
Divided We Stand: Parallel Distributed Stack
Memory Management

Kish Shen
Computer Science Department

Bristol University, UK
email: kish@acrc.bristol.ac.uk

Manuel Hermenegi ldo
Facultad de Informática

Universidad Politécnica de Madrid (UPM)
28660-Boadilla del Monte, Madrid, SPAIN

email: herme@fi.upm.es

August 4, 1999

Abst rac t

We present an overview of the stack-based memory management techniques that we used
in our non-deterministic and-parallel Prolog systems: &-Prolog and DASWAM. We believe
that the problems associated with non-deterministic and-parallel systems are more general
than those encountered in or-parallel and deterministic and-parallel systems, which can be
seen as subsets of this more general case. We develop on the previously proposed "marker
scheme", lifting some of the restrictions associated with the selection of goals while keeping
(virtual) memory consumption down. We also review some of the other problems associ­
ated with the stack-based management scheme, such as handling of forward and backward
execution, cut, and roll-backs.

Keywords: Parallelism, Logic Programming, Memory Management, And-parallelism,
Or-parallelism, Implementation

1 Introduction

The efficiency of a sequential Prolog implementation is largely determined by two factors: the
basic speed — i.e., the raw speed at which it is able to execute Prolog code; and memory usage
— i.e., the amount of memory the system uses while executing a program.

Memory emciency comes into play mainly when large, realistic application-type programs
are executed, rather than in small benchmark-type programs. Memory usage is important for
large programs because of the finite resources in any real computer system. In the worst case, a
program will not run on a system that is not memory efficient, but will run on a more efficient

mailto:kish@acrc.bristol.ac.uk
mailto:herme@fi.upm.es

one. In less extreme cases, the extra swapping a memory inefficient system introduces will have
an important negative impact on performance.

The issue of memory performance is of even greater importance in a parallel system than in
a sequential system, because a parallel system is likely to consume more total memory than a
sequential system, both because more code is being executed at the same time, and because of
the overhead needed to support parallelism. Moreover, the issue is of even greater importance for
a declarative language such as Prolog, which is generally already considered to be less memory
emcient than conventional imperative languages.

There are other issues that will affect the perceived performance of a parallel Prolog system,
including the emciency of the system in exploiting parallelism, and higher level issues such as the
nature and availability of the parallelism. For a complete look at the performance of a parallel
Prolog system, all these issues need to be examined. These other issues have been examined in
greater or lesser detail elsewhere, but we feel that issues related to memory management and us-
age are usually not considered in detail in the parallel Prolog literature, and indeed performance
evaluation of systems often consists of benchmarking the system with small programs, which do
not stress the memory resources of the hardware. We therefore feel that there is a need to look
at memory management in parallel Prolog systems in more detail. This is the purpose of this
paper.

We present an overview of one way of tackling the memory usage problem of parallel Prolog
system — that of using múltiple stacks, concentrating on the methods used in systems we have
implemented — PWAM [6] and DASWAM [18].x We examine these systems for concreteness,
and also, as we shall show, because we feel that our systems represent a class of systems (those
supporting non-deterministic and-parallelism) which have to tackle more general problems in
memory management than other parallel Prolog systems, such as deterministic and-parallel and
or-parallel systems.

The rest of the paper is organised as follows: first, we introduce the múltiple stack model,
and discuss its merits. We then briefly overview how the model is implemented, and finally, we
examine some of the extra support mechanisms that are needed to deal with parallel execution of
full Prolog: dealing with cuts, backward execution, and propagation of failure. Throughout this
paper we assume that the reader is familiar with Prolog, and parallel Prolog. We also assume
some familiarity with the implementation of parallel Prolog systems.

2 General Approach

The most emcient sequential logic programming systems obtain much of their performance from
doing their own stack-based memory management and through compilation. Storage space is
recovered automatically on backtracking, reducing the need for an explicit garbage collector. In
addition, a compiled system is more memory emcient than an interpreted system because the
compilation process reduces the amount of information that needs to be replicated from one
procedure cali to another. Moreover, in many systems (such as the DEC-10 Prolog machine [20]
and the WAM [21]), further storage optimisation is obtained by the use of a two stack model,
where the storage of variables is divided between two áreas — the local and global stacks.
This allows storage in the local stack to be recovered as soon as a clause has been completed
without an alternative. Furthermore, through last cali optimisation, local stack frames (the
WAM "environments") can be often reused, effectively turning recursion into iteration.2

Ideally, we would like memory management on parallel systems to achieve similar results

1 These are the abstract machines for &-Prolog [6] and DDAS [16], respectively.
2For a detailed description of the WAM, see [1].

to those achieved in sequential systems: recovery of storage space during backtracking, min-
imisation of the replication of state information, and early recovery of some additional storage
space. A compiled parallel system is the first step to more emcient memory management, and
we shall describe our approach in that context, although the techniques should be applicable
to interpreted systems as well. Before we introduce our specific approach, we first discuss some
general properties of the parallel systems we are considering.

