for either four or eight multispectral bands. Height data, in the form of nDSM, were the most important feature for greenhouse classification. The best overall accuracy values were close to 90%, and they were not improved by using multiangle orthoimages

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    The role of earth observation in an integrated deprived area mapping “system” for low-to-middle income countries

    Get PDF
    Urbanization in the global South has been accompanied by the proliferation of vast informal and marginalized urban areas that lack access to essential services and infrastructure. UN-Habitat estimates that close to a billion people currently live in these deprived and informal urban settlements, generally grouped under the term of urban slums. Two major knowledge gaps undermine the efforts to monitor progress towards the corresponding sustainable development goal (i.e., SDG 11—Sustainable Cities and Communities). First, the data available for cities worldwide is patchy and insufficient to differentiate between the diversity of urban areas with respect to their access to essential services and their specific infrastructure needs. Second, existing approaches used to map deprived areas (i.e., aggregated household data, Earth observation (EO), and community-driven data collection) are mostly siloed, and, individually, they often lack transferability and scalability and fail to include the opinions of different interest groups. In particular, EO-based-deprived area mapping approaches are mostly top-down, with very little attention given to ground information and interaction with urban communities and stakeholders. Existing top-down methods should be complemented with bottom-up approaches to produce routinely updated, accurate, and timely deprived area maps. In this review, we first assess the strengths and limitations of existing deprived area mapping methods. We then propose an Integrated Deprived Area Mapping System (IDeAMapS) framework that leverages the strengths of EO- and community-based approaches. The proposed framework offers a way forward to map deprived areas globally, routinely, and with maximum accuracy to support SDG 11 monitoring and the needs of different interest groups

    Object-Based Greenhouse Mapping Using Very High Resolution Satellite Data and Landsat 8 Time Series

    Get PDF
    Greenhouse mapping through remote sensing has received extensive attention over the last decades. In this article, the innovative goal relies on mapping greenhouses through the combined use of very high resolution satellite data (WorldView-2) and Landsat 8 Operational Land Imager (OLI) time series within a context of an object-based image analysis (OBIA) and decision tree classification. Thus, WorldView-2 was mainly used to segment the study area focusing on individual greenhouses. Basic spectral information, spectral and vegetation indices, textural features, seasonal statistics and a spectral metric (Moment Distance Index, MDI) derived from Landsat 8 time series and/or WorldView-2 imagery were computed on previously segmented image objects. In order to test its temporal stability, the same approach was applied for two different years, 2014 and 2015. In both years, MDI was pointed out as the most important feature to detect greenhouses. Moreover, the threshold value of this spectral metric turned to be extremely stable for both Landsat 8 and WorldView-2 imagery. A simple decision tree always using the same threshold values for features from Landsat 8 time series and WorldView-2 was finally proposed. Overall accuracies of 93.0% and 93.3% and kappa coefficients of 0.856 and 0.861 were attained for 2014 and 2015 datasets, respectively

    Monitoring soil erosion in the Souss basin, Morocco, with a multiscale object-based remote sensing approach using UAV and satellite data

    Get PDF
    This article presents a multiscale approach for detecting and monitoring soil erosion phenomena (i.e. gully erosion) in the agro-industrial area around the city of Taroudannt, Souss basin, Morocco. The study area is characterized as semi-arid with an annual average precipitation of 200 mm. Water scarcity, high population dynamics and changing land use towards huge areas of irrigation farming present numerous threats to sustainability. The agro-industry produces citrus fruits and vegetables in monocropping, mainly for the European market. Badland areas strongly affected by gully erosion border the agricultural areas as well as residential areas. To counteract the significant loss of land, land-leveling measures are attempted to create space for plantations and greenhouses. In order to develop sustainable approaches to limit gully growth the detection and monitoring of gully systems is fundamental. Specific gully sites are monitored with unmanned aerial vehicle (UAV) taking small-format aerial photographs (SFAP). This enables extremely high-resolution analysis (SFAP resolution: 2-10 cm) of the actual size of the gully channels as well as a detailed continued surveillance of their growth. Transferring the methodology on a larger scale using Quickbird satellite data (resolution: 60 cm) leads to the possibility of a large-scale analysis of the whole area around the city of Taroudannt (Area extent: ca. 350 km²). The results will then reveal possible relationships of gully growth and agro-industrial management and may even illustrate further interdependencies. The main objective is the identification of areas with high gully-erosion risk due to non-sustainable land use and the development of mitigation strategies for the study area

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods
    corecore