
Or-Parallel Prolog Execution on Clusters of
Multicores
João Santos and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{jsantos,ricroc}@dcc.fc.up.pt

Abstract
Logic Programming languages, such as Prolog, provide an excellent framework for the parallel
execution of logic programs. In particular, the inherent non-determinism in the way logic pro-
grams are structured makes Prolog very attractive for the exploitation of implicit parallelism.
One of the most noticeable sources of implicit parallelism in Prolog programs is or-parallelism.
Or-parallelism arises from the simultaneous evaluation of a subgoal call against the clauses that
match that call. Arguably, the most successful model for or-parallelism is environment copying,
that has been efficiently used in the implementation of or-parallel Prolog systems both on shared
memory and distributed memory architectures. Nowadays, multicores and clusters of multicores
are becoming the norm and, although, many parallel Prolog systems have been developed in the
past, to the best of our knowledge, none of them was specially designed to explore the combin-
ation of shared with distributed memory architectures. Motivated by our past experience, in
designing and developing parallel Prolog systems based on environment copying, we propose a
novel computational model to efficiently exploit implicit parallelism from large scale real-world
applications specialized for the novel architectures based on clusters of multicores.

1998 ACM Subject Classification D.1.3 Concurrent Programming

Keywords and phrases Logic Programming, Or-Parallelism, Environment Copying, Scheduling

Digital Object Identifier 10.4230/OASIcs.SLATE.2013.9

1 Introduction

Logic Programming languages, such as Prolog, provide a high-level, declarative approach
to programming. In general, logic programs can be seen as executable specifications that
despite their simple declarative and procedural semantics allow for designing very complex
and efficient applications. The inherent non-determinism in the way logic programs are
structured as simple collections of alternative logic clauses makes Prolog very attractive for
the exploitation of implicit parallelism.

Prolog offers two major forms of implicit parallelism: and-parallelism and or-parallel-
ism [5]. And-Parallelism stems from the parallel evaluation of subgoals in a clause, while
or-parallelism results from the parallel evaluation of a subgoal call against the clauses that
match that call. Arguably, or-parallel systems, such as Aurora [7] and Muse [3], have
been the most successful parallel logic programming systems so far. Intuitively, the least
complexity of or-parallelism makes it more attractive as a first step. However, practice
has shown that a main difficulty, when implementing or-parallelism, is how to efficiently
represent the multiple bindings for the same variable produced by the parallel execution
of alternative matching clauses. One of the most successful or-parallel models that solves
the multiple bindings problem is environment copying, that has been efficiently used in the

© João Santos and Ricardo Rocha;
licensed under Creative Commons License CC-BY

2nd Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simões; pp. 9–20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.SLATE.2013.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


10 Or-Parallel Prolog Execution on Clusters of Multicores

implementation of or-parallel Prolog systems both on shared memory [3, 10] and distributed
memory [16, 9] architectures.

Another major difficulty in the implementation of any parallel system is the design of
scheduling strategies to efficiently assign computing tasks to idle workers. A parallel Prolog
system is no exception as the parallelism that Prolog programs exhibit is usually highly
irregular. Achieving the necessary cooperation, synchronization and concurrent access to
shared data among several workers during execution is a difficult task. For environment
copying, scheduling strategies based on dynamic scheduling of work have proved to be very
efficient [2]. Stack splitting [4, 8] is an alternative scheduling strategy for environment
copying that provides a simple and clean method to accomplish work splitting among workers
in which all available work is statically divided beforehand in complementary sets between
the sharing workers. Due to its static nature, stack splitting was thus first introduced aiming
at distributed memory architectures [16, 9] but, recent work, also showed good results for
shared memory architectures [15, 14].