We adopt the subtree-based approach to executing Prolog programs in parallel, which is
common to many models. In this approach parallelism is achieved by allowing several entities
-which are often called workers - to simultaneously explore the search tree of a program. Each
such worker explores the search tree in much the same way as sequential Prolog: depth-first, left-
to-right. Generally, each worker will be assigned to a different part of the tree. Thus, the search
tree can be thought of as being divided into subtrees, each of which is executed sequentially and
referred to as a task. In the case of or-parallelism these subtrees are generally branches of the
tree, while in the case of and-parallelism they are contiguous parts of one or more branches. It
is often the case that the subtrees are not determined a priori but rather as the tree is being
dynamically constructed: as a worker works on a task, opportunities for parallelism are identified
and thus marked. When a worker finishes exploring a subtree, it may start exploring another
sub-tree which has been identified for parallel execution - this process is referred to as s tea l ing
a task. It should be noted that if there are no free workers the tasks or subtrees identified by
a worker will (eventually) be explored by this worker.

The subtree-based approach has the advantage that the execution of each task is very similar
to that of sequential Prolog, and thus many of the techniques (and advantages) of sequential
Prolog implementations should carry over, including those related to memory management.
However, the actual way in which the parallel workers are managed, and the actual mechanisms
for memory management remain to be specified. For this, we will use a "distributed stack"
scheme as our starting point. Variants of such a scheme (and its restricted versión, the "cactus
stack" scheme) have been used repeatedly in implementations because they offer the potential
to achieve the above mentioned goal of approaching sequential memory efficiency [2, 8, 22, 23].

We assume the program is to be compiled into instructions which are quite similar to those
of a Prolog engine, with perhaps some additional instructions related to parallelism. Following
[9, 6], we view each of the workers as composed of two elements: an agent , which is a processing
element, capable of executing such instructions in much the same way as a sequential Prolog
engine, and a stack set , which represents the associated storage, i.e., a set of stacks, consisting of
the normal sequential Prolog stacks plus perhaps some other áreas needed for parallel execution,
and a number of registers, as is shown in Figure 1, which represents a simplified layout with
elements from both PWAM and DASWAM. A complete parallel system then consists of a number
of agents, and the same number or greater of stack sets. Agents are free to attach to any stack
set that does not already have an attached agent, and are also free to move to other stack sets.
A stack set with an attached agent can then be viewed as a worker, and can actively perform
computation. Emcient use of the agents, which are really representing the physical processors
of the underlying parallel machine, is necessary to achieve good speedups. Emcient use of the
stack sets is necessary to keep memory usage reasonable.

Following the subtree-based approach, an agent can execute a task and use the stack set it is
attached to in much the same way as in standard Prolog execution, except for such differences
as preparing work for and-parallel execution, and when a task is completed or suspended. When
a task completes or suspends, then if more tasks are available, a new task can be started. In
order to use agents and stack sets efficiently, the simplest thing is to use the same agent and
stack set to perform the new task by using the space beyond that already used by the older task.
Thus, the contents of a stack set can be seen as divided into áreas, each corresponding to a task.

PF

B — •

A — •

1 E 1 »
1 L 1 *

Control
Stack

Choicepoints

M arkers 1

Environments

Local stack

SL

M

H

S

Perm. vars,
Structures
Dep. cells

Global stack

Avail. goals

Goal Stack

State regs
ID

NL

AL

TS

• • • •

Figure 1: Possible Layout of One Stack Set

Each such área is referred to as a stack section.3 The ordering of the stack sections on the
worker's stack set is the chronological order in which the worker executed the tasks associated
with the stack sections. In order to distinguish and manage such sections, they are separated
from each other by markers [9]. Abstractly, we can consider that markers are placed in all the
stacks in a stack set, separating the stack sections in each stack. However, in practice this is
done by allocating markers on to only one stack (and the choice point (control) stack seems the
most natural one to use), which in turn contain pointers to the corresponding boundaries of the
stack sections in the other stacks. In addition, depending on the nature of the section above or
below them, some markers may serve some additional special functions.

Thus, markers are used in a particular stack set to sepárate different stack sections, and in
addition, to link the various stack sections that are distributed to the various stack sets logically.
This logical link is important because it enables the linked stack sections to be viewed abstractly
as one continuous stack.

