9 research outputs found

    Organising interoperability information on highly dynamic and heterogeneous environments

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresThe “Internet of Things” is a dynamic global network infrastructure where physical and virtual “things” communicate and share information amongst themselves. Plug and Interoperate is an approach that allows heterogeneous “things” to plug (into data) and seamlessly exchange information within the environment. To allow that, Plug and Interoperate needs to have the comprehension about the existing interoperability information. For this, the interoperability information needs to be duly organised. However, and in the “Internet of Things”, this presents major challenges. First, it is difficult to index all interoperability information due to the “things” heterogeneity (many and different languages and formats) and due to the dynamics of the system (disparate things entering/leaving the environment at all times). Also, that the environment can be used with much different purposes, which hinders the way on how the interoperability information should be organised. So, an architecture of an Interoperability Repository System is presented, in order to organise all interoperability information in this kind of environments. The solution handles heterogeneous interoperability information and allows users to add a User Space to the repository in order to customise it to specific needs. It also provides a notification mechanism in order to notify users of new or updated interoperability information

    Embedding requirements within the model driven architecture.

    Get PDF
    The Model Driven Architecture (MDA) is offered as one way forward in software systems modelling to connect software design with the business domain. The general focus of the MDA is the development of software systems by performing transformations between software design models, and the automatic generation of application code from those models. Software systems are provided by developers, whose experience and models are not always in line with those of other stakeholders, which presents a challenge for the community. From reviewing the available literature, it is found that whilst many models and notations are available, those that are significantly supported by the MDA may not be best for use by non technical stakeholders. In addition, the MDA does not explicitly consider requirements and specification. This research begins by investigating the adequacy of the MDA requirements phase and examining the feasibility of incorporating a requirements definition, specifically focusing upon model transformations. MDA artefacts were found to serve better the software community and requirements were not appropriately integrated within the MDA, with significant extension upstream being required in order to sufficiently accommodate the business user in terms of a requirements definition. Therefore, an extension to the MDA framework is offered that directly addresses Requirements Engineering (RE), including the distinction of analysis from design, highlighting the importance of specification. This extension is suggested to further the utility of the MDA by making it accessible to a wider audience upstream, enabling specification to be a direct output from business user involvement in the requirements phase of the MDA. To demonstrate applicability, this research illustrates the framework extension with the provision of a method and discusses the use of the approach in both academic and commercial settings. The results suggest that such an extension is academically viable in facilitating the move from analysis into the design of software systems, accessible for business use and beneficial in industry by allowing for the involvement of the client in producing models sufficient enough for use in the development of software systems using MDA tools and techniques

    Quality of process modeling using BPMN: a model-driven approach

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia InformáticaContext: The BPMN 2.0 specification contains the rules regarding the correct usage of the language’s constructs. Practitioners have also proposed best-practices for producing better BPMN models. However, those rules are expressed in natural language, yielding sometimes ambiguous interpretation, and therefore, flaws in produced BPMN models. Objective: Ensuring the correctness of BPMN models is critical for the automation of processes. Hence, errors in the BPMN models specification should be detected and corrected at design time, since faults detected at latter stages of processes’ development can be more costly and hard to correct. So, we need to assess the quality of BPMN models in a rigorous and systematic way. Method: We follow a model-driven approach for formalization and empirical validation of BPMN well-formedness rules and BPMN measures for enhancing the quality of BPMN models. Results: The rule mining of BPMN specification, as well as recently published BPMN works, allowed the gathering of more than a hundred of BPMN well-formedness and best-practices rules. Furthermore, we derived a set of BPMN measures aiming to provide information to process modelers regarding the correctness of BPMN models. Both BPMN rules, as well as BPMN measures were empirically validated through samples of BPMN models. Limitations: This work does not cover control-flow formal properties in BPMN models, since they were extensively discussed in other process modeling research works. Conclusion: We intend to contribute for improving BPMN modeling tools, through the formalization of well-formedness rules and BPMN measures to be incorporated in those tools, in order to enhance the quality of process modeling outcomes

    Towards Automated Formal Analysis of Model Transformation Specifications

    Get PDF
    In Model-Driven Engineering, model transformation is a key model management operation, used to translate models between notations. Model transformation can be used for many engineering activities, for instance as a preliminary to merging models from different meta- models, or to generate codes from diagrammatic models. A mapping model needs to be developed (the transformation specification) to represent relations between concepts from the metamodels. The evaluation of the mapping model creates new challenges, for both conventional verification and validation, and also in guaranteeing that models generated by applying the transformation specification to source models still retain the intention of the initial transformation requirements. Most model transformation creates and evaluates a transformation specification in an ad-hoc manner. The specifications are usu- ally unstructured, and the quality of the transformations can only be assessed when the transformations are used. Analysis is not systematically applied even when the transformations are in use, so there is no way to determine whether the transformations are correct and consistent. This thesis addresses the problem of systematic creation and analysis of model transformation, via a facility for planning and designing model transformations which have conceptual-level properties that are tractable to formal analysis. We proposed a framework that provides steps to systematically build a model transformation specification, a visual notation for specifying model transformation and a template-based approach for producing a formal specification that is not just structure-equivalent but also amenable to formal analysis. The framework allows evaluation of syntactic and semantic correctness of generated models, metamodel coverage, and semantic correctness of the transformations themselves, with the help of snapshot analysis using patterns