The increasing availability and popularity of multicore processors have made our personal
computers parallel with multiple cores sharing the main memory. Multicores and clusters
of multicores are now the norm and, although, many parallel Prolog systems have been
developed in the past, most of them are no longer available, maintained or supported.
Moreover, to the best of our knowledge, none of them was specially designed to explore the
combination of shared with distributed memory architectures. On one hand, the shared
memory based models take advantage of synchronization mechanisms that cannot be easily
extended to distributed environments and, on the other hand, the distributed memory based
models use specialized communication mechanisms that do not take advantage of the fact
that some workers can be sharing memory resources.

Motivated by the intrinsic and strong potential that Prolog has for implicit parallelism
and by our past experience in designing and developing parallel systems based on environ-
ment copying [10, 9, 15, 14], we propose a novel computational model to efficiently exploit
parallelism from large scale real-world applications specialized for clusters of low cost mul-
ticore architectures. In this new model, we will have two levels of computational units, single
workers and teams of workers, and the ability to exploit different scheduling strategies, for
distributing work among teams and among the workers inside a team. Our approach re-
sembles the concept of teams used by some of the models combining and-parallelism with
or-parallelism, like the Andorra-I [13] or ACE [6] systems, where a layered approach imple-
ments different schedulers to deal with each level of parallelism.

In our model, a team of workers is formed by workers sharing the same memory address
space, i.e., two workers executing in different computer nodes cannot belong to the same
team, but we can have more than a team executing in the same computer node. For
(shared memory) multicores, we can thus have any combination of strategies, teams and
workers inside a team can distribute work using both dynamic or static scheduling of work.
For (distributed memory) clusters of multicores, we can only have (static) stack splitting
for distributing work among teams, but we can still have dynamic or static scheduling of
work for distributing work among the workers inside a team. This idea is similar to the
MPI/OpenMP hybrid programming pattern, where MPI is usually used to communicate
work among workers in different computer nodes and OpenMP is used to communicate
work among workers in the same node.

The remainder of the paper is organized as follows. First, we introduce some background
about environment copying, stack splitting and work scheduling. Next, we introduce our
new model and discuss the major design issues, algorithms and challenges. Last, we ad-



J. Santos and R. Rocha 11

vance directions for further work. Throughout the text, we assume the reader will have
good familiarity with the general principles of Prolog implementation, and namely with the
WAM [18, 1]. When discussing some technical details, we will take as reference the state-
of-the-art Yap Prolog system [12], that integrates or-parallelism based on the environment
copying model and supports both dynamic and static scheduling of work.

2 Environment Copying

In the environment copying model, each worker keeps a separate copy of its own environment,
thus the bindings to shared variables are done as usual (i.e., stored in the private execution
stacks of the worker doing the binding) and without conflicts. Every time a worker shares
work with another worker, all the execution stacks are copied to ensure that the requesting
worker has the same environment state down to the search tree node where the sharing
occurs. At the engine level, a search tree node corresponds to a choice point in the local
stack [18, 1].

As a result of environment copying, each worker can proceed with the execution exactly as
a sequential engine, with just minimal synchronization with other workers. Synchronization
is mostly needed when updating scheduling data and when accessing shared nodes in order
to ensure that unexplored alternatives are only exploited by one worker. All other WAM
data structures, such as the environment frames, the heap, and the trail do not require
synchronization.

2.1 Incremental Copying

To reduce the overhead of stack copying, an optimized copy mechanism called incremental
copy [3] takes advantage of the fact that the requesting worker may already have traversed
part of the path being shared. Therefore, it does not need to copy the stacks referring to
the whole path from root, but only the stacks starting from the youngest node common to
both workers.

For example, consider that worker Q asks worker P for sharing and that worker P

decides to share its private nodes with Q. To implement incremental copying, Q should
start by backtracking to the youngest common node with P , therefore becoming partially
consistent with part of P . Then, if Q receives a positive answer from P , it only needs to copy
the differences between P and Q. These differences can be easily calculated through the
information stored in the common node found by Q and in the top registers of the execution
stacks of P . Care must be taken about variables older than the youngest common node
that were instantiated by P , as incremental copying does not copy these bindings. Worker
Q thus needs to explicitly install the bindings for such variables. This process, called the
adjustment of cells outside the increments, is implemented by searching the trail stack for
bindings to variables older than the youngest common node [3].