The "marker scheme" [7, 9, 6] summarised above can be used for both or- and and-parallel
systems. In an or-parallel system, specially marked ("public") choice points can serve as markers
(as is done in e.g., Aurora [12]), each one corresponding to a "fork" in the parallel task tree. If
and-parallelism is restricted to "deterministic" goals, such as in PNU-Prolog [13] and Andorra-

3Note that a task may be spread over several stack sections, because of backtracking and suspensions.

I [14] ,4 then choice points can also be used as markers, as they mark points where there is
no and-parallelism. However, in (don't know) non-deterministic and-parallel systems, where
and-parallelism is allowed among goals which potentially can have more than one solution, the
marker function cannot be fulfilled by choice points only. In addition, and unlike in an or-parallel
system, not only forks but also "joins" have to be performed on the tasks representing sibling
and-goals, and more coordination than for or-parallel systems is needed. Thus, additional data
structures have to be provided to serve as several types of markers. Therefore, the marker
scheme used for "non-deterministic" and-parallelism can be regarded as a generalisation of an
or-parallel and a deterministic and-parallel marker scheme. In this paper we will concéntrate
on this scheme, with the understanding that the solutions proposed and results obtained can be
applied to the other forms of parallelism, perhaps with simplifications.

2.1 Overview of the Marker Scheme in P W A M and D A S W A M

For concreteness, we now overview the marker scheme as implemented in PWAM and DASWAM.
Both of these schemes developed from the original scheme presented above, and contain similar
extensions.5 Both systems implement non-deterministic and-parallelism.6

In these implementations, five basic types of markers can be recognised:

Parcall Frame. This marker manages the and-parallel execution of body goals inside a clause,
and is allocated just before scheduling a set of body goals which are determined to be
executed in parallel (for concreteness, we will assume that &-Prolog's Conditional Graph
Expressions — CGEs — [7], extending DeGroot's Execution Graph Expressions [5], are
used for this purpose).7

Join Marker. This marks the end of an and-parallel execution: after spawning and-parallel
execution for a particular CGE, solutions to the various and-goals being executed in parallel
will be returned at different times, if the and-parallel execution does not fail. Eventually,
solutions would be returned for all the and-goals, and the and-parallel execution has to
be "joined" to allow the execution of goals following the CGE. For this purpose, the last
agent to return a solution allocates a join marker on the stack set it is attached to, and
then executes the continuation following the CGE. 8

Suspend Marker. This marks the suspensión of a task on the previous stack section, and
is allocated by an agent on a stack set when it wants to use that stack set for another
task. The suspended task can then (eventually) be continued at another location in the
distributed stack.

Cont inuat ion Marker. This marks the continuation of a task, and is allocated when a task
is resumed after a suspensión. This enables the task to continué execution in a different
location in the distributed stack.

Basic Marker. This marks the start of a stack section that is not of the above types, e.g.,
when a new task is started. These correspond to both the input goal markers and the
local goal markers described in [7].

4The term "determínate" is used instead of "deterministic" in Andorra-I.
6There are some minor differences, but these are unimportant for the purposes of this paper.
6Independent and-parallelism in the case of &-Prolog, dependent and-parallelism (with independent and-

parallelism as a subset), in the case of DASWAM.
7These frames are allocated on the environment stack in PWAM and on the control stack in DASWAM.
8Note that this is an extensión of the original scheme proposed in [7], where the stack set that started the

and-parallel execution had to be the one used for the task following the completion of the CGE.

Wl W2 W3

Figure 2: Stack States for a Distributed Stack Scheme

Figure 2 illustrates the use of the marker scheme to represent the following &-Prolog program
fragment:

f oo (a & b & c) , d.

A possible parallel execution of this clause is shown in Figure 2, where each stack set is
represented as a single stack for simplicity. Markers are represented as thin horizontal boxes,
while the contents of a stack section are the larger shaded regions in each stack set. The and-task
of concern is shaded in light grey in the different stacks. W l is the worker that executes f oo,
which is pushed onto the top of W l ' s stack. At the CGE, a is executed locally, while b and c
are executed remotely (in parallel with the execution of a) on W2 and W3 respectively. When
a, b and c have all finished execution, W2 picks up the goal after the CGE, d, and continúes the
execution, leaving W l and W2 idling, and thus ready to pick up more work. Before executing
b or c, both W2 and W3 were idling and were therefore able to pick up b and c. Both have
performed some work, and used their stack. This "oíd" work is separated from the current work
by a marker. Parcall markers are used to mark the start of a CGE (e.g., the one separating foo
from a), and contain pointers to link the stack sections of the sibling and-goals of the CGE, and
a pointer to the stack section following the CGE.

All the markers also contain extra pointers for linking the various stack sections: markers
on the same stack set are doubly linked, to facilítate the movement within a stack section,
and markers also contain pointers to link the various stack sections (which may be on different
stack sets) together logically. This is shown in Figure 3, where the lighter shaded stack sections
represent a task which is split into two stack sections, with the appropriate linkages in the
markers. These pointers allow the system to backtrack across different stack sections in the
logically correct order by following the links.