    A Pattern-Based Approach to Scaffold the IT Infrastructure Design Process

    Get PDF
    Context. The design of Information Technology (IT) infrastructures is a challenging task since it implies proficiency in several areas that are rarely mastered by a single person, thus raising communication problems among those in charge of conceiving, deploying, operating and maintaining/managing them. Most IT infrastructure designs are based on proprietary models, known as blueprints or product-oriented architectures, defined by vendors to facilitate the configuration of a particular solution, based upon their services and products portfolio. Existing blueprints can be facilitators in the design of solutions for a particular vendor or technology. However, since organizations may have infrastructure components from multiple vendors, the use of blueprints aligned with commercial product(s) may cause integration problems among these components and can lead to vendor lock-in. Additionally, these blueprints have a short lifecycle, due to their association with product version(s) or a specific technology, which hampers their usage as a tool for the reuse of IT infrastructure knowledge. Objectives. The objectives of this dissertation are (i) to mitigate the inability to reuse knowledge in terms of best practices in the design of IT infrastructures and, (ii) to simplify the usage of this knowledge, making the IT infrastructure designs simpler, quicker and better documented, while facilitating the integration of components from different vendors and minimizing the communication problems between teams. Method. We conducted an online survey and performed a systematic literature review to support the state of the art and to provide evidence that this research was relevant and had not been conducted before. A model-driven approach was also used for the formalization and empirical validation of well-formedness rules to enhance the overall process of designing IT infrastructures. To simplify and support the design process, a modeling tool, including its abstract and concrete syntaxes was also extended to include the main contributions of this dissertation. Results. We obtained 123 responses to the online survey. Their majority were from people with more than 15 years experience with IT infrastructures. The respondents confirmed our claims regarding the lack of formality and documentation problems on knowledge transfer and only 19% considered that their current practices to represent IT Infrastructures are efficient. A language for modeling IT Infrastructures including an abstract and concrete syntax is proposed to address the problem of informality in their design. A catalog of IT Infrastructure patterns is also proposed to allow expressing best practices in their design. The modeling tool was also evaluated and according to 84% of the respondents, this approach decreases the effort associated with IT infrastructure design and 89% considered that the use of a repository with infrastructure patterns, will help to improve the overall quality of IT infrastructures representations. A controlled experiment was also performed to assess the effectiveness of both the proposed language and the pattern-based IT infrastructure design process supported by the tool. Conclusion. With this work, we contribute to improve the current state of the art in the design of IT infrastructures replacing the ad-hoc methods with more formal ones to address the problems of ambiguity, traceability and documentation, among others, that characterize most of IT infrastructure representations. Categories and Subject Descriptors:C.0 [Computer Systems Organization]: System architecture; D.2.10 [Software Engineering]: Design-Methodologies; D.2.11 [Software Engineering]: Software Architectures-Patterns

    A Reference Architecture for Service Lifecycle Management – Construction and Application to Designing and Analyzing IT Support

    Get PDF
    Service-orientation and the underlying concept of service-oriented architectures are a means to successfully address the need for flexibility and interoperability of software applications, which in turn leads to improved IT support of business processes. With a growing level of diffusion, sophistication and maturity, the number of services and interdependencies is gradually rising. This increasingly requires companies to implement a systematic management of services along their entire lifecycle. Service lifecycle management (SLM), i.e., the management of services from the initiating idea to their disposal, is becoming a crucial success factor. Not surprisingly, the academic and practice communities increasingly postulate comprehensive IT support for SLM to counteract the inherent complexity. The topic is still in its infancy, with no comprehensive models available that help evaluating and designing IT support in SLM. This thesis presents a reference architecture for SLM and applies it to the evaluation and designing of SLM IT support in companies. The artifact, which largely resulted from consortium research efforts, draws from an extensive analysis of existing SLM applications, case studies, focus group discussions, bilateral interviews and existing literature. Formal procedure models and a configuration terminology allow adapting and applying the reference architecture to a company’s individual setting. Corresponding usage examples prove its applicability and demonstrate the arising benefits within various SLM IT support design and evaluation tasks. A statistical analysis of the knowledge embodied within the reference data leads to novel, highly significant findings. For example, contemporary standard applications do not yet emphasize the lifecycle concept but rather tend to focus on small parts of the lifecycle, especially on service operation. This forces user companies either into a best-of-breed or a custom-development strategy if they are to implement integrated IT support for their SLM activities. SLM software vendors and internal software development units need to undergo a paradigm shift in order to better reflect the numerous interdependencies and increasing intertwining within services’ lifecycles. The SLM architecture is a first step towards achieving this goal.:Content Overview List of Figures....................................................................................... xi List of Tables ...................................................................................... xiv List of Abbreviations.......................................................................xviii 1 Introduction .................................................................................... 1 2 Foundations ................................................................................... 13 3 Architecture Structure and Strategy Layer .............................. 57 4 Process Layer ................................................................................ 75 5 Information Systems Layer ....................................................... 103 6 Architecture Application and Extension ................................. 137 7 Results, Evaluation and Outlook .............................................. 195 Appendix ..........................................................................................203 References .......................................................................................... 463 Curriculum Vitae.............................................................................. 498 Bibliographic Data............................................................................ 49
    corecore