2.2 Or-Frames

Deciding which workers to ask for work and how much work should be shared is a function
of the scheduler. A fundamental task when sharing work is to turn public the private choice
points, so that backtracking to these choice points can be synchronized between different
workers. Public choice points are treated differently because we need to synchronize workers
in such a way that we avoid executing twice the same alternative.

SLATE 2013



12 Or-Parallel Prolog Execution on Clusters of Multicores

Strategies based on dynamic scheduling of work, use or-frames to implement such syn-
chronization [3]. A worker sharing work adds an or-frame data structure to each private
choice point made public. Each or-frame stores the pointer to the next available alternative,
as previously stored in the corresponding private choice point, and supports a mutual ex-
clusion mechanism that guarantees atomic updates to the or-frame data. Shared nodes thus
become represented by or-frames, a data structure that workers must access, with mutual
exclusion, to obtain the unexplored alternatives. The set of all or-frames form a tree that
represents the public search tree.

2.3 Stack Splitting
Stack splitting was first introduced to target distributed memory architectures, thus aiming
to reduce the mutual exclusion requirements of the or-frames when accessing shared nodes of
the search tree. It accomplishes this by defining simple and clean work splitting strategies in
which all available work is statically divided beforehand in two complementary sets between
the sharing workers. In practice, with stack splitting the synchronization requirement is
removed by the preemptive split of all unexplored alternatives at the moment of sharing. The
splitting is such that both workers will proceed, each executing its branch of the computation,
without any need for further synchronization when accessing shared nodes.

The original stack splitting proposal [4] introduced two strategies for dividing work: ver-
tical splitting, in which the available choice points are alternately divided between the two
sharing workers, and horizontal splitting, which alternately divides the unexplored altern-
atives in each available choice point. Diagonal splitting [9] is a more elaborated strategy
that achieves a precise partitioning of the set of unexplored alternatives. It is a kind of
mix between horizontal and vertical splitting, where the set of all unexplored alternatives in
the available choice points is alternately divided between the two sharing workers. Another
splitting strategy [17], which we named half splitting, splits the available choice points in
two halves. Figure 1 illustrates the effect of these strategies in a work sharing operation
between a busy worker P and an idle worker Q.

Figure 1(a) shows the initial configuration with the idle worker Q requesting work from
a busy worker P with 7 unexplored alternatives in 4 choice points. Figure 1(b) shows the
effect of vertical splitting, in which P keeps its current choice point and alternately divides
with Q the remaining choice points up to the root choice point. Figure 1(c) illustrates the
effect of half splitting, where the bottom half is for worker P and the half closest to the root
is for worker Q. Figure 1(d) details the effect of horizontal splitting, in which the unexplored
alternatives in each choice point are alternately split between both workers, with workers P

and Q owning the first unexplored alternative in the even and odd choice points, respectively.
Figure 1(e) describes the diagonal splitting strategy, where the unexplored alternatives in
all choice points are alternately split between both workers in such a way that, in the worst
case, Q may stay with one more alternative than P . For all strategies, the corresponding
execution stacks are first copied to Q, next both P and Q perform splitting, according to
the splitting strategy at hand, and then P and Q are set to continue execution.