: >
i

Marker

t

'

Marker
< ^

u

/

/
i

1'

Marker

i

<

>

direction of growth

Figure 3: Linking of Markers

One major difference between a distributed stack scheme and a sequential stack scheme is
that backtracking can occur in any of the stack sections in a stack set, so each stack set can have
múltiple points of backtracking (and potentially múltiple points of growth) at the same time.
The pat tern of contraction and growth is thus affected by what each stack section represents,
and this results in a cióse relationship between memory management and goal scheduling. This
leads to the problems of "trapped goals" and "garbage slots" [9] (also later referred to as "lióles"
in or-parallel systems). In a previous paper [9], several solutions were proposed to solve these
problems by placing some constraints on which goals could be executed on a particular stack set.
This imposed extra overhead when selecting a goal, and either limited parallelism or imposed a
high cost on virtual memory consumption, because of the creation of potentially large numbers
of stack sets. In our actual implementations, we extended this previous work by the use of
suspend/continuation markers, which allow the suspensión and resumption of a task on different
stack sets. Thus, the constraints on which goals can be selected are lifted, allowing the use of
more flexible schedulers. Such schedulers should be able to give better performance (speedups),
although they may use more memory.

2.2 Comparison be tween flexible and restricted schedulers

In order to gauge the effectiveness of the more flexible schedulers, two schedulers were imple-
mented and compared: the 'flexible' and 'restricted' schedulers. The flexible scheduler uses an
implementation that incorporates the suspend/continuation markers, and places no limitations
on which goals may be selected. The restricted scheduler is an implementation of one of the
schemes proposed in [9], where only 'appropriate ' goals are allowed to be selected, resulting in
the preservation of the sequential chronological ordering the stack sections in each stack set.

Some experiments were performed comparing these two schedulers, using the DASWAM
simulator. The results, reported in [19], will be summarised here:

The flexible scheduler gave better speedups in programs in which more than one of the goals
in a CGE contained CGEs, that is, in which recursive and-parallelism appeared in more than
one of the goals in a CGE. Depending on the distribution of parallelism, the speedups ranged

workers

10
20
30

orsim
flexible

9.8
19.1
27.9

restricted

8.1
16.3
23.6

boyer
flexible

6.6
8.7
9.3

restricted

2.8
3.2
3.4

Table 1: Comparison of speedups between restricted and flexible schedulers

orsim
boyer

flexi
total

964580
1764616

ble
s.d.

±1499
±764

restricted
total s.d.

967271
175112

±13546
±19079

Table 2: Memory usages of the two schedulers

from being slightly to significantly better than those of the restricted scheduler. Table 1 shows
the speedups achieved by the two schedulers for two programs at 10, 20, and 30 workers. One of
the programs, boyer, a simple theorem prover, showed quite a large difference between the two
schedulers. On the other hand, orsim, a simulator used to study the high-level characteristics
of or- and independent and-paraflelism [17], showed smaller differences.

We expect the differences between the two schedulers to be even more in favour of the
flexible scheduler in a real system, because in our comparisons, we did not simúlate the cost
of maintaining the information necessary for the selection of appropriate goals in the restricted
scheduler. This is expected to be either very expensive, or to place even more restriction on
paraflelism.

One possible problem with the flexible scheduler is that it may consume more memory. In
order to quantify this effect, the amount of memory used by the two schedulers was also measured
in our experiments. We found that the flexible scheduler did not use significantly more memory
than the restricted scheduler, at least in the programs we examined.

Table 2 compares the memory usage for orsim and boyer running with 10 workers under the
two schedulers. The measurements were taken at one instance of simulation ' t ime' just before
the programs finished executing, when the memory usages for these programs were at their
greatest. Two figures are given for each scheduler and program: the total amount of memory
used by all the 10 stack sets of the 10 workers, and the standard deviation on the amount of
memory each stack set was using. The greater the standard deviation, the greater the variation
of memory usage for each worker.

The results suggest that the flexible scheduler does not use more memory than the restricted
scheduler: in fact, the usages in both programs seem to be slightly smaller for the flexible
scheduler, though this is probably due to the way the data was gathered. In addition, the
memory usage is divided more evenly between the workers for the flexible scheduler.

Taken together, these results suggest that the flexible scheduler achieves better speedups
with reasonable extra cost in memory usage.9

9Results from the or-parallel PEPSys system [4] also support the same conclusión for or-parallel systems.
However, as mentioned before, or-parallel systems do not suffer from the trapped goal problem, so the problem
is less severe than in the more general case of non-deterministic and-parallel systems.

