6,830 research outputs found

    Divided we stand: Parallel distributed stack memory management

    Get PDF
    We present an overview of the stack-based memory management techniques that we used in our non-deterministic and-parallel Prolog systems: &-Prolog and DASWAM. We believe that the problems associated with non-deterministic and-parallel systems are more general than those encountered in or-parallel and deterministic and-parallel systems, which can be seen as subsets of this more general case. We develop on the previously proposed "marker scheme", lifting some of the restrictions associated with the selection of goals while keeping (virtual) memory consumption down. We also review some of the other problems associated with the stack-based management scheme, such as handling of forward and backward execution, cut, and roll-backs

    Or-Parallel Prolog Execution on Clusters of Multicores

    Get PDF
    Logic Programming languages, such as Prolog, provide an excellent framework for the parallel execution of logic programs. In particular, the inherent non-determinism in the way logic programs are structured makes Prolog very attractive for the exploitation of implicit parallelism. One of the most noticeable sources of implicit parallelism in Prolog programs is or-parallelism. Or-parallelism arises from the simultaneous evaluation of a subgoal call against the clauses that match that call. Arguably, the most successful model for or-parallelism is environment copying, that has been efficiently used in the implementation of or-parallel Prolog systems both on shared memory and distributed memory architectures. Nowadays, multicores and clusters of multicores are becoming the norm and, although, many parallel Prolog systems have been developed in the past, to the best of our knowledge, none of them was specially designed to explore the combination of shared with distributed memory architectures. Motivated by our past experience, in designing and developing parallel Prolog systems based on environment copying, we propose a novel computational model to efficiently exploit implicit parallelism from large scale real-world applications specialized for the novel architectures based on clusters of multicores

    Relating goal scheduling, precedence, and memory management in and-parallel execution of logic programs

    Full text link
    The interactions among three important issues involved in the implementation of logic programs in parallel (goal scheduling, precedence, and memory management) are discussed. A simplified, parallel memory management model and an efficient, load-balancing goal scheduling strategy are presented. It is shown how, for systems which support "don't know" non-determinism, special care has to be taken during goal scheduling if the space recovery characteristics of sequential systems are to be preserved. A solution based on selecting only "newer" goals for execution is described, and an algorithm is proposed for efficiently maintaining and determining precedence relationships and variable ages across parallel goals. It is argued that the proposed schemes and algorithms make it possible to extend the storage performance of sequential systems to parallel execution without the considerable overhead previously associated with it. The results are applicable to a wide class of parallel and coroutining systems, and they represent an efficient alternative to "all heap" or "spaghetti stack" allocation models

    An OR parallel Prolog model for distributed memory systems

    Full text link

    A proposal for a flexible scheduling and memory management scheme for non-deterministic, andparallel execution of logic programs

    Get PDF
    In this paper, we examine the issue of memory management in the parallel execution of logic programs. We concentrate on non-deterministic and-parallel schemes which we believe present a relatively general set of problems to be solved, including most of those encountered in the memory management of or-parallel systems. We present a distributed stack memory management model which allows flexible scheduling of goals. Previously proposed models (based on the "Marker model") are lacking in that they impose restrictions on the selection of goals to be executed or they may require consume a large amount of virtual memory. This paper first presents results which imply that the above mentioned shortcomings can have significant performance impacts. An extension of the Marker Model is then proposed which allows flexible scheduling of goals while keeping (virtual) memory consumption down. Measurements are presented which show the advantage of this solution. Methods for handling forward and backward execution, cut and roll back are discussed in the context of the proposed scheme. In addition, the paper shows how the same mechanism for flexible scheduling can be applied to allow the efficient handling of the very general form of suspension that can occur in systems which combine several types of and-parallelism and more sophisticated methods of executing logic programs. We believe that the results are applicable to many and- and or-parallel systems

    Applying Prolog to Develop Distributed Systems

    Get PDF
    Development of distributed systems is a difficult task. Declarative programming techniques hold a promising potential for effectively supporting programmer in this challenge. While Datalog-based languages have been actively explored for programming distributed systems, Prolog received relatively little attention in this application area so far. In this paper we present a Prolog-based programming system, called DAHL, for the declarative development of distributed systems. DAHL extends Prolog with an event-driven control mechanism and built-in networking procedures. Our experimental evaluation using a distributed hash-table data structure, a protocol for achieving Byzantine fault tolerance, and a distributed software model checker - all implemented in DAHL - indicates the viability of the approach

    Distributed Programming with Shared Data

    Get PDF
    Until recently, at least one thing was clear about parallel programming: tightly coupled (shared memory) machines were programmed in a language based on shared variables and loosely coupled (distributed) systems were programmed using message passing. The explosive growth of research on distributed systems and their languages, however, has led to several new methodologies that blur this simple distinction. Operating system primitives (e.g., problem-oriented shared memory, Shared Virtual Memory, the Agora shared memory) and languages (e.g., Concurrent Prolog, Linda, Emerald) for programming distributed systems have been proposed that support the shared variable paradigm without the presence of physical shared memory. In this paper we will look at the reasons for this evolution, the resemblances and differences among these new proposals, and the key issues in their design and implementation. It turns out that many implementations are based on replication of data. We take this idea one step further, and discuss how automatic replication (initiated by the run time system) can be used as a basis for a new model, called the shared data-object model, whose semantics are similar to the shared variable model. Finally, we discuss the design of a new language for distributed programming, Orca, based on the shared data-object model. 1

    An abstract machine for restricted and-parallel execution of logic programs

    Full text link
    Although the sequential execution speed of logic programs has been greatly improved by the concepts introduced in the Warren Abstract Machine (WAM), parallel execution represents the only way to increase this speed beyond the natural limits of sequential systems. However, most proposed parallel logic programming execution models lack the performance optimizations and storage efficiency of sequential systems. This paper presents a parallel abstract machine which is an extension of the WAM and is thus capable of supporting ANDParallelism without giving up the optimizations present in sequential implementations. A suitable instruction set, which can be used as a target by a variety of logic programming languages, is also included. Special instructions are provided to support a generalized version of "Restricted AND-Parallelism" (RAP), a technique which reduces the overhead traditionally associated with the run-time management of variable binding conflicts to a series of simple run-time checks, which select one out of a series of compiled execution graphs

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited
    • …
    corecore