2.4 The Yap Prolog System
The Yap Prolog system implements or-parallelism based on the environment copying model
and supports both dynamic and static scheduling of work. To implement dynamic schedul-
ing, Yap follows the original Muse approach which uses or-frames to synchronize the access
to the open alternatives. To implement static scheduling, two different approaches were



J. Santos and R. Rocha 13

(a) before sharing (b) vertical splitting (c) half splitting

(d) horizontal splitting (e) diagonal splitting

P

b1

a1

c1

d1

Root

CP1

CP2

CP3

CP4
c2

c3

d2

b2
b3

b4

a1 a2

Root

CP1

CP2

Q

b1

b2

b3

b4

a1

c1

d1

Root

CP1

CP2

CP3

CP4

d2

b1

a1 a2

Root

CP1

CP2

CP3

c2
c3

P

Q

P

b1

b2

b3

b4

a1 a2

c1

d1

Root

CP1

CP2

CP3

CP4
c2

c3

d2
idle

Q

P

b1 b3

a1

c1

d1

Root

CP1

CP2

CP3

CP4

b1

b2

b4

a1

c1

Root

CP1

CP2

CP3

CP4
c2

Q
d2

P

b1

b2

b4

a1

c1

d1

Root

CP1

CP2

CP3

CP4
c2

Q

b1 b3

a1 a2

c1

Root

CP1

CP2

CP3

CP4

c3

d2

c3

a2

Figure 1 Alternative stack splitting strategies.

followed. In the first approach, the engine was designed to run in Beowulf clusters [9]. More
recently, a second approach was designed to run in multicores and it has shown to be very
competitive when compared with the original or-frames approach [15, 14].

When running in shared memory architectures, Yap’s workers can be either processes
(the engine using processes is called YapOr [10]) or POSIX threads (the engine using threads
is called ThOr [11]). The memory organization for YapOr/ThOr is quite similar for all the
approaches (see Fig. 2(a)). The memory of the system is divided into two major address
spaces: the global space and a collection of local spaces. The global space contains the code
area inherited from Yap and all data structures necessary to support parallelism. Among
these structures is static information about the execution, such as the number of workers,
and dynamic information responsible for determining the end of the execution. Each local
space represents one worker and contains the execution stacks inherited form Yap (heap,
local, trail and auxiliary stack) and information related to the execution of that worker such
as the top shared choice point, share and prune requests or the load of that worker [10, 11].

When running in distributed memory architectures, Yap’s workers are processes, each
with independent global and local spaces (see Fig. 2(b)). Despite not specially designed for
it, this approach also fits in shared memory architectures, i.e., we can have some workers
running on the same computer node, but as fully independent processes.

SLATE 2013



14 Or-Parallel Prolog Execution on Clusters of Multicores

(a)

Global Space

(c)

Worker 0

Worker N

.
.
.

Global Space

Worker (A1,0)

Worker (A1,N1)

.
.
.

.
.
.

Worker (Ai,0)

Worker (Ai,Ni)

.
.
.

Team
A1

Team
Ai

(b)

Global Space

Worker N

Global Space

...

Global Space

Worker 0 Global Space

Worker (Z1,0)

Worker (Z1,N1)

.
.
.

.
.
.

Worker (Zj,0)

Worker (Zj,Nj)

.
.
.

Team
Z1

Team
Zj

...

Figure 2 Memory layout for: (a) workers in shared memory; (b) workers in distributed memory;
and (c) teams of workers in clusters of multicores.

3 Our Proposal

The goal behind our proposal is to implement the concept of teams trying to reuse, as much
as possible, Yap’s existing infrastructure. We define a team as a set of workers (processes or
threads) who share the same memory address space and cooperate to solve a certain part
of the main problem. By demanding that all workers inside a team share the same address
space implies that all workers should be in the same computer node. On the other hand, we
also want to be possible to have several teams in a computer node or distributed by other
nodes.