3 Dealing with Executing Full Prolog in Parallel

In order to be able to execute full Prolog in parallel, mechanisms must be provided to handle
such features as cuts and side-effects, and also mechanisms for dealing with failures: the links
in the markers allow backtracking to take place, but the failure of a task in an and-parallel
execution may affect other tasks as well, as described in [7, 17]. Mechanisms must thus be
provided to coordínate the actions across different stack sets. In this section, we shall examine
the impact of these issues on our distributed stack.

3.1 Dealing with Side-effects

In general, side-effects can be dealt with by the suspensión of tasks, plus some extra synchro-
nisations. These synchronisations are independent of the distributed stacks, and thus have no
extra impact on it, so they will not be discussed further. One exception to this is the action of
the cut, which does have an impact on the distributed stack.

3.2 Deal ing wi th Cuts

In a sequential WAM such as SICStus' WAM [3], which has sepárate local and control stacks,
the execution of a cut will be able to remove arbitrarily many choice points (up to the choice
point representing the parent goal) from the top of the control stack. This is done by simply
setting the top of the control stack register to point to the last choice point that is outside the
scope of the cut. However, such a simple scheme is not sufficient for a distributed stack, as
the choice point to cut to may be in a different stack section. In fact, there can be arbitrarily
many stack sections between the current stack section and the stack section that choice point is
located on.

Three general situations can be recognised when a cut is encountered:

• The cut cuts to a choice point within the current section. The normal sequential cut
mechanism is used to deal with this.

• The cut cuts to a choice point outside the current section, but still within the same task.
First, the top of control stack is reset to that of the current marker, removing any choice
points allocated since this stack section was started. Next, choice points have to be removed
from the previous stack sections, until the choice point to cut to is reached. This is done
by following the markers in reverse chronological order, starting from the current stack
section, and performing the cut operations on these previous stack sections.

Each of these previous stack sections is bounded by markers both before and after the
stack section. To facilítate the cut operation, each marker contains a pointer field which
points to the last valid choice point (if any) on the stack section before it. Initially, when
the marker is allocated, this field is set to point to the top of control stack. When a
cut operation is performed, this last valid choice point pointer is set to point either to the
choice point to cut to, if it is in this stack section; or to the marker before the stack section,
if the choice point is outside this stack section. In the latter case, the marker before the
stack section is used to lócate the logically previous stack section, and the cut operation
is performed recursively on that section.

• The cut cuts across sibling and-goals to its left. An example of this is:

foo : - (t rue => a & b & (c , !) & d) .

This cut cuts away the choices of a, b, c, as well as foo. The main problem is that a and
b are executing in parallel, and may still be executing when the cut is encountered. The
effect of the cut is performed in two stages: the choices of c are pruned when the cut is
encountered, using the methods just described. The slots in the parcall marker associated
with a and b are then marked with a 'cut' flag. The pruning of choices on a and b then
takes place when all sibling and-goals between them and the cut have returned a solution,
i.e., b is pruned when b returns a solution, a is pruned when both a and b have returned
a solution (the finishing of the task that finishes later initiates the pruning). However, if
an and-goal to the left of the cut fails, then the 'cut' flag is reset.

In our current systems, the space represented by the discarded choice points on the non-
current stack sections cannot be immediately recovered, leaving 'garbage slots' in the control
stack. The markers cannot simply be removed, because they have to be retained to allow
detrailing of variables during the actual backtracking. Note that this is independent of what
goal selection scheduling strategy is being used.

The space can be recovered by a garbage collector, or, alternatively, if the control stack is
separated into a choice point stack for choice points only, and a marker stack for markers only.
In this case, the markers would not be 'blocking' the space recovered by the cut. Some redesign
of the existing scheme would be needed, but in principie this would make the recovery of the
space occupied by the choice points easier.

Note that no parallelism is lost (except for whatever overhead is needed to perform the
cut) in dealing with cuts. This is in contrast to dealing with other side-effects, where the task
performing the side-effect must in general suspend until it is leftmost.10

3.3 Dealing with Signáis

In and-parallel execution, events that take place on one task can affect the behaviour of other
tasks. For example, under the "restricted" intelligent backtracking scheme used for puré goals
in RAP-WAM [10], when a goal in a CGE fails, all sibling and-goals are "killed". Even if
no intelligent backtracking is used, standard backtracking among parallel and-goals involves
coordination among agents and tasks. In DDAS, there is even more interaction between and-
goals because of the dependent and-parallelism [17, 16].