3.1 Memory Organization

In order to support teams, there are several changes that need to be made, being one of the
first, the memory organization. Figure 2(c) shows the new memory layout to support teams
of workers. Each team of workers mimics the previous memory layout for a set of workers
in shared memory (see Fig. 2(a)), where the memory of the system is divided into a global
space, shared among all workers, and a collection of local spaces, each representing one
worker’s team. In this new memory layout, we can also have several teams sharing the same
memory address space and, in particular, sharing the global space. To accomplish that, the
information stored in the global space is now related with teams instead of being related
with single workers. Moreover, the global space now includes an extra area, named team
space, where each team stores static information about the team and dynamic information
about the execution of the team, such as, to determine if the team is out of work or if it has
finished execution. The collection of local spaces maintains its functionality, i.e., it stores
the execution stacks and information about the state of the corresponding worker.

Since our aim is to target clusters of multicores, the complete layout for the new memory
organization can be seem as a generalization of the previous approach for distributed memory
architectures (see Fig. 2(b)), but now instead of single workers with independent global and
local spaces, we may have teams, individual teams or collection of teams as described above,
sharing the same memory address space.



J. Santos and R. Rocha 15

3.2 Mixed Scheduling
One of the main advantages of using teams is that we can combine the scheduling strategies
mentioned before. Therefore we may have teams using static scheduling while others, at
the same time, use dynamic scheduling. Figure 3 shows a schematic representation of what
we want to achieve with our proposal. In this example, we have a cluster composed by two
computers nodes, N1 and N2. The computer node N1 has two teams, team A and team B

with 4 workers each. The computer node N2 has only one team, team C with 8 workers.

Node N1

W
(B,0)

Team B

W
(B,1)

W
(B,2)

W
(B,3)

Node N2

stack splitting

W
(C,0)

Team C

W
(C,1)

W
(C,2)

W
(C,3)

or-frames

W
(A,0)

Team A

W
(A,1)

W
(A,2)

W
(A,3)

or-frames

W
(C,4)

W
(C,5)

W
(C,6)

W
(C,7)

stack
 splittingstack 

splitting

Figure 3 Work scheduling within and among teams.

Regarding the scheduling strategy adopted to distribute work inside the teams, teams A

and C are using dynamic scheduling with or-frames, while team B is using stack splitting.
To distribute work among teams, we only use stack splitting. This is mandatory since we
want to have a single scheduling protocol to distribute work between teams (being they in
the same or in different computer nodes) and we want to fully avoid having synchronization
data structures, such as the or-frames, being shared between teams. Note that having the
access to the open alternatives in data structures shared between teams, not only would
have a great impact in the communication overhead required to keep them up-to-date, but
would also not clarify the notion of being a team. If two teams are synchronizing the access
to the open alternatives, in fact they are not two different teams but only one, because no
decision regarding the shared open alternatives can be made without involving both teams.

Independently of the scheduling strategy, teams will have to communicate among them
when sharing work or when sending requests to perform a cut or to ensure the termination
of the computation. To implement the communication layer, we can use a message passing
protocol, for teams physically located in the same or in different computer nodes, or a
shared memory synchronization mechanism, for teams in the same computer node. Note
that, in this latter case, synchronization is being use to implement communication and not
for scheduling purposes, as discussed before.

3.3 Work Sharing
To distribute work inside a team, we can use, with minor adaptations, any of Yap’s current
dynamic or static schedulers for shared memory. Since these schedulers were developed to
deal with workers that are sharing the same memory address space, they can thus be easily

SLATE 2013



16 Or-Parallel Prolog Execution on Clusters of Multicores

extended to support work sharing inside a team. As discussed before, this is not the case for
work sharing among teams. To deal with that, our approach is thus to implement a layered
approach, similar to the one used by some of the models combining and-parallelism with
or-parallelism [13, 6], and for that a second-level scheduler will be used.

Since the concept of a team implies that we must give priority to the exploitation of the
work available inside the team, we will only ask for work to other teams when no more work
exists in a team. However, even though that it is the entire team that is out of work, the
sharing process will still be done between two workers, being the selected worker of the idle
team then the responsible for sharing the new work with its teammates.

Figure 4 shows a schematic representation of the sharing process between teams. Con-
sider the cluster configuration in Fig. 3 and assume that team C has run out of work and
that team A was selected by C’s scheduler to share work with it. Figure 4(a) shows the state
of team A before the sharing request from C. The four workers in team A are executing
in the private region of the search tree and all share the top three choice points. The top
shared choice point is already dead, i.e., without open alternatives, but the second and third
shared choice points have two (b2 and b3) and one (c3) open alternatives, respectively.

b3
b2

(a)

W
(A,0)

W
(A,1)

shared
region

private
region

null

b2

c3

null

b2

null

d2

(c)

W
(A,0)

shared
region

private
region

null

c3

null

(b)

W
(C,0)

Team A Team A Team C

W
(A,2)

W
(A,3)

W
(A,1)

W
(A,2)

W
(A,3)

or-frames or-frames

b3
b2

c3 c3

d2

d3 d3

Figure 4 Schematic representation of the sharing process between workers of different teams:
in (a) we can see the configuration of team A when team C asks for work and in (b) we can see
the configuration of both teams after the sharing process, considering that worker W (A, 0) used
vertical splitting to share its available work (in (c) we can see the array of open alternatives being
shared) with worker W (C, 0).

When team A receives the sharing request from team C, one of the workers from A

will be selected to share part of its available (private and/or shared) work and manage
the sharing process with the requesting worker from C. For the sake of simplicity, here
we are considering that this is done by the workers 0 of each team, workers W (A, 0) and
W (C, 0). Since this is a sharing operation between teams, static scheduling is then the
strategy adopted to split work. In particular, in this example, we are using the vertical
splitting strategy.

To implement vertical splitting, W (A, 0) thus needs to alternately divide its choice points
with W (C, 0). However, since team A is using or-frames to implement dynamic scheduling
of work inside the team, we cannot apply the original stack splitting algorithm [15, 14] to
split the available work in the shared region of the search tree (please remember that stack
splitting avoids the use of or-frames). To solve that problem, W (A, 0) constructs an array



J. Santos and R. Rocha 17

with the open alternatives per choice point that it will hand over to W (C, 0). This array
is illustrated in Fig. 4(c). The motivation for using this array is the isolation between the
alternatives being shared and the scheduling strategy being used, therefore allowing that
two teams can share work, independently of their scheduling strategies. Note that, when
splitting work in a shared choice point, first W (A, 0) needs to gain (lock) access to the
corresponding or-frame, then it moves the next unexplored alternative from the or-frame to
the array of open alternatives, updates the or-frame to null and unlocks it.

At the end, the array with the open alternatives and the execution stacks of W (A, 0)
are copied to W (C, 0). Figure 4(b) shows the configuration of both teams after the sharing
process. In team A, we can see the effect of vertical splitting by observing the new dead
nodes in the branch of W (A, 0). In team C, we can see that W (C, 0) instantiated the work
received from W (A, 0) as fully private work. W (C, 0) will only share its work, and allocate
the corresponding or-frames if team C is also using dynamic scheduling, when the scheduler
inside the team notifies it to share work with its teammates.

3.4 Algorithms
In this section, we present in more detail the two algorithms that implement the key aspects
of our new model.

Algorithm 1 shows the pseudo-code for the WorkerGetWork() procedure that, given an
idle worker W belonging to a team T , searches for a new piece of work for W . In a nutshell,
we can resume the algorithm as follows. Initially, W starts by selecting a busy worker B

from its teammates to potentially share work with (line 3). Next, it sends a share request
to B (line 4) and if the request gets accepted, then both workers perform the work sharing
procedure, according to the scheduling strategy (dynamic or static) being used in T (line
5). After sharing, W returns to Prolog execution (line 6). Otherwise, if the sharing request
gets refused, then W should try another busy worker from T , while there are teammates
with available work (line 2).