Such communication among tasks can be implemented by allowing tasks to send signáis
to each other.11 For example, when a task is told to undo its computation (referred to as
"unwinding" or roll-back), a 'kill' or 'redo' signal is sent to the task. A 'kill' signal informs
the task that receives the signal that it is to be killed. A 'redo' signal means that after undoing
the computation to the previous alternative, the task starts forward execution again. A 'kill'
signal does not restart execution of the task. The decisión of which signal to send is determined
by the exact backward execution scheme used, and will not be discussed further here. Here our
interest is in how memory can be recovered and the signáis handled.

10Note that this does not apply to systems where deterministic goals are executed early, and are allowed to
bind variables, such as PNU-Prolog and Andorra-I. In such systems, the search space explored can be different
from Prolog, and for correct full Prolog behaviour, goals should not be executed in and-parallel across cuts [15].

11 Such "signáis" are of course conceptual and do not in general imply using actual operating system signáis -
more often the action involved is setting a bit in a signal word of an agent or stacking a valué on to a "signal
buffer."

Many approaches can be taken to deal with the complexities that arise from the interactions
of signáis. A simple approach is to delay the killing of a task until it has finished: the task
finds out that it has been killed when reporting back success or failure to the parcall marker.
This solution is attractive in that it completely avoids the complexities and synchronization
overheads, at the cost of using more resources and performing more (wasted) work. This extra
work is unfortunately potentially infinite, unless care is taken at compilation time to only allow
the parallel execution of goals which can be proved to terminate. Since this property can
only be approximated, the number of goals which can be executed in parallel is restricted in
this approach. Moreover, even then the system may still perform a large amount of wasted
work. Another approach, used in APEX [11], is to suspend all forward execution whenever such
interaction occurs. This simplifies the problem, but can potentially greatly affect performance
as many of the workers may be doing work that would be completely unaffected. It also requires
global synchronisation, which is probably undesirable with any significant number of workers.

A third solution is to tackle the complexity head-on. This is clearly the most complex ap­
proach, but it can potentially give the best performance in resources and time. Many variations
on this approach are possible, but, for concreteness, we shall describe one of them, namely the
approach taken in DASWAM (the approach taken in PWAM, although another variation, is
quite similar).

As already discussed, a task is represented in the distributed stack by one or more sections
that are logically linked by the continuation markers. The task receiving the signal may not
be active, i.e., it may not be actively being worked on as some worker's top-most stack-section.
Indeed, a task may have started its own and-parallel execution, and thus it would composed of
a number of descendant and-tasks. Thus, there is no simple representation for a task. However,
the start of a task is well defined: a task begins when it picks up an and-goal and starts execution
on it. The start of a task is thus represented by the first stack section of the task. The parcall
marker contains pointers to the first stack section of every and-goal that has been executed in
the CGE that it represents. Signáis are sent to all the sibling and-tasks in a CGE, or to the
sibling and-tasks to the right of the task that generated the signal, depending on the nature of
the signal. Thus, when a signal is generated, the local parcall marker is used to determine which
and-task the signal needs to be sent to, and the signal is then sent to the stack set containing
the first stack section of the and-task. This signal is treated by the receiving stack section as
an interrupt, such that if an agent is attached to the stack set, the agent stops its current work
and processes the signal before returning to the original work. If no agent is attached, then if
there are idle agents, one of these is immediately attached to the stack set to process the signal.
Otherwise, the signal would be processed by the agent that was attached to the stack set that
sent the signal. Henceforth, for simplicity, we will assume that an agent is attached to the stack
set that receives the signal, and simply refer to it as a worker.

Once a worker receives a signal for a task that it started, the signal must be propagated
to the following stack sections of the task, if the task is split into more than one stack section.
This is done by following the pointers in the various markers to the other stack sections. Note
that this propagation is distributed: once the signal is propagated to a new stack section, the
processing is handled by the worker to which that stack section belongs.

Once a signal is propagated as far as it can go (i.e. to the last stack section representing
a task), then the action associated with the signal can take place. For both 'kill' and 'redo'
signáis, the work done by the task receiving the signal is rolled-back in much the same way as
the undoing of work during backtracking, except that alternatives represented by choice points
are not tried. The process of undoing a piece of work may lead to more 'kill' signáis, e.g., if
there are nested CGEs inside one of the tasks being killed. However, in practice, many of these
signáis apply to the same tasks, and the system can filter out signáis that are sent to a task that

has already received the same signal. The task is rolled-back in semi-chronological order in that
stack sections representing later work of a task are undone before those representing the earlier
work. The exception is that work done by sibling and-goals can be rolled-back in parallel.