Algorithm 1 WorkerGetWork(W, T ).
1: while TeamNotF inished(T ) do
2: while TeamWithWork(T ) do
3: B ← SelectBusyWorker(T )
4: if SendShareRequest(W, B) = ACCEPTED then
5: ShareWork(W, B)
6: return true
7: if W = SelectMasterWorker(T ) then {W will search for work from the other teams}
8: if TeamGetWork(W, T ) then {worker W has obtained work from another team}
9: return true
10: else {all teams should finish execution}
11: SetTeamAsFinished(T )
12: return false

On the other hand, if all workers in T run out of work (i.e., if all workers are executing
the WorkerGetWork() procedure), then one of the workers from T , named the master
worker W , will be selected to search for work from the other teams (line 7), and for that it
executes the TeamGetWork() procedure (line 8), as explained next in Algorithm 2. If the
call to TeamGetWork() succeeds, this means that W has obtained a new piece of work from
another team and, in such case, W returns to Prolog execution to start exploiting the new

SLATE 2013



18 Or-Parallel Prolog Execution on Clusters of Multicores

available work (line 9). Otherwise, if the call to TeamGetWork() fails, this means that all
teams are out of work and, in such case, team T is set as finished (line 11) and all workers
in T then finish execution by returning false (line 12).

Next, Algorithm 2 shows the pseudo-code for the TeamGetWork() procedure that, given
the master worker W of an idle team T , searches for a new piece of work from the other
teams. Initially, W starts by selecting a busy team U from the available set of teams to
potentially share work with (line 2). Next, it sends a share request to team U (line 3) and if
the request gets accepted, then W performs the work sharing procedure, with the selected
sharing worker S from U (lines 4–5), and returns successfully (line 6). Otherwise, if the
sharing request gets refused, then W should try another busy team, while there teams with
available work (line 1). On the other hand, if all teams run out of work (i.e., if all master
workers are executing the TeamGetWork() procedure), then W returns failure (line 7).

Algorithm 2 TeamGetWork(W, T ).
1: while not AllTeamsWithoutWork() do
2: U ← SelectBusyTeam()
3: if SendShareRequest(T, U) = ACCEPTED then
4: S ← GetSharingWorker(U)
5: ShareWork(W, S)
6: return true
7: return false

4 Conclusions

We have proposed a novel computational model to efficiently exploit implicit or-parallelism
from large scale real-world applications specialized for the novel architectures based on
clusters of multicores. The main goal behind our proposal is to implement the concept of
teams in order to decouple the scheduling of work from the architecture of the system. In
particular, we are most interested in the ability of exploiting different scheduling strategies
for distributing work among workers and among teams in the same or in different computer
nodes.

Currently, we have already started the implementation of the new model in the Yap Pro-
log system, trying to reuse, as much as possible, the existing infrastructure that supports
both dynamic and static scheduling of work for or-parallelism based on the environment
copying model. Beyond the implementation of the initial prototype, further work will in-
clude: (i) studying load balancing, i.e., how to better distribute work across teams and
across workers in a team; (ii) avoid speculative work, i.e., avoid work which would not be
done in a sequential system; and (iii) support sequential semantics, i.e., predicate side-effects
must be executed by leftmost workers, as otherwise we may change the sequential behavior
of the program.

Acknowledgments This work is partially funded by the ERDF (European Regional De-
velopment Fund) through the COMPETE Programme and by FCT (Portuguese Founda-
tion for Science and Technology) within projects LEAP (FCOMP-01-0124-FEDER-015008)
and PEst (FCOMP-01-0124-FEDER-022701). João Santos is funded by the FCT grant
SFRH/BD/76307/2011.