One apparent problem comes from the fact that the propagation of a signal takes a finite
amount of time, while the affected task can spawn new tasks before receiving the signal. Thus,
in principie, it might be that such new tasks are produced quicker than the speed of propagation
of the signal, and the overall killing process does not terminate. Note, however, that the scheme
presented effectively avoids such "race conditions" since the propagation is distributed, with
the worker receiving the signal performing the processing of the signal. Thus, if a signal affects
many stack sections, more and more workers (or more precisely, agents) become involved in the
processing of signáis, so that in the extreme case, all the workers are involved in processing the
signal, and no forward execution is performed. Because there is a finite number of agents or
workers, propagation of signáis will always be completed and acted upon. Note that the system
gracefully degrades to the approach taken by APEX of stopping all agents at the moment of
processing any signal, but only when such drastic action is needed. At the same time, as the
signal propagation is a simple and distributed operation, it should occur quickly, so the amount
of wasteful work performed is kept low, and is never infinite.

The actual mechanism used can best be illustrated by an example. Figure 4 shows an example
stack state for a still executing CGE. The lightly shaded stack sections are all executing the same
and-task: At W l , during the execution of stack section "a", a CGE is encountered, and two
descendant and-tasks, executing section "b" (on W l) and "c" (on W2), are started. At some
point, section "b" is completed, and a new section started on top of it. Section "c" encounters
another CGE, spawning sections "d" (executed locally on W2) and "e" (executed on W3).
Section "d" is completed, but no new work is available, so W2 goes into the idle state. Task
"e" is for some reason (e.g., a suspensión that has been resumed) split into two sections: "el"
on W3, and "e2" on W4. e l has been partially backtracked, and section "e2" is in the process
of forward execution. At this point, the task associated with section "a" receives a 'kill' signal.

The roll-back has to undo the states of sections "a" to "e2". A child section is undone before
its parent — i.e., starting from "b", "d" and "e2", and working up the hierarchy to "a". The
reason for this is that the propagation of the kill signal to descendant and-tasks is asynchronous
and takes a finite amount of time, so it is quite involved to undo an ancestral stack state when
its descendant may still be running (because they have not yet received the kill signal). For
example, if section "e2" is still running, it might access its ancestral stack sections "el" , "c" and
"a". Thus the kill signal is propagated to the youngest child sections before the killing starts.
In this example, "b", "e2" and "d" are rolled-back, when "e2" has been rolled-back, "el" is
rolled-back. Section "c" is rolled-back when both its descendant sections ("c" and "el") are
undone. Again, "a" is not rolled-back until both its children — "b" and "c" — are rolled-back.

Each worker is responsible for performing the roll-back in its stack set. One reason for this is
to keep the roll-back algorithm relatively simple. Another reason is to exploit the opportunities
for parallelism: e.g., sections "b", "d" and "e2" can be rolled-back in parallel with each other.

The case is simple for sections "d" and "e2", as they are the topmost sections. The same
applies to section "c", as by the time it is allowed to be roll-back, section "d" would be undone
already, and "c" would have become the topmost section. In the cases of "b" and "el" , they
are not the topmost sections of their worker's stack set during the roll-back. In these cases, the
worker has to freeze the current work it is doing, perform the roll-back, and then go back to its
current work.

Key:

Marker

Parcall frame

I Suspend Marker

W l W2 W3 W4

Figure 4: Example Stack State Before Roll-Back

3.4 Múltiple Kill/Redo Signáis

During a roll-back, a worker may receive other 'kill' or 'redo' signáis. Some of tliese will be to
other parts of the stack set, and are independent of the current roll-back. These are accumulated
and dealt with one after the other. However, some kill/redo signáis would interact with the
current roll-back, because they affect the and-task being rolled-back. For example, in figure 4,
consider the case of section "a" receiving a kill signal and section "el" receiving a redo signal
when the roll-back of "a" is being performed. Another possible interaction is section "a" first
receiving a redo, and later a kill signal.

When a signal is sent to a task, the marker representing the start of that task is marked with
a flag (saying that the task is 'to be killed' or 'to be redone'). If a subsequent signal is sent to
the task (either propagated from another signal to an ancestral task, or a direct signal to this
task), then a 'kill' signal would override any 'redo' signal. This simply means setting the flag
to 'to be killed'. Otherwise the new signal is filtered out, as the correct action is already taking
place.

4 Conclusions

We have overviewed aspects of memory management in the context of non-deterministic and-
parallel systems, which we showed can be considered as a generalisation of memory management
in or- and deterministic and-parallel systems. We also discussed how cuts and roll-backs can be
handled in our scheme. Although we have concentrated on WAM-derived models which preserve
environment stacking, we believe most of our findings should also apply to other stack-based

approaches such as puré goal stacking models and, in general, to any system supporting both
and-parallelism and don't know non-determinism.12

The mechanisms used for suspensión are useful for many other purposes, such as implement­
ing constraints, and allowing dynamic expansions of stacks. We are actively researching many
of these possibilities that the scheme has opened up for us.