J. Santos and R. Rocha 19

References
1 H. Aït-Kaci. Warren’s Abstract Machine – A Tutorial Reconstruction. The MIT Press,

1991.
2 K. Ali and R. Karlsson. Full Prolog and Scheduling OR-Parallelism in Muse. International

Journal of Parallel Programming, 19(6):445–475, 1990.
3 K. Ali and R. Karlsson. The Muse Approach to OR-Parallel Prolog. International Journal

of Parallel Programming, 19(2):129–162, 1990.
4 G. Gupta and E. Pontelli. Stack Splitting: A Simple Technique for Implementing Or-

parallelism on Distributed Machines. In International Conference on Logic Programming,
pages 290–304. The MIT Press, 1999.

5 G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. V. Hermenegildo. Parallel Execution of
Prolog Programs: A Survey. ACM Transactions on Programming Languages and Systems,
23(4):472–602, 2001.

6 G. Gupta, E. Pontelli, M. V. Hermenegildo, and V. Santos Costa. ACE: And/Or-parallel
Copying-based Execution of Logic Programs. In International Conference on Logic Pro-
gramming, pages 93–109. The MIT Press, 1994.

7 E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. H. D. Warren, A. Calder-
wood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski, and B. Hausman. The
Aurora Or-Parallel Prolog System. In International Conference on Fifth Generation Com-
puter Systems, pages 819–830. Institute for New Generation Computer Technology, 1988.

8 E. Pontelli, K. Villaverde, Hai-Feng Guo, and G. Gupta. Stack splitting: A technique for
efficient exploitation of search parallelism on share-nothing platforms. Journal of Parallel
and Distributed Computing, 66(10):1267–1293, 2006.

9 R. Rocha, F. Silva, and R. Martins. YapDss: an Or-Parallel Prolog System for Scalable
Beowulf Clusters. In Portuguese Conference on Artificial Intelligence, number 2902 in
LNAI, pages 136–150. Springer-Verlag, 2003.

10 R. Rocha, F. Silva, and V. Santos Costa. YapOr: an Or-Parallel Prolog System Based on
Environment Copying. In Portuguese Conference on Artificial Intelligence, number 1695
in LNAI, pages 178–192. Springer-Verlag, 1999.

11 V. Santos Costa, I. Dutra, and R. Rocha. Threads and Or-Parallelism Unified. Journal of
Theory and Practice of Logic Programming, International Conference on Logic Program-
ming, Special Issue, 10(4–6):417–432, 2010.

12 V. Santos Costa, R. Rocha, and L. Damas. The YAP Prolog System. Journal of Theory
and Practice of Logic Programming, 12(1 & 2):5–34, 2012.

13 V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that
Transparently Exploits both And- and Or-Parallelism. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 83–93. ACM, 1991.

14 R. Vieira, R. Rocha, and F. Silva. On Comparing Alternative Splitting Strategies for Or-
Parallel Prolog Execution on Multicores. In Colloquium on Implementation of Constraint
and LOgic Programming Systems, pages 71–85, 2012.

15 R. Vieira, R. Rocha, and F. Silva. Or-Parallel Prolog Execution on Multicores Based on
Stack Splitting. In International Workshop on Declarative Aspects and Applications of
Multicore Programming. ACM Digital Library, 2012.

16 K. Villaverde, E. Pontelli, H. Guo, and G. Gupta. PALS: An Or-Parallel Implementation
of Prolog on Beowulf Architectures. In International Conference on Logic Programming,
number 2237 in LNCS, pages 27–42. Springer-Verlag, 2001.

17 K. Villaverde, E. Pontelli, H. Guo, and G. Gupta. A Methodology for Order-Sensitive
Execution of Non-deterministic Languages on Beowulf Platforms. In International Euro-
Par Conference, number 2790 in LNCS, pages 694–703. Springer-Verlag, 2003.

SLATE 2013



20 Or-Parallel Prolog Execution on Clusters of Multicores

18 D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI Interna-
tional, 1983.


	Introduction
	Environment Copying
	Incremental Copying
	Or-Frames
	Stack Splitting
	The Yap Prolog System

	Our Proposal
	Memory Organization
	Mixed Scheduling
	Work Sharing
	Algorithms

	Conclusions