References

[1] H. Ait-Kaci. Warren's Abstract Machine, A Tutorial Reconstruction. MIT Press, 1991.

[2] P. Borgwardt. Parallel prolog using stack segments on shared memory multiprocessors. In
International Symposium on Logic Programming, pages 2-12, Silver Spring, MD, February
1984. Atlantic City, IEEE Computer Society.

[3] M. Carlsson. SICStus Prolog Internáis Manual. Swedish Institute of Computer Science,
Box 1263, S-163 12 Spánga, Sweden, Jan. 1989.

[4] J. Chassin de Kergommeaux. Measures of the PEPSys Implementation on the MX500.
Technical Report CA-44, European Computer-Industry Research Centre, Arabellaastr. 17,
D-8000 München 81, Germany, 1989.

[5] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation
Computer Systems, pages 471-478. Tokyo, ICOT, November 1984.

[6] M. V. Hermenegildo and K. Greene. The &-prolog System: Exploiting Independent And-
Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

[7] M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architec-
ture Design and Efficient Implementation of Logic Programs in Parallel. PhD thesis, The
University of Texas At Austin, 1986.

[8] M. V. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution of Logic
Programs. In Third International Conference on Logic Programming, number 225 in Lecture
Notes in Computer Science, pages 25-40. Imperial College, Springer-Verlag, July 1986.

12^ Note that RAP-WAM uses goal stacking for parallel goals and environment stacking for sequential goals.
PWAM (and thus DASWAM) adopt the same general scheme but use the environment information to minimise
the memory consumption in the goal stacking part, thus implementing an environment-based goal stacking model
for parallel goals [6].

[9] M. V. Hermenegildo. Relating Goal Scheduling, Precedence, and Memory Management in
AND-Parallel Execution of Logic Programs. In Fourth International Conference on Logic
Programming, pages 556-575. University of Melbourne, MIT Press, May 1987.

[10] M. V. Hermenegildo and R. I. Nasr. Efficient Management of Backtracking in AND-
parallelism. In Third International Conference on Logic Programming, number 225 in
Lecture Notes in Computer Science, pages 40-55. Imperial College, Springer-Verlag, July
1986.

[11] Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on a Shared Memory
Multiprocessor: A Summary of Results. In Fifth International Conference and Symposium
on Logic Programming, pages 1123-1141. University of Washington, MIT Press, August
1988.

[12] E. L. Lusk, R. Butler, T. Disz, R. Olson, R. A. Overbeek, R. Stevens, D. H. D. War­
ren, A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski, and
B. Hausman. The Aurora Or-Parallel Prolog System. New Generation Computing, 7(2,3),
1990.

[13] L. Naish. Parallelizing NU-Prolog. In International Conference and Symposium on Logic
Programming, pages 1546-1564. University of Washington, MIT Press, August 1988.

[14] V. Santos Costa, D. H. D. Warren, and R. Yang. The Andorra-I Engine: A Parallel
Implementation of the Basic Andorra Model. In Proceedings of the Eighth International
Conference on Logic Programming, 1991.

[15] V. Santos Costa, D. H. D. Warren, and R. Yang. The Andorra-I Preprocessor: Support-
ing Full Prolog on the Basic Andorra Model. In Proceedings of the Eighth International
Conference of Logic Programming, 1991.

[16] K. Shen. Exploiting And-parallelism in Prolog: the Dynamic Dependent And-parallel
Scheme (DDAS). In Joint International Conference and Symposium on Logic Program­
ming, pages 717-731, 1992.

[17] K. Shen. Studies of And/Or Parallelism in Prolog. PhD thesis, Computer Laboratory,
University of Cambridge, 1992.

[18] K. Shen. Implementing Dynamic Dependent And-parallelism. In International Conference
of Logic Programming, pages 167-183. The MIT Press, 1993.

[19] K. Shen and M. V. Hermenegildo. A Flexible Scheduling and Memory Management Scheme
for Non-Deterministic, And-parallel Execution of Logic Programs. Internal Report, 1993.

[20] D. H. D. Warren. Implementing prolog - compiling predicate logic programs. Technical
Report 39 and 40, Department of Artificial Intelligence, University of Edinburgh, 1977.

[21] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI Interna­
tional, 333 Ravenswood Ave., Menlo Park CA 94025, USA, 1983.

[22] D. H. D. Warren. The SRI Model for Or-Parallel Execution of Prolog - Abstract Design
and Implementation Issues. In Proceedings 1987 Symposium, on Logic Programming, pages
92-102. Computer Society Press of the IEEE, Sept. 1987.

[23] D. S. Warren. Efficient prolog nieniory management for flexible control strategies. In Inter­
national Symposium on Logic Programming, pages 198-203, Silver Spring, MD, February
1984. Atlantic City, IEEE Computer Society.

